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Large Deflection Elastic and Inelastic
Transient Analyses of Composite and
Sandwich Plates with a Refined Theory

J. R. KOMMINENI* AND T. KANT**

Department of Civil Engineering
Indian Institute of Technology

Powai, Bombay &mdash; 400 076, India

ABSTRACT: A C&deg; continuous finite element formulation of a higher order displacement
theory is presented for predicting linear and non-linear transient responses of composite
and sandwich plates. The geometric non-linearity is accounted for in the sense of von Kar-
man assumptions and the material behaviour is assumed as elasto-perfectly plastic. The
elasto-perfectly plastic material behaviour is incorporated using the flow theory of plastic-
ity. In particular, the modified version of Hill’s initial yield criterion with amsotropic pa-
rameters of plasticity is used. The layered approach is adopted to account for the plasticity
through the thickness of the plate. The displacement model accounts for non-linear cubic
variation of tangential displacement components through the thickness of the laminate and
the theory requires no shear correction coefficients. In the time domain, the explicit cen-
tral difference integrator is used in conjunction with the special mass matrix diagonaliza-
tion scheme which conserves the total mass of the element and includes effects due to

rotary inertia terms. The parametric effects of the time step, finite element mesh, lamina-
tion scheme and orthotropy on the linear and non-linear responses are investigated. Nu-
merical results are presented for composite and sandwich plates under various boundary
conditions and loadings and these are compared with the results from other sources. Some
new results are also presented for future reference.

1. INTRODUCTION

N RECENT YEARS, because of the increased use of composite materials in theaerospace and automotive industries due to their superior mechanical proper-
ties, such as high stiffness per unit weight, high strength per unit weight, and po-
tentially low unit cost, a need has arisen for a basic understanding of their re-
sponse to dynamic loading.
To the authors’ knowledge, investigations predicting the dynamic non-linear

transient response of composite and sandwich plates are scarce. A higher order
shear deformation theory is utilized here (Kant and Kommineni, 1992a). A C° °
nine-node bi-quadratic Lagrangian finite element is used together with either full
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integration or uniformly reduced integration techniques for numerical computa-
tions. In addition to the higher order shear deformation theory, a formulation for
a first order shear deformation theory with five degrees of freedom per node is
also developed so as to enable the comparison of present formulation with a par-
allel formulation both for composite and sandwich plates. Several examples
drawn from the literature are analyzed and appropriate comparisons are made to
show the simplicity, validity and accuracy of the present formulation.

2. A NON-LINEAR HIGHER ORDER THEORY
OF ANISOTROPIC PLATES

A composite laminate consisting of laminas with isotropic/orthotropic material
properties oriented arbitrarily is considered. The x-y plane coincides with the
middle plane of the laminate with z axis oriented in the thickness direction such
that x, y, and z form a right-handed screw coordinate system. The displacement
components of a generic point in the laminate are assumed to be of the form:

where t denotes the time; uo, va, and wo are the components of mid-plane dis-
placements of a generic point having displacements u, v, and w in x, y, and z
directions, respectively. The other parameters are defined in Kant and Kom-
mineni (1992b, 1992c). Large displacements in the sense of von Karman assump-
tions are considered here. Both isotropic and anisotropic situations can be ac-
commodated with arbitrary thicknesses for different layers. By invoking von
Karman’s large deflection assumptions which in particular imply that the first de-
rivatives of u, v, and w with respect to x, y, and z are small, so that their particu-
lar products can be neglected (see Pica and Hinton, 1980; Reddy, 1983), the fol-
lowing Green-Lagrangian strain displacement relations are obtained,
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The equations of motion of the composite and sandwich laminate are devel-
oped by using Hamilton’s variational principle. The first variation of the Lagran-
gian function is thus made to vanish such that:

in which Lf = (I-I-E) and 6 is variation taken during indicated time interval and
integral of Lf takes an extreme value that can be shown to be a minimum. The pa-
rameters E and II define the kinetic and potential energies of the system, respec-
tively.
The potential energy II of the system can be written as

where U is internal strain energy; W is the work done by the applied loads when
displacement varies; the vector u represents three displacement components u, v,
w of a point; the external forces F and T* are body force and surface traction vec-
tors, respectively; and S is the portion of the body on which the tractions are
prescribed.
The kinetic energy of the body E can be written as:

where Q is the mass density of the material and u defines the particle velocity
vector. Rewriting Equation (3), we have

Substitution of the expressions for strain components in Equation (5) and an
explicit integration through the laminate thickness lead to the definition of a stress
resultant vector, o, which is defined as follows:

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
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The individual components are approximated as:

NX M. N* M* or,
Ny My N* Mi _ ~
Nxy MrY N y MP, x, [1 Z Z2 Z3] LZL+1 - zll (6b)
Qx Sz Q * - L=I Tx.

Qy SY QY* - Ty.]QY SY 7GY TYz

where a’ = [ax, ory, Txy, TxZ, 7-,~] and Er = [Ex, e~, ’yxy, 7~’ ’)Iyz] are, respectively,
vectors of stress and strain components with respect to laminate axes (see Figure
1) and Z = (~:~~~+~~)/2. The reader is urged to refer to Kommineni and Kant
(1993) for the details of incremental stress-strain relations.

Figure 1. Laminated plate geometry with positive set of laminallaminate reference axes,
displacement components and fibre or~entat~on.
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The two-dimensional laminate constitutive equations are written in a matrix
form as follows:

r N i inn n. n~ nJ i s 1

where ,

and r ~ ~-- ~ ~-- ~ ~-- ~ ~-- - ---i

where

The mid-plane strain vectors e, k,6 *, and k * are defined as follows,

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
2007 

 at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26,http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


1155

3. C FINITE ELEMENT FORMULATION

The finite element used here is a nine-node isoparametric quadrilateral ele-
ment. The laminate displacement field in the element can be expressed in terms
of nodal variables, such that

or

or

where NN represents the number of nodes in the element; N, (~’,r~) defines inter-
polation function associated with node i in terms of normalized coordinates t
and q; and d, is a generalized displacement vector of the mid-plane at node i.
such that

I

The generalized vectors of Green strain and its variation E and 6E respec-
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tively are written in terms of nodal displacements, a; displacement gradient, and
Cartesian derivatives of shape functions as follows:

/ 1 B

where Bo is the linear strain displacement matrix and B,,, the non-linear strain
displacement matrix which is linearly dependent upon the nodal displacement a.
B is the total strain displacement matrix. The linear part of strain can be written
as,

The corresponding non-zero terms of the sub-matrices of B. matrix are as fol-
lows :

The matrices Bp, Bf, Bps, and Bfs are of dimension 5 x 9.

The non-zero terms of Bp matrix are:

The non-zero terms of the Bf matrix are:

The non-zero terms of Bps matrix are:

The non-zero terms of Bfs matrix are:
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The discrete form of the Equation (5) takes the form:

Because this relation is valid for every virtual displacement ea, one obtains,

which is the global equation of motion, where M is the global mass matrix;
P(a,t) and F(t) are, respectively, global internal and external load vectors at time
t-they are given in subsequent sections:

In material non-linear analysis for the yielded Gaussian point, the stresses are
calculated so that the yielding criterion is satisfied. If the actual stress is found
greater than this permissible value, then the portion of the stress greater than the
yield value must be reduced to the yield surface (see Owen and Hinton, 1980 and
Kommineni and Kant, 1993).

4. SPECIAL MASS MATRIX DIAGONALIZATION SCHEME

The inertia force vector requires the evaluation of the mass matrix M. This
consistent mass matrix is not diagonal and it must therefore be diagonalized in
some way if it is to be useful in the explicit time marching scheme. For the qua-
dratic isoparametric element used here, the following procedure is adopted.
The diagonalized coefficients of the consistent mass matrix are computed

in which I,, I2, /3, 14 are normal inertia, rotary inertia, and respective higher
order inertia terms. These terms are given by

and Ql is material density of the Vh layer.
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All the diagonal terms are scaled with respect to the translation (but not rota-
tion) terms in such a way that the total mass of the element is conserved.

5. SOLUTION ALGORITHM

The numerical solution to the ordinary differential Equation (14) is obtained us-
ing an explicit central difference scheme. The advantage of using the central
difference method should now become apparent. Since no internal force vector
and mass matrices of the complete element assemblage need to be calculated, the
solution can essentially be carried out on the element level and relatively little
high speed storage is required. Further, the usual iterative solution procedure for
the solution of a non-linear system of equations is completely avoided since the
solution in the time domain is obtained here for each degree of freedom inde-
pendently. Using the central difference scheme, systems of very large order equa-
tions can be solved efficiently. This scheme can be written as,

where superscripts n - 1, n, n + 1 stand for three successive time stages and
At is the time step length. The main advantage of this approach is that when M
is diagonal, the computations at each step are trivial.
No estimate on the time step for the non-linear analysis is available in the liter-

ature. An initial estimate is calculated here using the modified formula of Tsui
and Tong (1971) by Mallikarjuna and Kant (1990): ,

in which dx is the smallest distance between adjacent nodes in any quadrilateral
element used. E, and E2 are the Young’s moduli in 1 and 2 directions, respec-
tively (see Figure 1) and R = EIE2. The final estimate is done after carrying out
the convergence checks in order to save the computational costs.

6. NUMERICAL RESULTS

In the present study, the nine-node quadrilateral isoparametric element is

employed. Because of the biaxial symmetry of the problems discussed, only one
quadrant of the laminate is analyzed with 2 x 2 mesh, except for angle-ply lami-
nates that are analyzed by considering full laminates with 4 x 4 mesh. In all the
numerical computations, either a full integration rule (3 x 3) or an uniformly
reduced (2 x 2) integration rule is employed. The element mass matrix is evalu-
ated using a 3 x 3 Gaussian-quadrature rule. In the present layered approach,
lamina are divided into 8 to 10 layers, depending on the lamination scheme. For
numerical computations two programs are developed-a first order shear defor-
mation theory (FOST) and a higher order shear deformation theory (HOST) with
five and nine degrees of freedom per node, respectively. All the computations
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were carried out in single precision on CDC Cyber 180/840 computer with six-
teen significant digits word length at Indian Institute of Technology, Bombay, In-
dia. All the stress values are evaluated at the Gaussian points. The shear cor-
rection coefficient used in the first order shear deformation theory is assumed as
5/6.

In order to test the accuracy and efficiency of the developed algorithm and to
investigate the effects of transverse shear deformations, the following material
property sets were used in obtaining the numerical results.

Material set 1: the material properties are taken from Reismann and Lee
(1969).

a = -J2: b = 1, h = 0.2, ~ = 1, v = 0.3 and E = 1 (non-dimensional)

Material set 2: the material properties are taken from Nosier and Reddy
(1991).

Middle layer E = 19.2 x 106 psi; v = 0.24; Ez = 1.56 X 106 psi
Gz = 0.82 x 106 psi; vz = 0.24 and = 0.00013 lb s2/in4

Outer layers E = 20.83 X 106 psi; v = 0.44; Ez = 10.0 X 106 psi
Gz = 3.7 x 106 psi; p, = 0.44 any = 0.00013 lb s2/in4

Geometry alh = 10; h = 1 ; h, = h3 = h2/2

Material set 3: the material properties are taken from Pica and Hinton (1980).

Material set 4: the material properties are taken from Reddy (1983).

Material set 5: the material properties are taken from Kant (1987). 
’

Face sheets (graphite/epoxy prepreg system)

Thickness of each top stiff layer = 0.025h
Thickness of each bottom stiff layer = 0.08125h

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
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Core (U.S. commerical aluminum honeycomb)
Thickness of core = 0.6h

Core 1

Core 2

Material set 6: the material properties are taken from Liu and Lin (1979).

Plasticity parameters

Material set 7: the material properties are taken from Nanda and Kuppusamy
(1991) .

The boundary conditions corresponding to the present higher order formula-
tion are specified in Table 1 for different types of supports used in the present in-
vestigation.
The corresponding boundary conditions for the first order shear deformation

theory are obtained simply by omitting the higher order starred (*) displacement
quantities. For example, there are nine displacement quantities required to be
specified at x = O,a for C type of boundary conditions in this higher order for-
mulation (HOST), whereas in first order formulation (FOST) the corresponding
boundary values shall be five only. The boundary condition types Sl and S2 have
been especially chosen in order to compare our results with those of other
authors. Incidentally, the Sl type condition corresponds to the usual diaphragm
type of simple support. The edge conditions, which have been derived in a varia-
tionally consistent manner in the present higher order theory may not appear so
(except in the case of fully clamped edge specified by C), because, in any way,
the natural boundary conditions cannot be prescribed in the displacement based
finite element method.

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
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Table 1. Boundary conditions.

6.1 Linear Analysis

6.1.1 ISOTROPIC PLATE SUBJECTED TO PA7CH LOAD AT THE CENTER
In order to validate the present theory, a problem for which an analytical solu-

tion exists has been solved. The problem consists of a simply supported (SI) rect-
angular plate with geometry and material properties as per material set 1 sub-

jected to an uniform pulse load on a square (side = 0.4b) area at the center of
the plate. A non-uniform 4 x 4 mesh of elements was employed. A comparison
of non-dimensional center deflection and bending moments obtained by present
theory and Reismann and Lee (1969) is shown in Figures 2a and 2b. The classical
plate theory results (i.e., not accounting for transverse shear strains) is also given
in the figures to show the influence of shear deformation on the results. The pres-
ent finite element solution for the center deflection is in excellent agreement with
a thick plate analytical solution. The non-dimensional quantities used are as fol-
lows :

6.1.2 LAYERED ORTHOTROPIC PLATE
To validate the present theory further, another problem for which a closed-

form higher order solution exists has been solved. For this purpose, a three-layer
(thickness of each outer layer equals half of the thickness of middle layer) simply
supported (Sl) orthotropic laminate with geometry and material properties as per
material set 2, subjected to a step, a triangular and a symmetric N wave with
durations 0.002 sec, 0.001 sec and 0.001 sec, respectively, is considered. The

present responses are compared with a closed form higher order solution re-

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
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Figure 2a. Displacement vs time for a simply supported (S1), rectangular isotropic plate
under suddenly applied patch load (qo = 1, At = 0 02 sec).

Figure 2b. Stress resultant vs. time for a simply supported (S 1), rectangular Isotropic plate
under suddenly applied patch load (qo = 1, At = 0 02 sec).

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
2007 

 at INDIAN INSTITUTE OF TECHNOLOGY BOMBAY on June 26,http://jrp.sagepub.comDownloaded from 

http://jrp.sagepub.com


1163

Figure 3. Displacement vs. time for a simply supported (S1) square orthotropic three-layer
plate (qo = 4500 psi, At = 1 ¡J.sec).

sponses given by Nosier and Reddy (1991) and are presented in Figure 3. The
non-dimensional quantity for representing displacement is as follows:

The present results match exactly with the closed-form third order theory solu-
tion given by Nosier and Reddy (1991).

6.2 Geometric Non-Linear Analysis 
_

6.2.1 INFINITE LONG PLATE
A clamped (C) isotropic plate, which is infinitely extended in one direction is

modelled, invoking symmetry by 5 plate bending elements. The loading is a sud-
denly applied, uniformly distributed, pulse load; geometry and material proper-
ties are as per material set 3. The present results are compared with Pica and Hin-
ton (1980); they are presented in Figure 4. The present results match exactly with
the Pica and Hinton (1980) results, which validates the present formulation in
geometric non-linear regime. 

,

6. 2. 2 SQUARE LAMINATES
A simply supported (S2) laminate of alh = 10 with laminations (0°/90°) and

(45°/-45°) and material properties as per material set 4 subjected to a uniform
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pulse load is considered. This problem is selected to compare the present results
with Reddy (1983) who used an implicit time matching scheme; the results are
presented in Figures 5a and 5b. The correlation is excellent. Since the laminates
considered are moderately thick where the shear deformation effects are not
much pronounced, the predictions of FOST and HOST are identical. This result
establishes further the validity of the present non-linear formulation.

6.2.3 SANDWICH LAMINATE
A clamped (C) angle-ply (0 ° /45 ° /90 ° /CORE/90 ° /45 ° /30 ° /0 ° ) sandwich lami-

nate with geometry and material properties as per material set 5 subjected to a
suddenly applied uniform pulse load is considered. The results are presented in
Figures 6a and 6b for linear and geometrically non-linear analyses by using first
order shear deformation theory, higher order shear deformation theory, and the
corresponding linear analysis results of Kant (1987). Further, the behaviour of the
laminate by changing the core properties is also studied. The non-dimensional
quantities used are as follows:

The present linear results match- exactly with Kant (1987). From the results, it
is confirmed that even at alh = 10 first order shear deformation theory under-
predicts the displacements in linear as well as geometric non-linear analyses. It

Figure 4. Displacement vs. time for an infinite long isotropic plate under suddenly applied
uniform pulse load (qo = 0.02 kg/cm2, At = 0.06 sec).
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Figure 5a. Displacement vs. time for a simply supported (S2) square cross-ply (Ool9Oo) lam-
mated plate under suddenly applied umform pulse load (qo = 0.005, At = 0.01 sec).

Figure 5b. Displacement vs time for a simply supported (S2) square angle-ply (45°/-45°)
lammated plate under suddenly applied umform pulse load (qo = 0.005, At = 0.01 sec)

 © 1993 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
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Figure 6a. Displacement vs. time for a clamped (C) angle-ply sandwich (0°/45°/90°/
CORE/900/45 °/30 %°) laminate under suddenly applied umform transverse load (qo =
5000 Nlcm2, At = 5 itsec).

Figure 6b. Displacement vs. time for a clamped (C) angle-ply sandwich (0°/45°/90°/
COREl90°l45°l30°l0°) lammate under suddenly apphed uniform transverse load (qo =
5000 Nlcm2, At = 5 ¡J.sec). 

°

~ < =
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is also to be noted that because of non-linearity the amplitude of vibration is
reduced when compared with linear responses. The FOST predictions for dif-
ferent core properties do not differ much, but the corresponding predictions with
HOST vary considerably. This result may be due to the warping of the transverse
cross section, which is not possible with FOST. The usefulness of the formula-
tion is thus evident.

6.3 Combined Geometric and Material Non-Linear Analysis

6.3.1 AN ISOTROPIC PLATE
A simply supported (S2) isotropic plate with alh = 20 and material properties

as per material set 6 subjected to an uniformly distributed transverse load of in-
tensity qo = 300 psi is considered. The present results, compared with Liu and
Lin (1979), are plotted in Figure 7 for linear, geometric non-linear, material non-
linear, and combined geometric and material non-linear analyses. It is seen that
the effect of material non-linearity is softening of the plate; therefore, the ampli-
tude of displacement is larger than the linear elastic behaviour. The present linear
and material non-linear responses, compared with Liu and Lin (1979), are in
good agreement. New results are also presented for combined geometric and
material non-linear responses. These results are intended to serve as benchmarks
for future investigations. As expected, there is not much difference between
FOST and HOST predictions, which may be due to negligible shear deformation
effects. Further, it is clear that the two non-linearities are of opposing type; there-

Figure 7. Displacement vs time for a simply supported (S2) isotropic plate under suddenly
applied uniformly distributed transverse load
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Figure 8. Displacement vs. time for a clamped (C) angle-ply (45ol-45o) laminate under
suddenly apphed uniformly distributed transverse load (At = 0 5 lisec, q. = 0 9375).

fore, the results of combined non-linearity are closer to the linear solution. Such
behaviour is incidental to, rather than typical of, all the problems.

6. 3. 2 AN ANGLE-PLY LAMINATE
A clamped (C) angle-ply (45°/ -45°) plate with alh = 5 and material proper-

ties as per material set 7 subjected to an uniformly distributed transverse load of
intensity qo = 0.9375 is considered. The present linear and material non-linear
responses are plotted in Figure 8 both with FOST and HOST. The laminate is a
thick one. As expected there is a difference between FOST and HOST predictions
up to an extent of 10 % . The usefulness of the present HOST formulation may
thus be seen. The following non-dimensional quantities are used to present the
results:

6. 3. 3 A CROSS-PLY LAMINATE
A simply supported (Sl) cross-ply (0°/90°/0°) plate with alh = 40 and

the material properties as per material set 7 subjected to an uniform transverse
load of intensity qo = 51.2 is considered. The present linear and non-linear re-
sponses are plotted in Figure 9 with both FOST and HOST. As expected, the pre-
dictions with both the theories are identical, which may be due to the negligible
shear deformation effects as the plate considered is thin. Further, it is to be noted
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that the GNL displacement response is less than the corresponding linear re-
sponse ; however, the MNL and CNL displacement responses are larger than the
linear responses. The CNL response lies in between the individual non-linear re-

sponses. The non-dimensional quantities are as per Equation (23).

7. CONCLUSIONS

Numerical results of the linear and non-linear analyses of isotropic, orthotro-
pic, and layered composite and sandwich laminates are presented. The simple C 

°

isoparametric formulation of an assumed higher order displacement model
employed here is stable and accurate in predicting the linear and non-linear tran-
sient responses of composite and sandwich laminates. In contrast to first order

~ shear deformation theory, the present theory does not require the usual shear cor-
rection factors generally associated with the first order shear deformation theory.
The present finite element results in linear and non-linear analyses agree very
well with the available analytical and other finite element solutions in the litera-
ture. The simplifying assumptions made in classical plate theory (CPT) and first
order shear deformation theory (FOST) are reflected by a high percentage of er-
rors especially in the predictions of sandwich laminates. It is believed that the
refined shear deformation theory presented herein is essential for predicting ac-
curate responses of sandwich laminates. The present results of essentially non-
linear analyses of composite plates should serve as reference results for future in-
vestigations.

Figure 9. Displacement vs. time for a simply supported (Sl) cross-ply (0°l90°l0°) laminate
under suddenly applied uniformly distributed transverse load.
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