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A critical review of literature pertinent to the subject matter of this paper was 
carded out under the following two broad headings: free vibration and transient 
dynamics. Each of these groups describes the various theoretical developments 
in fiber reinforced laminated composite and sandwich plates. The theoretical 
developments are further classified according to the refinement/accuracy of the 
theories developed, such as the classical theory, the first-order shear deforma- 
tion theory, and the three-dimensional elasticity/higher-order shear deforma- 
tion theories. The present literature review is limited to linear free vibration 
and transient dynamic analyses, and geometric nonlinear transient response of 
multilayer sandwich/fiber-reinforced composite plates. A comparative study of 
recently developed refined theories in conjunction with the C ° isoparametric 
finite dement formulation has been made and the conclusions were drawn 
based on the literature review and the refined theories results. In order to 
compare the present results with the available results and to provide an easy 
means for future comparisons by other investigators, the numerical results are 
presented in tabular form. 

INTRODUCTION 

Engineers have a wide scope in composite struc- 
tural design because of the variety of constituent 
materials which can be employed and the numer- 
ous options in fiber orientations and the laminas' 
arrangements. Most structures, whether they are 
used on land, sea or in the air are subjected to 
dynamic loads during their operation. Thus, 
theories which can predict the complete behavior 
become necessary for better understanding of the 
complex failure mechanism and strength of multi- 
layer composite structures. 

For mathematical modeling purposes, the indi- 
vidual layer (lamina) is considered to be homo- 
geneous and orthotropic while the laminate is 
heterogeneous through the thickness and gener- 
ally anisotropic. The greater differences in elastic 
properties between fiber filaments and matrix 
materials lead to a high ratio of in-plane Young's 
modulus to transverse shear modulus for most of 
the composite laminates developed to date. This 
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makes the classical lamination theory, which 
neglects the effect of out-of-plane strains, inade- 
quate for the analysis of multilayer composite 
plates. Thus, in order to have a reliable analysis 
and safe designs, more accurate theories which 
include the effects of transverse shear deforma- 
tion become necessary. As a result, a considerable 
amount of work in investigating the effects of 
transverse shear deformation and rotatory inertia 
has been conducted leading to the so-called first- 
order shear deformation theories. The first-order 
theories assume a constant shear rotation through 
the plate thickness and thus require the use of a 
shear correction coefficient whose accurate pre- 
diction for anisotropic laminates is cumbersome 
and problem dependent. It is clear that these 
theories do not include the effects of cross-sec- 
tional warping which is definitely essential for 
thick sandwich plates which are generally com- 
posed of a middle weak core sandwiched between 
stiff facings. Further, the effects of transverse 
normal stress/strain which are neglected in first- 
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order theories should also be evaluated. These 
limitations of the first-order shear deformation 
theories forced the development of refined 
theories which include the consideration of realis- 
tic parabolic variation of transverse shear stresses 
through the plate thickness, warping of the trans- 
verse cross-section and consideration of the 
complete material constitutive Hooke's law. 

A review of available literature is classified 
under two broad headings: free vibration and 
transient dynamics. 

FREE VIBRATION 

The oldest (approximate) plate theory which still 
enjoys considerable status is the so-called classical 
(or Germain-Lagrange-Cauchy) plate theory 
(CPT). In this theory, straight lines originally 
normal to the plate median surface are con- 
strained to remain straight and normal during the 
process of deformation (Kirchhoff's assumption). 
This assumption is equivalent to neglecting trans- 
verse shear deformation in the plate. Because of 
this (artificial) constraint, free vibration frequen- 
cies calculated from classical plate theory are 
always higher than those obtained by more pre- 
cise means, the deviation becoming larger with 
increasing mode numbers. To remove this as well 
as other deficiencies, and 
tive analytical simplicity 
improved plate theory was 
accounts for the effects of 
rotatory inertia in addition 

to retain the compara- 
of a plate theory, an 
advanced. 1 This theory 
shear deformation and 
to transverse inertia. 

Sandwich plates 

Sandwich plates have been the subject of many 
investigations; a large amount of literature has 
been devoted to the development of theories for 
conventional sandwich structures and to the study 
of their static and dynamic behaviors by analytical 
and numerical methods. A detailed historical 
review is given in books by Plantema 2 and Allen 3 
and in two papers by Habip. a'5 Originally, most 
authors dealt with sandwiches in which the facings 
were thin, stiff and heavy as compared with the 
core. Henceforth, this configuration will be 
referred to as classical. The pioneer worker 
Reissner 6 in 1947 suggested a simple and useful 
model to describe such plates. He only took into 
account the transverse shear stiffness of the core 
and the in-plane or membrane stiffness of the 

facings. Subsequently Reissner 7,8 studied finite 
deflection of such plates. 

The main purpose of further investigations 
apparently was to include more and more 'physi- 
cal mechanisms'. This was done in order to relax 
or even eliminate the restriction of dealing only 
with classical sandwiches. However the governing 
equations of motion of these more complicated 
'strength-of-materials theories' have necessarily 
become more involved as well. 

Yu 9 studied the propagation of plane harmonic 
waves in sandwich plates where no limitation was 
imposed upon the magnitude of the ratios 
between the thickness, material densities and 
elastic constants of the core and the facings. He 
applied Mindlin's bending theory of plates ~ to all 
layers of the sandwich and obtained extremely 
comphcated equations of motion. And Yu "~-~ 
further published a series of papers on vibration 
of sandwich plates including viscous damping and 
large deflections. He accommodated in the theory 
the transverse shear deformation and rotary 
inertia effects, the importance of which was 
clearly demonstrated when the theory was used in 
dealing with conventional sandwiches. Chu ~4 
presented a set of approximate equations govern- 
ing the extensional motion of a sandwich plate, 
together with the associated initial and boundary 
conditions. Frequency wavelength curves were 
obtained from these equations for an infinite plate 
in plane strain. A solution of the exact equations 
was obtained and approximate solutions com- 
pared with the exact solution. 

Exact elasticity solutions for some particular 
sandwich plate bending problems were obtained 
by Pagano L~ while many other researchers, such 
as Monforton and Schmi t  16 and A h m e d  17'Is 

adopted the versatile finite element method in 
analysing conventional sandwich structures. 
Monforton and Schmit j~ have presented an 80 
degrees of freedom rectangular element for 
analysing sandwich plates. The element formula- 
tion uses a Hermitian polynomial to describe the 
membrane displacements of the upper and lower 
faces and the transverse displacement. The 
formulation was presented in terms of membrane, 
bending and coupling stiffnesses of the faces and 
transverse shear stiffness for the antiplane core. 
C h a n &  Cheung 19 used a finite strip method for 
static and dynamic analysis of a sandwich plate 
without considering common shear angle for the 
cores and have shown that the assumption of 
common shear rotation for all cores leads to 
erroneous results for certain cases. The general- 
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ized formulations applicable to multilayer sand- 
wich plates have been reported by Khatua and 
Cheung 2° using non-conforming rectangular 
elements. The condition of common shear angle 
for all cores has not been assumed in the formula- 
tion. 

Lee and Chang 21 derived analytical frequency 
equations for plane waves from the three-dimen- 
sional equations of elasticity. They computed 
dispersion curves for two very different sandwich 
plates and discussed the corresponding difference 
in the physical behavior. Their treatment could be 
very useful in testing numerically the accuracy of 
approximate theories. Ng and Lam 22 presented 
displacement-based finite element formulations 
using a parallelogrammic element having five 
degrees of freedom per node for static and 
dynamic analysis of skew sandwich plates. The 
formulations are valid for a sandwich plate made 
up of isotropic faces of equal thickness and an 
orthotropic core. Sayir and Koller 23 discussed the 
physical behavior of bending waves in sandwich 
plates in which the facings are thin, stiff and heavy 
as compared with the core. By means of asymp- 
totic expansions of the basic equations of linear 
elasticity, it was shown that different 'physical 
mechanisms' predominate in different frequency 
ranges. Raville and Ueng 24 experimentally deter- 
mined the natural frequencies of vibration of a 
sandwich plate. 

Fiber reinforced composite plates 

The available literature related to free vibration 
analysis of fiber reinforced composite plates is 
classified into three groups. The first group 
describes the classical (thin plate) theory which 
neglects the effects of shear strains, normal strain 
and normal stress in the transverse direction. This 
is commonly known as the classical lamination 
theory (CLT) and it is an extension of the classical 
plate theory 25-28 to laminated plates. The limita- 
tions of CLT have led to the development of the 
first-order shear deformation theory (FOST) 
which requires the use of shear correction coeffi- 
cients and the literature related to this is described 
in the second group. The third group describes 
the refined theories which are either based on the 
three-dimensional (3D) approach or the two- 
dimensional (2D) approach with higher-order 
displacement models giving parabolic variation of 
transverse shear strains through the plate thick- 
ness and thus requiting no shear correction coeffi- 
cients. Bert and Francis, 29 and Bert 3°-33 have 

presented a detailed review of the literature 
related to the structural mechanics (statics and 
dynamics) aspects of composite beams, plates and 
shells. A review on finite element modeling of 
plates is given in Refs 34 and 35. 

Classical lamination theory 
The classical laminate theory ignores the three 
transverse strain components and the transverse 
normal stress components and models the lamin- 
ate as a two-dimensional equivalent single layer. 
This simple theory can provide reasonably accur- 
ate prediction only for relatively thin plates. 
Various texts 36-44 have described this theory and 
its application to the analysis of laminated compo- 
site structures. Laminated plate theories based on 
the Kirchhoff hypotheses have been developed by 
Reissner and Stavsky, 45 Dong et al. 46 and 
Stavsky, 47 and these developments are summar- 
ized in Ref. 40. These works are based on a linear 
longitudinal displacement distribution across the 
entire laminate with shear deformation neglected. 

For bending, buckling and free vibrational 
analyses of a clamped anisotropic plate a modi- 
fied Fourier series method was used by Whitney. 48 
Tsay and Reddy 49 presented a mixed finite ele- 
ment formulation based on Reissner's variational 
principle using a rectangular element for bending, 
stability and free vibration analyses of isotropic 
and orthotropic thin plates. It was shown by 
Laura et al.5°.5~ that the polynomial coordinate 
functions used to obtain the fundamental fre- 
quency of transverse vibration of thin, elastic 
plates by making use of the Rayleigh-Ritz method 
yield better accuracy. Dong and Lopez 52 deter- 
mined the natural frequencies and mode shapes of 
a clamped circular plate with rectilinear ortho- 
tropy by a modified application of the interior 
collocation method. A least-squares error fit was 
then used to generate the governing eigenvalue 
problem. This method was simple to implement 
and had an advantage over the Rayleigh-Ritz and 
Galerkin methods where energy or error integrals 
had to be evaluated analytically before numerical 
analysis. However, collocation does not provide 
an upper bound as in Rayleigh-Ritz. Iyengar & 
Umaretiya 53 made an attempt to obtain the free 
vibration response of hybrid, laminated rectangu- 
lar and skew plates. The Galerkin technique was 
employed to obtain an approximate solution of 
the governing differential equations. Optimal 
designs of laminated plates have been given in 
several studies 54, 55 of which only a few are refer- 
enced here, with respect to natural frequencies in 
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which the effect of shear deformation was neg- 
lected. The neglect of shear deformation leads to 
designs that are only suboptimal. Indeed, the 
values of optimum fiber orientations and layer 
thicknesses depend on the side-to-thickness ratio 
and consequently FOST and CPT yield different 
optimum points. 

First-order shear deformation theories 
The classical plate theory which ignores the trans- 
verse shear and transverse normal deformations is 
inadequate for the analysis of moderately thick 
plates. Further, the shear deformation effects are 
more pronounced in fiber-reinforced composite 
laminates in comparison with the isotropic plates 
due to the high ratio of in-plane modulus to trans- 
verse shear modulus of fiber reinforced materials. 
These high ratios make classical lamination 
theory inadequate for the analysis of fiber-rein- 
forced composite plates. An adequate theory 
must account for transverse shear effects. The 
development of FOST began with the work of 
Reissner 56 and Mindlin ~ for isotropic plates. The 
approach was extended to embrace laminated 
composite plates by Yang, Norris and Stavsky 
(YNSy  and Whitney and Pagano 58,59 for 
dynamic analysis. For bending, stability and vibra- 
tion analysis of specially orthotropic or trans- 
versely isotropic plates, Ambartsumyan 6° has 
systematically presented the governing equations 
which incorporate the transverse shear effects. On 
similar lines, Vinson & Chou  61 published a book 
which includes composite plate as well as shell 
structures. Whitney 62 noted that the values of 
shear correction coefficients for orthotropic 
laminates depended on the details of the laminate 
construction. Dong and Nelson 63 studied the 
vibrations of a laminated plate composed of an 
arbitrary number of bonded elastic, orthotropic 
layers. The analysis was carried out within the 
framework of linear elasticity for plane-strain 
behavior. 

Sun and Whitney 64 investigated the effect of 
heterogeneous shear deformation over the thick- 
ness of plate on the dynamic behavior of lamin- 
ated plates. Three sets of governing equations 
were derived according to different assumptions 
on the local transverse shear deformation and the 
interface conditions. Fortier & Rossettos 65 
analysed free vibration of rectangular plates of 
unsymmetric cross-ply construction while Sinha 
a n d  R a t h  66 considered both vibration and buck- 
ling for the same type of plates. Using a thick finite 
strip approach, Hinton  67 presented a note on the 

free vibration of laminated plates including trans- 
verse shear effects and rotary inertia. Bert and 
Chen 68 have given a closed form solution using a 
YNS theory for the free vibration of simply sup- 
ported rectangular plates of antisymmetric angle- 
ply laminates. The effect of deleting rotary inertia 
and in-plane inertia, singly and in combination 
were also investigated. Craig and Dawe 69,7° 
studied the flexural vibration of rectangular lam- 
inated plates using FOST. Two numerical tech- 
niques were employed in the study, viz. the 
Rayleigh-Ritz method and the finite-strip 
method, and in both, the trial displacement func- 
tions make use of the normal modes of vibration 
of Timoshenko Beams. Chen & Rarnkumar 7~ 
formulated a theory for the analysis of clamped 
orthotropic plates by using a Lagrangian multi- 
plier technique for the solution of the static and 
eigenvalue problem. 

While considerable effort has been expanded in 
the finite element vibration analysis of isotropic 
plates, only limited investigations of laminated 
anisotropic plates can be found in the literature. 
Hinton et al. 72,73 outlined a particular lumping 
process to show that good accuracy can be 
obtained in a linear and non-linear dynamic 
problem using isoparametric parabolic elements. 
The procedure of lumping recommended in view 
of the infinite possibilities offered is to compute 
the diagonal terms of the consistent mass matrix 
and then scale these terms so as to preserve the 
total mass of the element. Reddy  TM used the YNS 
theory for free vibration of antisymmetric angle- 
ply laminated plates with a finite element formula- 
tion. 

Refined theories 
The first-order shear deformation theory which 
ignores the effects of cross-sectional warping 
leads to an unrealistic (constant) variation of the 
transverse shear stresses through the laminate 
thickness. Development of refined 2D theories, 
which incorporate higher-order modes of trans- 
verse cross-sectional deformation and account for 
2D/3D state of stress/strain has been attempted in 
recent years. These theories depict a realistic 
parabolic variation of transverse shear stresses 
through the laminate thickness and do not require 
the use of assumed shear correction coefficients 
as in the case of first-order Reissner/Mindlin 
theory. 

Srinivas and Rao 75,76 derived the governing 
equations for the bending, free vibration and 
buckling analyses of simply supported thick iso- 
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tropic and orthotropic rectangular laminates using 
three-dimensional theory of elasticity. Solutions 
of the 3D elasticity theory for free vibration of 
multilayered composite plates were obtained by 
N o o r  77 USing a higher-order finite difference 
scheme. Such a scheme was shown to give highly 
accurate results for the response characteristics of 
the plate. Reissner 78 formulated a theory for 
flexural response of isotropic plates by assuming a 
cubic variation of in-plane displacements and 
parabolic variation of transverse displacement 
across the plate thickness. Lo et a/. 79'80 presented 
a theory for homogeneous isotropic 79 and lamin- 
ated composite 8° plates which is of the same order 
of approximation as that of Reissner, 78 but 
includes the terms contributing to the in-plane 
modes of deformation. Thus, the theory accounts 
for the parabolic variation of transverse shear 
stresses, transverse normal strain/stress and a 
cubic variation of the in-plane displacements 
across the plate thickness. The principle of 
stationary potential energy has been used to 
derive the governing differential equations. 

Based on the assumed displacement field of 
Reissner, TM both Levinson 81 and Murthy 82 used the 
equilibrium equations of the FOST which are 
variationally inconsistent for the higher-order 
displacement field used by them with those 
derived from the principle of virtual displace- 
ments. This fact was noted by Reddy 83 and he 
presented a consistent derivation of the associated 
equilibrium equations. The displacement model 
used by Murthy, Levinson and Reddy is the same 
and it contains the same number of dependent 
variables as in the FOST and the theory implicitly 
satisfies the free transverse shear conditions on 
top and bottom surfaces of the plate. Closed-form 
solutions were presented for simply supported 
symmetric cross-ply laminates. Murthy 84 realised 
the inability of earlier 81' 83 higher-order theories to 
evaluate the transverse shear strains at points in 
the plate where displacements are constrained to 
be zero, such as those on fixed edges. To over- 
come this limitation, an additional partial shear 
deflection variable was introduced. Thus, based 
on four basic displacement variables (two partial 
transverse deflections and two in-plane displace- 
ments), the governing equations have been 
derived using a variational principle and are 
presented in the form of four simultaneous partial 
differential equations. The free transverse shear 
conditions on the bounding plane of the plate are 
not satisfied due to the introduction of partial 
shear deflection in the formulation. 

Kant 85 adopted the segmentation method and 
derived the governing equations for linear elastic 
analysis of homogeneous isotropic plates. Later, 
Kant et al. 86 presented a displacement-based 
finite element formulation using the displace- 
ment model of Kant. 85 Pandya and K a n t  87-9° 

investigated the behavior of anisotropic laminated 
composite plates based on various assumed dis- 
placement fields with simple isoparametric f'mite 
element formulations. These studies  78-8°,82-9° 

were confined to static analysis. 
Whitney and Sun 91 extended the theories of 

Y N S  57 and Whitney and Pagano 59 to include the 
first symmetric thickness shear and thickness 
stretch modes by including higher-order terms in 
the displacement expansion about the mid-plane 
of the laminate in a manner similar to that of 
Mindlin & Medick 9e for homogeneous isotropic 
plates. Bhimaraddi and Stevens  93 have given some 
results for free vibration of orthotropic plates by 
using a higher-order theory with closed form 
solution. They considered a total of five 
unknowns, which are the middle surface displace- 
ment quantities. They maintain the higher-order 
(cubic) polynomial form for in-plane displacement 
expressions and at the same time the more real- 
istic parabolic variation for transverse shear 
strains is achieved. 

To determine the natural frequencies and 
buckling loads of orthotropic laminated plates, 
Reddy and Phan 94 and Putcha and Reddy 95 pre- 
sented a closed form solution and mixed finite 
element formulation, respectively, with the 
assumed displacement field used earlier in Ref. 
83. Owen and Li 96'97 presented a local finite 
element model based on an approximate theory 
for thick anisotropic laminated plates. The three- 
dimensional problem was reduced to a two- 
dimensional one by assuming piecewise linear 
variation of the in-plane displacements u and v, 
and a constant value of the lateral displacement w 
across the thickness. A substructuring technique 
was used in the bending, vibration and buckling 
analysis. A 3D eight-node hybrid stress finite 
element was developed for the free vibration 
analyses of laminated plates by Sun and Liou. 98 
This hybrid stress model was based on the modi- 
fied complementary energy principle and all three 
displacement components were assumed to vary 
linearly through the thickness of each lamina. 

Recently, Mallikarjuna and Kant 99-1°2 empha- 
sized on establishing the credibility of higher- 
order theories with different displacement models 
for free vibration analysis of anisotropic lamin- 
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ated composite and sandwich plates. A simple 
isoparametric C O finite element formulation was 
presented. The special mass matrix diagonaliza- 
tion scheme was adopted which conserves the 
total mass of the element and included the effects 
of mass inertia terms corresponding to all the 
degrees of freedom. 

TRANSIENT DYNAMICS 

The analyst usually has at his disposal a variety of 
mathematical models of varying analytical com- 
plexity and physical fidelity. If considerations are 
restricted to sufficiently small elastic deforma- 
tions, the resulting theories can be considered to 
be more or less satisfactory approximations of 3D 
classical elasticity theory. The latter represents the 
undisputed standard of accuracy within the limita- 
tions of elastic action and small deformations. The 
static behavior of composite laminates has been 
reasonably well established analytically and 
experimentally. In the case of dynamic loading, 
however, the state of the art is in a developing 
stage. 

The linear elastic transient response of iso- 
tropic plates has been investigated by several 
researchers. Reismann and his colleagues ~°3-1°5 
analysed a simple supported, rectangular, iso- 
tropic plate subjected to a suddenly applied 
uniformly distributed load over a square area of 
the plate. Exact solution was obtained using 
(classical) 3D elasticity theory, and classical 
improved theories. The finite difference method, 
widely used in the solution of the equations of 
motion which govern the transient response of 
structures such as plates and shells, can become 
unstable unless the ratio of the time mesh to the 
space mesh satisfies a certain condition. The 
condition of stability of the finite difference 
equation for the transient response of a thin flat 
plate and moderately thick plate has been given 
by Leech, 1°6 and Tsui and Tong, ~°7 respectively. 
Rock and Hinton ~°8 presented transient finite 
element analysis of thick and thin isotropic plates. 
The element is based on the Reissner-Mindlin 
(R-M) thick plate theory for homogeneous, iso- 
tropic plates. Excellent agreement of the finite 
element solutions with the analytical solution of 
Reismann & Lee 1°3 was obtained. Hinton 1°9 
adopted the FOST for circular plate bending 
problems by using axisymmetric parabolic iso- 
parametric elements and an explicit time march- 

ing scheme with a special mass lumping 
procedure. A uniform reduced integration tech- 
nique was used. These p a p e r s  1°3-1°9 dealt only 
with linear transient response of isotropic plates. 

The solution of linear and nonlinear dynamic 
transient plate bending problems was considered 
by Hinton et al. ~°  and three situations were 
examined: small deformation and large deforma- 
tion elastic response, and small deformation 
elasto-plastic response employing the yield cri- 
teria of Von Mises and Tresca. An estimate of the 
critical time step length for the transient solution 
of R-M plates, given by Tsui and Tong 1°7 was 
used with minor modification in Refs 109 and 
110. Shantaram et al. 111 employed the FEM in the 
prediction of the transient response of 2D and 3D 
solids exhibiting geometric (large deformation) 
and material (elasto-plastic) nonlinearities. Pica 
and Hinton t 12.113 presented a unified approach 
for the static and transient dynamic linear and 
geometrically nonlinear analysis of R-M plates 
including initial imperfections. A finite element 
idealization was adopted and the quadratic 
Lagrangian elements were used together with 
selective integration. Akay ~ ~4 analysed large de- 
flection transient response of isotropic plates 
using a four-node isoparametric mixed quadri- 
lateral element. Dynamic Von Karman plate equa- 
tions are modified to include the effect of 
transverse shear deformations as in Reissner plate 
theory. Finite element equations of motion are 
obtained via a mixed Galerkin approach with 
three moment and three displacement compo- 
nents as dependent variables. All of these studies 
were confined to homogeneous, isotropic plates. 

Moon ~ 15, ~6 investigated the response of in- 
finite laminated plates subjected to transverse 
impact loads at the center of the plate. Five par- 
tial-differential equations of motion with a mathe- 
matical model based on the work of Mindlin and 
co-workers were obtained 115 for orthotropic 
symmetry in which the in-plane and flexural 
motion were described. The two-dimensional 
velocity and wave surfaces and the principal 
vibratory direction of particle motion for each 
wave normal were presented. The analysis 116 was 
based on the use of a Laplace transform on time 
and a 2D Fourier transform on the space vari- 
ables. The solution permits the analytical inver- 
sion of the Laplace transform while a 
computational tool called the Fast Fourier Trans- 
form was used to numerically invert the Fourier 
transform solution. 
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Chow 117 employed the Laplace transform tech- 
nique to study the dynamic response of ortho- 
tropic laminated plates. The dynamic equations 
were derived from the concepts of Timoshenko's 
beam theory to include the effects of transverse 
shear and rotary inertia. The influence of internal 
friction related to the damping on the response of 
the plate was also considered. Wang et al. ~8 
applied the method of characteristics to unsym- 
metrical orthotropic laminated plates. In a series 
of papers, Sun and his colleagues 119-122 used the 
classical method of separation of variables com- 
bined with the Mindlin-Goodman 123 procedure 
for treating time-dependent boundary conditions 
and/or dynamic external loadings. Yu 124 subse- 
quently applied it to sandwich plates. However, 
these papers 115-124 were confined to plates under 
cylindrical bending. 

For two different lamination schemes, under 
appropriate boundary conditions and sinusoidal 
distribution of the load, the exact form of the 
spatial variation of the solution was obtained by 
Reddy 125 and the problem was reduced to the 
solution of a system of ordinary differential equa- 
tions in time. Reddy 126 has also presented the 
linear transient response of composite plates 
using finite elements. In both the papers, 125,126 the 
theory used was a generalization of the R-M thick 
plate theory for homogeneous, isotropic plates to 
arbitrarily laminated anisotropic plates and 
included shear deformation and rotary inertia 
effects. 

A generalization of the Von Karman ~27 non- 
linear plate theory for isotropic plates to include 
the effects of transverse shear and rotary inertia in 
the theory of orthotropic plates is due to Medwa- 
dowski 128 and that for anisotropic plates is due to 
Ebcioglu. 129 Forced motions of laminated compo- 
site plates are investigated by Reddy ~3° using a 
finite element that accounts for the transverse 
shear strains, rotary inertia, and large rotations (in 
the Von Karman sense). Chen & Sun TM used the 
FEM for nonlinear transverse response of lamin- 
ated composite plates under initial deformation 
and initial stress according to the R-M plate 
theory and Von Karman large deformation 
assumptions. Kant & Mallikarjuna 132 presented 
the linear transient response of composite-sand- 
wich plates using a FOST with 4-, 8-, and 9-noded 
isoparametric quadrilateral elements. All of the 
above  studies 1°3-132 were based on either the 
classical 3D elasticity theory or the classical 
(Kirchhoff) plate theory or the first-order shear 
deformation (Reissner-Mindlin) theory. Recently 

Mallikarjuna and Kant used the higher-order 
displacement models (see below eqns (1)-(5)) with 
simple C ° finite element formulation for free 
vibration 99-~°2 and transient dynamic 99'133-143 
analyses, and in obtaining solutions to general 
laminated fiber-reinforced composite and sand- 
wich plate problems. 

HIGHER-ORDER SHEAR DEFORMATION 
THEORIES 

Refined theories  99 for free vibration and transient 
dynamic analysis of anisotropic composite and 
sandwich laminates have been developed, separ- 
ately for symmetric and unsymmetric lamination 
schemes, using the following displacement fields 
based on the Taylor's series expansion: 

Symmetric laminate 
(a) Higher-order shear deformable 
(HOST5), 5 d.o.f./node 

u(x, y, z, t) =ZOx(X, y, t) +z 30*(x, y, t) 

v (x , y , z , t )=ZOy(X ,y , t )+z30*(x , y , t )  (1) 

w(x, y, z, t) = Wo(X, y, t) 

(b) Higher-order shear deformable 
(HOST6), 6 d.o.f./node 

u(x, y, z, t) = z Ox(x, y, t) + z 3 O* (x, y, t) 

v (x , y , z , t )=ZOy(X ,y , t )+z30~(x ,y , t )  (2) 

w(x, y, z, t) = Wo(X, y, t ) + z  2 ~ (x, y, t) 

Unsymmetric laminate 
(a) Higher-order shear deformable 
(HOST7), 7 d.o.f./node 

u(x, y, z, t) = Uo(X, y, t) +z Ox(x, y, t) 

+ z 30*x (x, y, t) 

v(x, y, z, t )=v0(x,  y, t) + z Oy(x, y, t) 

+ z3 0~ (x, y, t) (3) 

w(x, y, z, t) -- Wo(X, y, t) 

(b) Higher-order shear deformable 
(HOST9), 9 d.o.f./node 

u(x, y, z, t) = Uo(X, y, 

+Z 2 u~' 

v(x ,y , z ,  t)--Vo(X,y, 

+Z2[~ 

w(x, y, z, t) = Wo(X, y, 

t) + z Ox(X, y, t) 

(x, y, t ) + z  3 0? (x, y, t) 

t)+ZOy(X, y, t) 

(X, y, t) + Z 3 {gy(X, y, t) 

t) 

theory 

theory 

theory 

theory 

(4) 
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(c) Higher-order shear deformable theory 
(HOST 11 ), 11 d.o.f./node 

u(x, y, z, t) = uo(x, y, t) + z Ox(X, y, t) 

+z 2 u~' (x, y, t) -t-z 3 0x* (X, y, t) 

v(x, y, Z, t) =v0(x, y, t) + z Or(X, y, t) 

+Z2V~(X, y, t )+zaO~(x,y,  t) 

w(x,  y, z, t) = Wo(x, y, t) + Z Oz(x, y, t) 

+ z 2 W*oo (x, y, t) 

(5) 

where t is the time, u, v and w define the displace- 
ments of any generic point (x, y, z) in the plate 
space, u 0, v0 and w 0 denote the displacements of a 
generic point (x, y) on the midplane, Ox and 0y are 
the rotations of normals to midplane about the y 
and x axes, respectively. The parameters u~, v~', 
w* o, 0", O~ and 0 z are higher-order terms in the 
Taylor's series expansion and are also defined at 
the mid-surface. The development of the refined 
theories and the isoparametric C ° finite element 
formulation can be seen in Ref. 99. 

NUMERICAL RESULTS AND DISCUSSION 

To demonstrate the versatility of the refined 
theories developed, various numerical examples 
drawn from the literature are described, evaluated 
and discussed. The finite element solution tech- 
nique adopted here has a wide range of applic- 
ability for laminates with arbitrary geometry, 
loading and boundary conditions. The computer 
programs have been developed separately to 
predict the free vibration and transient response 
of symmetric and unsymmetric laminates. In 
addition to the refined theories, programs were 
developed for the first-order shear deformation 
theory with three degrees of freedom (FOST3)i.e. 
w, Ox, Oy for symmetric laminates and with five 
degrees of freedom (FOSTS) i.e. u, v, w, Ox, Oy for 
unsymmetric laminates. It is well known that the 
shear correction coefficients depend on the 
lamination scheme and the lamina material pro- 
perties. But due to lack of well accepted coeffi- 
cients for finite plates, the transverse shear energy 
term in FOST is corrected using a multiplier 5/6 
for all the materials except for the core of a sand- 
wich plate where a coefficient of unity has been 
used. The results of the present refined theories 
have been compared with the present FOST 
wherever solutions by other methods are not 
available in the literature. 

For the 9-noded Lagrangian quadrilateral 
isoparametric element used throughout here, the 
selective numerical integration scheme, based on 
the Gauss-quadrature rules, viz. 3 x 3 for mem- 
brane, flexure and coupling between membrane 
and flexure terms, and 2 x 2 for shear terms in the 
energy expression is employed in the evaluation 
of the element stiffness property. The element 
mass matrix is evaluated using a 3 x 3 Gauss 
quadrature rule. An explicit central difference 
technique and subspace iteration scheme for the 
solution of transient dynamics and free vibration, 
respectively, are employed with a special mass 
matrix diagonalization scheme applicable to 
quadrilateral isoparametric C ° finite elements. A 
convergence study was carried out with a view to 
getting reasonably convergent reliable solutions 
with an optimum number of elements. A 2 x 2 
mesh (4 elements) in a quarter plate and a 4x  4 
mesh (16 elements) in a full plate discretization 
were seen to give generally converged displace- 
ments, stresses and stress-resultants, and there- 
fore unless otherwise specified, these dis- 
cretizations were adopted in the present work. 
After having established an optimum space dis- 
cretization, the associated critical time step was 
obtained for the transient dynamic analyses. A 
quarter plate is used for isotropic, 0 ° -- ortho- 
tropic and cross-ply (0°/90°/...) laminates, while 
a full plate geometric model is used for angle-ply 
laminates. Further, a full plate discrete model is 
invariably used in a free vibration analysis for 
obtaining higher frequencies and modes. In tran- 
sient response analyses, zero initial conditions on 
displacements and their time derivatives were 
assumed for all the cases. All the computations 
were carried out in single precision on a CDC 
CYBER 180/840 computer at the Indian Insti- 
tute of Technology, Bombay, India. The boundary 
conditions corresponding to different types of 
edges most commonly occurring in practice, 
namely, the simple supported, the clamped sup- 
port and symmetry conditions along the edge are 
listed in Table 1. The material characteristics of 
the individual layers are given in Table 2 for dif- 
ferent sets of data. 
Example 1. Simply supported square plates of 
multilayered symmetric cross-ply were analysed 
with the material properties typical of high fibrous 
composites (DATA-l) given in Table 2. The ratio 
of E1/E 2 w a s  varied between 3 and 40, and the 
number of layers between 3 and 9. Because of the 
existence of biaxial symmetry in the cross-ply 
laminates, only a quadrant of the laminate is 
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Table 1. Details of boundary conditions for laminated plates 
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Edge Theory Simply-supported Clamped Symmetry line ~ 

SS1 SS2 

FOST5 v o -- w o = 0y = 0 Uo = wo-- 0y = 0 uo = Vo = Wo- 0 uo = 0~ = 0 
O~ = Oy = 0 

HOST7 v o = w o = 0 Uo = Wo = 0 u o = v o = w o -- 0 u o = 0 

HOST9 v o - v~ = w o = 0 Uo = u~ = w o = 0 u o = v o = u~ = v~ = 0 u o = u~ = 0 
0 O y = O y = O  Oy=Oy* 0 O x = O v  = *--0~=0 0x=~x=0 
II W o = 0 

HOST 11 v o = v~ = 0 uo = u~ = 0 Uo = Vo = u* = v~ = 0 Uo = u~ = 0 
w0= =0 wo= =0 0 =0 
Oy~- O~,= 0 z = O  Oy= O~y ~- O z = O  WO= ~o0 = O z = O  

FOST5 u0 = wo = 0~ = 0 vo = wo = Ox = 0 Uo = vo = Wo = 0 Vo = Oy = 0 
0~= 0~=0 

HOST7 u o -- w o = 0 vo = wo = 0 Uo = vii = wo = 0 vo = 0 
0 =o*=o 

= HOST9 Uo = u* = Wo = 0 Vo = v~ = Wo = 0 Uo = v(~ = u~ -- v~ = 0 v o = v~ = 0 
8 0 x ~" O* x = 0 0 x = O* x =" 0 Ox = Oy = O~x =" ~y  = 0 Oy = ~yy = 0 
II W o = 0 

H O S T l l  u o = u ~ = 0  Vo=V~=0 u o = v  o = u ~ = v ~ = 0  v o = v ~ = 0  
W 0 = W~o = 0 W 0 = W~ = 0 0 x = Oy = O* x =" ~., = 0 Oy = ~yy = 0 
ox= Ox*= o =0 Ox*=O Wo= =o =6 

"Boundary conditions along the symmetry lines are used only for quarter plate analyses. SS 1 is used for both quarter and full 
plate analyses, but SS2 is used only for full plate analysis. 

Table 2. Material properties 

DATA Material properties 

Typical high-modulus graphite/epoxy (dimensionless properties) 
E t / E  2 = Open; E 2 = E 3 = 1; GI2 = Gl3 = 0"6 E2; G23 = 0"5 E2; 1/12 = 1"23 ~ •13  = 0"25; p = 1"0 

For face sheets, the assumed ply data based on Hercules AS 1/3501-6 graphite/epoxy prepreg system 
E~ = 13"08 x 106 N/cm2; E2 = E 3  = 1"06 x 106 N/cm2; Gj2 = GI3 = 0"6 × 106 N/cm2; G23 = 0"39 x 106 N/cm2; 
vj2 = vl3 = 0"28; v23 = 0"34; p = 15"8 x 10 -6 N-sec2/cm 4 
Core material is of U.S. Commercial  aluminium honeycomb (1/4 inch cell size, 0.003 inch foil) 
6 2 3  ---- Gy z = 1"772 x 104 N/cm2; Gl3 = Gxz = 5-206 x 104 N/cm2; E 3 = E z = 3"013 x 105 N/cm2; 
p = 0"1009 x 10-5 N_sec2/cm 4 

For face sheets (typical graphite/epoxy) 
El = 0.12 x 108 N/cm2; E 2 = E 3 = 0"79 x 106 N/cm2; Gj2 = G23 = Gj3 = 0.55 x 106 N/cm2; 
vl2 = v23 = vl3 = 0.3; p = 1.58 x 10- 5 N_sec2/cm 4 
For core material (U.S. Commercial  aluminium honeycomb, 1/4 inch cell size, 0.007 inch foil) 
G 2 3  - G y  z = 0'7034 x 104 N/cm2; G l 3  = Gxz - -  0'1407 x 105 N/cm2; p = 0.3415 x 10 -6 N-sec2/cm 4 

m o d e l l e d  f o r  f i n d i n g  f u n d a m e n t a l  f r e q u e n c i e s .  

T h e  e f f e c t s  o f  t h e  n u m b e r  o f  l a y e r s  a n d  d e g r e e  o f  

o r t h o t r o p y  o f  t h e  i n d i v i d u a l  l a y e r s  o n  t h e  d i m e n -  

s i o n l e s s  f u n d a m e n t a l  f r e q u e n c y  a r e  p r e s e n t e d  in  

T a b l e  3. 

T h e  r e s u l t s  a r e  c o m p a r e d  w i t h  N o o r ' s  s o l u -  

t i o n  77 o f  t h e  3 D  e l a s t i c i t y  t h e o r y  u s i n g  h i g h e r -  

o r d e r  f i n i t e  d i f f e r e n c e  s c h e m e s .  V e r y  g o o d  

a g r e e m e n t s  a r e  o b s e r v e d  b e t w e e n  t h e  p r e s e n t  

r e f i n e d  t h e o r i e s  a n d  3 D  e l a s t i c i t y  t h e o r y .  T h e  

r e s u l t s  o b t a i n e d  u s i n g  c l a s s i c a l  l a m i n a t i o n  

t h e o r y ,  97 h y b r i d  s t r e s s  f i n i t e  d e m e n t  m e t h o d  98 

a n d  a l o c a l  f i n i t e  e l e m e n t  m o d e l  b a s e d  o n  a 

r e f i n e d  a p p r o x i m a t e  t h e o r y  97 a r e  a l s o  i n c l u d e d  f o r  

c o m p a r i s o n .  T h e  C P T  o v e r e s t i m a t e s  t h e  f u n d a -  

m e n t a l  f r e q u e n c i e s ,  e s p e c i a l l y  w h e n  t h e  d e g r e e  o f  

a n i s o t r o p y  is g r e a t e r .  T h e  f u n d a m e n t a l  f r e q u e n -  

c i e s  i n c r e a s e  w i t h  t h e  i n c r e a s e  in  d e g r e e  o f  o r t h o -  

t r o p y  a n d  a l s o  t h e  i n c r e a s e  in  n u m b e r  o f  l a y e r s .  

E x a m p l e  2. T o  s h o w  t h e  e f f e c t s  o f  t r a n s v e r s e  

s h e a r  r i g i d i t i e s  o f  s t i f f  l a y e r s  a n d  l e n g t h / t h i c k n e s s  

r a t i o  o n  t h e  n a t u r a l  f r e q u e n c i e s ,  a s e v e n - l a y e r  

( 0 ° / 4 5 ° / 9 0 ° / c o r e / 9 0 ° / 4 5 ° / 0  °) s q u a r e  s y m m e t r i c  

c o m p o s i t e - s a n d w i c h  p l a t e  is  a n a l y s e d  w i t h  d i f f e r -  
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ent boundary conditions: simply-supported (SS2) 
and clamped. The material properties (DATA-2) 
given in Table 2 are used. 

The results obtained using the present refined 
theories and the present FOST are presented in 
Tables 4 and 5 for simply-supported and clamped 
boundary conditions, respectively. It is seen that 
for a moderately thick plate (a/h= 10) with the 
transverse shear modulii (G23 and GI3 ) of stiff 
layers included, the difference between the pre- 
dictions of natural frequencies using theories 
HOST and FOST increases with increasing mode 

numbers. The FOST estimates higher frequencies. 
This is due to simplifying assumptions made in 
FOST. It is concluded that the effect of transverse 
shear modulii of stiff layers is more pronounced in 
thicker laminates (low a/h ratio) than for thin 
laminates (high a/h ratio). The effect of boundary 
condition can be seen from the Tables 4 and 5. The 
frequencies for clamped laminate are always 
higher than that of simply-supported laminate. 
Example 3. Simply supported square orthotropic 
laminates having skew-symmetric laminations 
with respect to the middle plane are considered. 

Table 3. Effect of number of layers and degree of orthotropy of individual layers on the fundamental frequency of simply- 
supported square multilayered symmetric composite plates 

(DATA-1 with varying El~E2, 0"/90"/0°/.../0 °, 2 × 2 mesh, quarter plate, a/h = 5, 6~ = w(ph2/E2) 1/2 × 10) 

No. of Source E t/E 2 
layers 

3 10 20 30 40 

Noor 2.6474 3.2841 3'8341 4.1089 4.3006 
HOST5 2.6260(-0.8) 3.2672(-0"5) 3"7801(- 1 .4)  4'0300(- 1-9) 4.1998(- 2.3) 
HOST6 2.6126(-1.3) 3.2528(-0-9) 3"7253(-2"5) 3'9884(-2.9) 4.1521(-3.4) 

3 FOST3 2.6124(-1.3) 3"2519(-0-9) 3"7221(-2.6) 3"9721(-3.3) 4-1501(-3.5) 
Owen & Li 2.6948(+1.8) 3.3917(+3.2) 3"8979(+1.9) 4"1941(+2.1) 4.3951(+2.2) 
Sun & Liou 2.6524(+0.2) 3"3364(+1'6) 3-8289(-0.1) 4.1142(+0.1) 4.3062(+0.1) 
CPT 2.9198(+10) 4.1264(+25) 5"4043(+41) 6-4336(+56) 7.3196(+70) 

Noor 2.6587 3.4089 3"9792 4'3140 4.5374 
HOST5 2"6389(-0"7) 3'3766(-0"9) 3"9337(- 1 '1 )  4'2622(- 1 .2)  4.4831(- 1.1) 
HOST6 2.6255(- 1 .2)  3.3621(- 1 .3)  3"9192(- 1 .5)  4.2482(- 1 .5)  4.4695(- 1.5) 

5 FOST3 2'6255(- 1 .2)  3'3622(- 1 .3)  3"9190(- 1 .5)  4"2456(- 1 .6)  4'4628(- 1.6) 
Owen & Li 2.6988( + 1 .5)  3.4534( + 1 .3)  4.0297( + 1 .3)  4.3704( + 1 .3)  4.5992( + 1.4) 
Sun & Liou 2.6608(0.08) 3 .4103(0 .04)  3-9803(0.03)  4-3149(0 .02)  4.5380(0.01) 
CPT 2.9198(+9-8) 4.1264(+21) 5"4043(+36) 6-4336(+51) 7.3196(+61) 

Noor 2.6640 3.4432 4-0547 4.4210 4'6679 
HOST5 2'6433(-0"7) 3.4184(-0.7) 4"0259(-0"7) 4'3904(-0.7) 4.6367(-0'6) 

9 HOST6 2'6298(- 1"3) 3.4035(- 1 .1)  4"0107(- 1"1) 4'3755(- 1 .0)  4.6222(-0"9) 
FOST3 2.6297(- 1 .3)  3'4035(- 1 .1)  4"0107(- 1 .1)  4.3756(- 1 .0)  4.6225(-0"9) 
Owen & Li 2.6971(+1.2) 3.4708(+0.8) 4.0746(+0.5) 4.4360(+0.5) 4.6803(+0.3) 
CPT 2.9198(+9.6) 4.1264(+20) 5-4043(+33) 6.4336(+45) 7.3196(+57) 

Values in brackets give percentage errors with respect to 3D-elasticity solution. 

Table 4. Effect of shear rigidity of stiff layers and length-to-thickness ratio on the natural frequencies ( w / 2 x  cycles/sec) of 
seven-layer (0°/450/90°/core/90°/45°/0 °) simply-supported square symmetric composite-sandwich plates 

(DATA-2, 4 × 4 mesh, full plate, a = b = 100 cm, h0 -- h4s  = h90 = 0"05  h ,  h . . . .  = 0"7 h )  

Modal 
No. 

Considering G23 and Gj 3 of stiff layers Neglecting G23 and Gl3 of stiff layers 

a/h = 10 a/h= 100 a/h= 10 a/h = 100 

HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 

1 473 473 593 70 70 70 333 334 356 69 69 69 
2 775 774 1203 166 166 168 517 518 524 161 161 161 
3 1004 1003 1331 194 194 196 616 617 707 188 188 189 
4 1096 1097 1363 267 268 271 718 720 713 256 257 257 
5 1173 1173 1719 344 345 358 729 731 802 322 323 321 
6 1320 1321 2005 400 400 407 862 865 820 377 375 383 
7 1376 1376 2172 408 409 421 870 872 827 382 383 385 
8 1436 1476 2180 478 479 492 884 885 907 442 444 450 
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Table 5. Effect of shear rigidity of stiff layers and length-to-thickness ratio on the natural frequencies (m/2:~ cycles/sec) of 
seven-layer (0"/45"/90"/core/900/45°/0 *) clamped square symmetric composite-sandwich plates 

(DATA-2, 4 x 4 mesh, full plate, a -  b = 100 cm, h0 = h45 = hg0 = 0"05 h,  hcoce = 0"7 h )  

Modal 
No. 

Considering G23 and G~3 of stiff layers 

a/h = 10 a/h = 100 

HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 

Neglecting G23 and G~3 of stiff layers 

a/h-- 10 a/h = 100 

HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 

1 605 606 866 133 134 135 384 385 407 128 128 128 
2 854 856 1 399 250 251 259 545 547 546 232 233 232 
3 1 080 1 081 1 512 290 291 297 661 663 717 270 271 275 
4 1 173 1 176 1 877 373 375 388 740 741 728 342 344 346 
5 1 244 1 245 2 128 475 477 514 764 766 815 415 416 410 
6 1 377 1 383 2 180 550 552 584 875 876 820 483 485 484 
7 1450 1455 2285 564 566 587 893 896 831 499 501 519 
8 1 549 1 556 2408 644 647 683 940 938 916 559 560 558 

The fiber orientations of the different laminae 
alternate between 0 ° and 90 ° with respect to the 
x-axis. The material characteristics of the individ- 
ual layers are taken to be those of high fibrous 
composites (DATA-l) which are given in Table 2. 
Two parameters were varied, namely the degree 
of orthotropy of the individual layers 
(EI/Ez), and the length-to-thickness ratio of the 
laminate. The ratio El~E2 was varied between 3 
and 40, and number of layers varied between 2 
and 10. 

In Table 6, the fundamental frequencies, 
obtained by the present theories, 3D elasticity 
theory 77 using higher-order finite difference 
schemes, a 3D eight-node hybrid stress finite 
element solution, 98 a local finite element model 
based on a refined approximate theory, 97 a mixed 
FEM based on a higher-order theory 95 and a 
classical thin plate theory ,  97 are  presented. It is 
found that for skew-symmetric laminates, as the 
number of layers increases from 2 to 4, the accur- 
acy of the CPT sharply deteriorates. Further 
increase of the number of layers does not have a 
significant effect on the accuracy. On the other 
hand, for symmetrically laminated plates (see 
Example 1 ), the error decreases as the number of 
layers increases. The error in the CPT predictions 
is mainly attributed to the neglect of shear defor- 
mation. When the results of present theories are 
compared with the 3D elasticity solution, 77 the 
agreement is seen to be excellent. The error in the 
predictions of HOST7, HOST9 and HOST 11 did 
not exceed 2.59%, 1"3% and 1.63% respectively, 
even for the case of a highly orthotropic thick 
laminate with El~E2=40. The corresponding 
error estimate for the present FOST5 and CFS of 
a higher order t h e o r y  95 is seen to be 5.1% and 

6.12% respectively, whereas for small degrees of 
orthotropy (EI/E 2 = 3-10), error is almost neglig- 
ible. From Table 6, it is concluded that the results 
reaffirm the fact that the effect of coupling 
between bending and stretching and orthotropy 
cannot be ignored even at low modulus ratio. The 
fundamental frequency increases with the 
increase in degree of orthotropy and/or increase 
in number of layers. 
Example 4. An eight-layer (0°/45°/90°/core/90°/ 
450/300/0 °) unsymmetric square composite-sand- 
wich plate is analysed for two different boundary 
conditions: simply-supported (SS2) and clamped. 
The elastic material properties (DATA-2) given in 
Table 2 are used. The natural frequencies 
obtained using the present refined theories 
(HOST) and the present FOST are presented in 
Tables 7 and 8 for simply-supported and clamped 
boundary conditions, respectively. A comparison 
of the effects of transverse shear rigidity of stiff 
layers and length/thickness ratio on the natural 
frequencies of unsymmetric laminates is made. 

It is seen from Tables 7 and 8 that the effect of 
transverse shear modulii (G23 and GI3) of stiff 
layers is more pronounced in thicker laminates 
(low a/h ratio) than for thin laminates (high a/h 
ratio). For a moderately thick plate, the difference 
in the predictions of FOST5 with HOST9 and 
H O S T l l  is more than with HOST7. This dis- 
crepancy is due to simplifying assumptions made 
in FOST, whereas the present refined theories 
represent the realistic cross-sectional deforma- 
tion. In HOST7 the higher-order in-plane 
degrees-of-freedom (u~', v~) are neglected, the 
effect of which is seen in Tables 7 and 8. The 
difference in the results between refined theories 
and FOST increases with increasing mode 
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Table 6. Effect of number of layers and degree of orthotropy of individual layers on the fundamental frequency of simply- 
supported (SS 1) square mutlilayered skew-symmetric composite plates 

(DATA-I with varying El~E2, 0°/90°/.../90 °, 2 × 2 mesh, quarter plate, a / h  = 5, ¢~ = m(ph2 /E2)  I/2 × 10) 

No. of Source El~E2 
layers 

3 10 20 30 40 

Noor 
HOST 11 
HOST9 
HOST7 

2 FOST5 
Putcha & Reddy 
Owen & Li 
Sun & Liou 
CPT 

Noor 
HOST 11 
HOST9 
HOST7 

4 FOST5 
Putcha & Reddy 
Owen & Li 
Sun & Liou 
CPT 

Noor 
HOST 11 
HOST9 
HOST7 

6 FOST5 
Putcha & Reddy 
Owen & Li 
Sun & Liou 
CPT 

Noor 
HOST 11 
HOST9 
HOST7 

10 FOST5 
Putcha & Reddy 
Owen & Li 
Sun & Liou 
CPT 

2.5031 
2.4782 - 0"99 
2-4909 - 0"48 
2"4909 - 0"48 
2.4829 - 0"80 
2.4868 - 0"65 
2'5601 +2"27 
2.5148 +0"47 
2.7082 + 8'19 

2"6182 
2"5997 ( - 0"70 
2"6037( - 0"55 
2"6055 ( - 0"48 
2"6012 ( - 0"65 
2-6003( - 0"68 
2"6691 ( + 1"94 
2"6219(+0"14 
2"8676 ( + 9"52 

2.6440 
2.6194(-0"93) 
2"6243(-0"74) 
2"6275(-0"62) 
2"6222(-0.82) 
2.6223(-0 .82)  
2.6839( + 1"50) 
2"6458( + 0"06) 
2.8966(+9"55) 

2.6583 
2"6331 ( - 0-94) 
2.6385(-0-74) 
2.6389(-0-72) 
2.6329(-0"96) 
2.6337( - 0.92) 
2.6916( + 1.25) 

2.9115(+9.52) 

2"7938 
2.7764(-0"62) 
2"7905(-0.11) 
2.7981( + 0"15) 
2.7751(-0.67) 
2.7955 ( + 0"06) 
2-8712(+2"77) 
2.8030( + 0-33) 
3"0968( + 10"8) 

3.2578 
3'2486( - 0.28 
3'2621(+0.13 
3"2870( + 0"89) 
3"2889( + 0"95) 
3"2782( + 0"62) 
3"3250( + 2.06) 
3"2621(+0.13) 
3.8877( + 19.3) 

3"3657 
3'3423 ( - 0"69) 
3.3545(-0'33) 
3.3712(+0.16) 
3.3664( + 0"02) 
3"3621(-0"11) 
3"4085( + 1"27) 
3"3666( + 0.02) 
4.0215(+ 19.5) 

3.4250 
3.3989(-0.76) 
3.4083(-0.48) 
3"4142(-0-31) 
3.4043(-0-60) 
3.4050( - 0"58) 
3"4527( + 0.80) 

4.0888( + 19.4) 

3"0698 
3-0737( + 0.12) 
3"0702(+ 0"01) 
3"1252 + 1.80) 
3"0998 + 0"98) 
3"1284 + 1.91) 
3"1558 +2.80) 
3"0768 +0"23) 
3"5422 + 15.3) 

3"7622 
3"7801, + 0"47) 
3'7835, +0"56) 
3'8014~ + 1.04) 
3"8741~ +2.97) 
3"8506~ + 2'35) 
3"8454~ +2'21) 
3"7675q +0"14) 
4"99071 + 32"6) 

3"9359 
3"9249( - 0-27) 
3"9373( + 0"03) 
3"9784( + 1.07) 
3'9756 ( + 1.00) 
3'9672( + 0.79) 
3'9758( + 1.01) 
3'9359( + 0"00) 
5'2234( + 32.7) 

4"0337 
4"0069 - 0"66) 
4"0221 -0 '28)  
4"0377 + 0"09) 
4"0239 - 0.24) 
4"0270 -0.16) 
4.0526 + 0.47) 

5"3397( + 32.4) 

3.2705 
3"3003~ +0"91 
3"2979~ +0"83 
3.3414~ + 2'16 
3.3771q +3.26 
3.4020d + 4.02 
3"36101 +2.76 
3.2763q +0"18 
3"93351 +20.2 

4"0660 
4.1041 ( + 0"93 
4.0923( + 0"64 
4.1247( + 1.44 
4.2462 ( + 4.43 
4"2139( + 3"64 
4"1612( +2.34 
4.0719( +0"14 
5'8900( + 44-8 

4"2783 
4"2766 - 0-04 
4-2890 + 0-25 
4.3526 + 1.73 
4.3512 + 1"70 
4-3419 + 1"48 
4-3233 + 1.05 
4.2775 -0 .02 
6.1963 +44.8 

4.4011 
4.3780(-0-52) 
4"3929(-0'18) 
4-4178( + 0"37) 
4-4003(-0.02) 
4.4079(+0.15) 
4.4140( + 0.29) 

6.3489( + 44.2) 

3"4250 
3.4810( + 1.63) 
3.4698( + 1.30) 
3"5138(+2.59) 
3'5995( + 5"10) 
3.6348(+6.12) 
3'5185(+2'73) 
3.4301(+0.15) 
4.2884( + 25.2) 

4"2719 
4"3240 + 1.21) 
4.3069 +0'81) 
4.3786 + 2.49) 
4"5062 + 5"48) 
4.4686 + 4"60) 
4"3763 + 2.44) 
4.2780 +0"14) 
6"6690 +56"1) 

4"5091 
4"5141(+0"11) 
4"5262(+0.37) 
4.6090( + 2.21) 
4"6083( + 2.19) 
4.6005( + 2.02) 
4"5558( + 1.03) 
4 .5077(-  0"01) 
7'0359( + 56"0) 

4.6498 
4.6295(-0 '43) 
4.6441(-0.12) 
4"6771(+0.58) 
4.6554(+0.12) 
4.6692( + 0.41) 
4.6590(+0.19) 

7.2184( + 55.2) 

Values in brackets give percentage errors with respect to the 3D-elasticity solution. 

numbers. The effect of boundary conditions on 
the frequencies can be seen in Tables 7 and 8. The 
frequencies of clamped laminates are higher than 
those of simply-supported laminates, which is 
obvious. 
Example 5. An anisotropic laminated composite- 
sandwich plate (0°/30°/45°/60°/core/60°/45°/30°/ 
0 °) clamped on all the four sides is analysed for 
suddenly applied uniformly distributed pulse 
loading. The length-to-thickness ratio a/h= 10 
(moderately thick plate) and a/h = 50 (reasonably 
thin plate) are considered. A full plate is discret- 

ized with 4 x 4 mesh. The  elastic material proper- 
ties (DATA-3) given in Table 2 are used. A 

comparison of the results obtained by the refined 
theories (HOST) with those of FOST results is 
made in Tables 9-12. The static results of FOST3 
and HOST 5 are also included in these tables. The 
main purpose of tabulating these results is to 
provide an easy means for future comparison by 
other investigators. 

The variation of in-plane displacements (u and 
v) and center transverse deflection (w0) with 
respect to time for a/h---10 and 50 is shown in 



Table 7. Effect of shear rigidity of stiff layers and length-to-thickness ratio on the natural frequencies (w/2:~ cycles/sec)  of eight-layer (0°/45°/90°/c0re/900/45°/300/0 o) simply- 
supported (SS2) square unsymmetric composite-sandwich plates 

(DATA-2,4 x 4 mesh,  full plate, a = b = 100 cm, thickness of each top stifflayer = 0-025 h, thickness of each bottom stifflayer = 0-08125 h, thickness of core = 0-6 h) 

Modal Considering G23 and G~ ~ of stiff layers Neglecting G23 and G~ 3 of stiff layers 
No. " 

a/h = 10 a/h = 100 a/h = 10 a/h= 100 

H O S T l l  HOST9  HOST7 FOST5 H O S T l l  HOST9  HOST7 FOST5 H O S T l l  HOST9  HOST7 FOST5 H O S T l l  HOST9  HOST7 FOST5 

1 464 464 485 516 59 59 59 59 281 280 305 297 57 57 58 58 ~. 
2 853 853 926 1013 127 127 127 127 431 430 452 430 120 120 123 123 
3 943 934 1 063 1 154 154 154 154 154 530 528 580 579 142 141 150 150 ~- 
4 956 941 1 355 1 501 211 210 210 211 582 581 619 582 192 191 202 201 
5 1 002 1 000 1 53 1 1 773 264 263 265 265 603 602 673 656 236 235 246 243 , ~  
6 1 201 1 188 1 747 1 993 321 320 321 322 628 624 731 673 279 278 299 297 ~" 
7 1 226 1 224 1 781 2 042 326 325 326 327 638 636 737 678 282 280 309 309 ! 

8 1 245 1 246 1 791 2 173 387 386 387 389 665 659 780 744 327 325 359 357 ~. 

Table 8. Effect of shear rigidity of stiff layers and length-to-thickness ratio on the natural frequencies (w/2~ cycles/sec)  of eight-layer (0°/45°/90°/c0re/90°/45°/30°/0 °) 
clamped square unsymmetric composite-sandwich plates 

(DATA-2,4 x 4 mesh,  full plate, a = b = 100 cm, thickness of each top stifflayer = 0"025 h, thickness of each bottom stifflayer = 0"08125 h, thickness of core = 0"6 h) 

~ o  

Modal Considering G23 and G~ 3 of stiff layers Neglecting G23 and Gj 3 of stiff layers 
No. 

a/h = 10 a/h = 100 a/h = 10 a/h = 100 

H O S T l l  H O S T 9  HOST7  FOST5 H O S T l l  H O S T 9  HOST7 FOST5 H O S T l l  H O S T 9  HOST7  FOST5 H O S T l l  HOST9  HOST7 FOST5 

ga. 

1 641 639 686 754 103 102 102 102 321 319 341 332 94 93 98 98 
2 995 988 1093 1244 192 191 192 192 456 455 470 446 168 167 177 176 
3 997 994 1238 1382 231 230 231 231 580 578 607 586 194 193 216 216 
4 1053 1043 1508 1706 295 293 295 296 597 596 628 595 245 244 269 268 
5 1161 1160 1664 1961 374 371 375 378 621 620 691 666 302 300 320 314 
6 1385 1396 1825 2150  440 437 440 444 641 638 735 674 346 344 380 374 
7 1399 1410 1916 2173  459 456 459 462 673 671 737 680 375 345 411 411 
8 1429 1432 1921 2222  525 522 526 531 678 673 792 750 396 394 445 432 
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Tables 9 and 10 respectively. The in-plane dis- 
placements in refined theories (HOST) are about 
50% larger compared to those of FOST for 
moderately thick laminate (a/h = 10), and for thin 
laminate (a/h=50) it is about 12% larger, 
whereas the transverse displacements in HOSTs 
are about 70% and 24% larger compared to that 
in FOST for a/h = 10 and 50 respectively. 

The variation of center normal stresses and 
corner in-plane shear stress with time for a /h  = 10 
and 50 is given in Tables 11 and 12 respectively. 
The maximum central normal stress obtained by 
HOSTs is about 40% larger compared to that of 
FOST for a/h=lO, and it is about 12% for 
a/h = 50. The in-plane shear stress obtained by 
HOSTs is about 50% larger compared to that of 

Table 9. Comparison of  in-plane displacements  (U t°p X 104 cm at x = 21"875 cm and y = 12"5 cm,  vt°P x 10 4 c m  at x = 12'5 cm 
and y = 21 .875  cm) and center transverse displacements  (w 0 x 103 cm) of  a c lamped,  nine-layer ( 0 ° / 3 0 ° / 4 5 ° / 6 0 ° / c o r e / 6 0 ° / 4 5 ° /  

30° /0  ° ) composi te-sandwich plate under suddenly  applied uniformly distributed pulse loading 
(DATA-3,  4 x 4 mesh ,  full plate, a = b = 25 cm,  a / h  = 10, A t  = 1-0 k~sec, qo  = 1 N / c m  2, ho = h3o = h45 = h 6 0 = 0 . 0 6 2 5  cm, 

h . . . .  = 2"0 cm) 

Time 
(psec) 

In-plane displacement, u x 1 0  4 In-plane displacement, v x 1 0  4 Transverse displacement, w o × 103 

FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 

40 0"0626 0"0500 0"0484 0'1094 0'0937 0"0887 0"0934 0'1046 0"1037 
80 0"2451 0"1587 0'1564 0'3996 0'3145 0"3110 0"4278 0'4158 0"4152 

120 0"4502 0"3229 0'3209 0"6286 0'6352 0'6218 0"7970 0'9390 0"9380 
160 0'4791 0"5090 0"5083 0"6850 0"9821 0"9676 0"8104 1"6410 1"6363 
200 0"3336 0"7011 0'6951 0"5391 1'2376 1"2202 0"6022 2'3691 2"3606 
240 0"1534 0'8372 0'8283 0'1975 1'3695 1-3456 0"2658 2'8936 2'8857 
280 0'0069 0"9074 0'8940 0'0270 1'3616 1'3393 -0"0247  3'0243 3'0205 
320 0"0038 0"8519 0'8452 0'0372 1"2766 1"2564 0-0253 2'7628 2'7508 
360 0"1627 0"6916 0'6859 0'2416 1'1524 1"1370 0"2727 2'2270 2"2050 
400 0'3761 0"4719 0'4624 0'5508 0'9483 0"9246 0"6479 1'5665 1'5515 
440 0'4858 0'2716 0'2638 0'7117 0'6332 0"6119 0"8563 0'9074 0'9070 
480 0"4119 0"1187 0"1144 0"5953 0"3184 0"3094 0'7058 0"3541 0"3526 
520 0"2371 0"0335 0"0382 0"3608 0"0456 0"0390 0"4225 -0"0004  - 0 ' 0 0 8 9  
560 0'0555 0"0240 0"0263 0"1092 -0"0259  -0"0350  0"0874 - 0 ' 0 8 8 6 7  - 0 ' 0 9 2 4  
600 - 0 ' 0 1 3 8  0'0726 0"0686 -0"0328  0"0800 0"0944 - 0 ' 0 5 1 1  0'1274 0'1323 
640 0'0664 0'1771 0-1790 0"1589 0'3867 0"3799 0"1508 0"5915 0-6038 
680 0'2989 0"3491 0"3502 0"4227 0"7269 0"7064 0'4852 1'1845 1'1847 
Static 0.2319 0.4293 - -  0.3470 0.7466 - -  0.4006 1.3889 - -  

Table 10. Comparison of in-plane d isplacements  (f/top X 104 cm at x = 21"875 cm and y = 12'5 cm, v t°p x 104 cm at x = 12.5 cm 
and y = 2 1 . 8 7 5  cm) and center transverse displacements  (w 0 x 103 cm) of  a c lamped,  nine-layer ( 0 ° / 3 0 ° / 4 5 ° / 6 0 ° / c o r e / 6 0 ° / 4 5 ° /  

300/0 ° ) composi te-sandwich plate under suddenly  applied uniformly distributed pulse  loading 
(DATA-3,  4 x 4 mesh ,  full plate, a = b = 25 cm,  a / h  = 50,  A t  = 0.5 kzsec, q0 = 1 N / c m  2, h 0 = h30 = h 4 5  = h 6 0  = 0"0125 cm, 

h . . . .  = 0'4 cm) 

Time 
(psec) 

In-plane displacement, u × 1 0  4 In-plane displacement, v x 104 Transverse displacement, w o × 103 

FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 

80 0"9266 0"7509 0"7469 1"1267 0"8759 0"8673 1"5314 2"1392 2"1379 
160 2"7955 2"4368 2"4255 4"1145 3"2871 3"2612 9"2532 8"0655 8"0586 
240 5"4656 4'6502 4"6309 6"4896 6"5753 6"5250 22'397 21"407 21"406 
320 8"6644 7'7323 7"6993 8'3435 8"9394 8"8624 34"646 37"566 37"547 
400 10"132 10'705 10"647 10"932 10"577 10"487 43"617 50"339 50"256 
480 10"906 12'534 12"455 12"233 12"296 12-193 46"183 57'967 57"813 
560 10"990 12'300 12'196 11'203 13"733 13"606 42"433 60'547 60-292 
640 8"4234 11"184 11'077 9"3373 13"314 13"159 35"161 54"825 54"506 
720 5"3966 9"9867 9"8870 6"2327 10"782 10"619 23"542 44'791 44"449 
800 3"2790 7"4292 7'3164 3'1421 7-5245 7"3841 11"143 32'956 32"582 
880 0"9129 4"0222 3'9323 1'6724 4"6662 4"5678 2"6100 20'364 20"023 
960 0"1013 1"6976 1"6388 1"1519 2"4086 2"3473 -2"5596  8"2169 7"9374 

1040 0"7382 0"4594 0-4251 1"1877 0"8293 0"7938 0"9209 - 1 ' 7 1 5 5  -1"8653  
1120 2"4923 - 0 - 0 7 2 6  - 0 - 0 4 9 8  2"6283 0"6960 0.6941 11"325 - 2 ' 4 5 6 3  -2"3686  
1200 5"6634 0-9318 0"9694 5"7087 1"9628 1"9856 21"065 3'5303 3"7405 
Static 5.6275 6-2546 - -  6.2417 7.0081 - -  22.464 28.936 --  
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Table 11. Comparison of center normal stresses ( a  top and a~op in N/cm 2) and in-plane shear stresses ( l r~  in N/cm top of  a 
clamped, nine-layer (0°/30"/45°/60"/core/60*/45°/30"/0") composite-sandwich plate under suddenly applied uniformly distri- 

buted pulse loading 
(DATA-3, 4 x 4 mesh, full plate, a = b - - 2 5  cm, a/h = 10, A t =  1.0 /zsec, q0 = 1 N/cm 2, h0= h30 = h45 = h60=0"0625 cm, 

h ... .  = 2"0 cm) 

Time Bending stress a~ Bending stress oy Shear stress r~  
(~sec) 

FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 

40 1"9236 4-0605 5"3069 -0 -0476  0"6385 1"6677 -0"5358  -0"8014  -0"7834  
80 65"836 21"526 22"775 5"3596 2"2350 3"6950 -1"3958  -2"3640  -2"3611 

120 148"55 54"841 57"173 17"108 4"6381 5"2782 -2"2142  -3"5661 -3"5336  
160 140"81 130"07 133"36 16"103 11"339 12"686 -2 -6347  -4 -0055  -3"9217  
200 104"78 207"64 207"59 8"8519 19"057 21-014 -1"7777  -4"1059  -4"0360  
240 36"692 249"67 249"49 5"1846 27"238 28-899 -0"7928  -4"3655  -4"3489  
280 -16"263  245"07 248'31 -2"1548  29"358 32-290 -0"3114  -4"9960  -4"9997  
320 7"4574 212"49 218"32 -1"4023  26"353 28"508 -0"0866  -5"2157  -5 -1711  
360 20"940 177"86 180"34 3"1356 18"282 19"578 -0"9115  -4"5711 -4"4927  
400 122"06 132"90 130"79 12"922 10"384 11"696 -2"0724  -3"4561 -3"4092  
440 164"21 80"666 81"140 16"751 4"7036 5"1654 -2"4718  -2"5517  - 2 - 5460  
480 102"83 20"261 23'308 12-365 1"2816 1"5971 - 2 - 2 0 5 4  -1"8727  -1"8907  
520 77"434 -19"594  -21"286  7"3379 -1"0825  0"1142 -1"2958  -1"3733  -1"3162  
560 17"677 -27"577  -28"916  0"7743 -0"8900  -0"8138  -0"4365  -0"8591 -0"8063  
600 -37"018  3"5468 4"4951 -2"3994  1"1277 1"3388 -0"0747  -0"8079  -0"7667  
640 22"641 50-359 54"425 -0"0631 3"9069 5"9228 -0"4440  -1"6855  -1"6901 
680 88"304 104"86 106"04 9"3167 8"7733 9"6446 -1"6735  - 3 ' 2 1 6 7  -3"2045 
Static 65.58 109.60 - -  6.769 11.24 - -  - 1 . 2 8 6  - 3 . 1 3 0  - -  

Table 12. Comparison of center normal stresses ( o  top and a~ °p in N/cm 2) and in-plane shear stresses (t't_ op in N/cm top of a 
clamped, nine-layer (0°/30°/45°/60°/core/60°/45°/30°/0°) composite-sandwich plate under suddenly applie~ uniformly distri- 

buted pulse loading 
(DATA-3, 4 x 4  mesh, full plate, a = b = 2 5  cm, a/h=50, A t = 0 . 5  /~sec, q 0 = l  N/cm 2, ho=h3o=h45=h6o=O.0125 cm, 

h .. . .  -- 0.4 cm) 

Time Bending stress tr x Bending stress oy Shear stress Ly 
(psec) 

FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 FOST3 HOST5 HOST6 

80 - 156-06 - 29"528 - 29-026 - 13"868 1'2555 2"0682 - 9-7087 - 8"0415 - 7'9791 
160 486"77 111"16 111"26 1"4424 -7"9831 -7 -9845  -16"469  -19"005  -18"836  
240 1 796"5 1 276"2 1 276"9 112-07 49"284 49"585 - 21-244 - 25"492 - 25"234 
320 2663"6 2456"8 2460"2 249"34 181"59 184"76 -39"140  -34"807  -34"452  
400 3 786"8 3 297"5 3 295-8 297"86 298"48 300-85 - 49-506 - 48"820 - 48"333 
480 3 816-3 3 775-0 3 769-0 276"69 351"66 355-00 - 46-901 - 58"642 - 58"036 
560 2 991"7 4 268"1 4 256"0 257-97 333"42 335"21 - 44-679 - 60'287 - 59-556 
640 2 827"3 3 777"5 3758"1 215"91 257"96 258-65 - 35-255 - 54"727 - 53-920 
720 2080-4 2554.2 2531"1 147"65 210"76 212"38 -31 -047  -44"600  -43"842  
800 654"22 1 851"3 1 830"9 67-442 169"00 167"20 - 18"812 - 32"648 - 32"039 
800 51"075 1 520-0 1 503"2 - 19"063 109-40 110"39 - 1'7287 - 22"319 - 21-890 
960 - 54"437 619"88 599"06 - 84"155 40"529 39-609 -4"2819  - 15"680 - 15"356 

1040 -186"29  -511"43  -524"92  -28"272  -48"132  -50"059  -10"761 -9"8985  -9"6544  
1 120 1016"9 -511"55  -508"48  90"696 -66"862  -66"040  - 11"740 -3"0369  -2"9355  
1200 1390-8 -87"275  -70"608  119"60 -35 -858  - 3 6 - 0 3 0  -25"815  -1"9424  -2"0707  
Static 1 751.0 1807.0 - -  128.6 139-7 - -  - 26-43 - 31.46 - -  

FOST for a/h=lO and it is about 18% for 
a/h = 50. 

As expected, the maximum displacement for a 
constant force applied suddenly is twice the dis- 
placement caused by the same force applied 
statistically (slowly). Unlike in isotropic plates, the 
internal forces and stresses for dynamic load are 

about 2.2-2.5 times the forces and stresses 
obtained by static load. The refined theories, for a 
composite-sandwich laminate with high-strength 
facing layers and a soft core layer, have thus 
shown that the dynamic loads induce considerable 
warping of the transverse cross-section. The 
FOST predicts significantly lower values of 
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deflection, period and stresses. As a/h ratio 
increases, the difference between the results of 
HOSTs and FOST decreases. 

CONCLUSIONS 

The conclusions were drawn based on the avail- 
able literature and the results of the present 
refined theories. The general remarks from the 
current literature survey are as follows: 

(i) Investigation of transient response of 
anisotropic composite and sandwich 
laminates under time-dependent boundary 
conditions and/or dynamic external 
loadings is scarce. 

(ii) In most of the practical situations, compo- 
site laminate problems involved compli- 
cated geometry, boundary conditions and 
loadings, but closed-form analytical solu- 
tions exist for simple geometry, loading 
and boundary conditions. This has led to 
adoption of some approximate numerical 
solution techniques. Of such techniques 
available, it is seen that the finite element 
method is not only simple but straight- 
forward for efficient programming and 
also versatile enough to cover all types of 
problems relevant to situations in practice. 

(iii) The 3D analysis using a numerical tech- 
nique is not cost effective as it needs large 
computer core storage and time in com- 
parison with 2D analysis. Thus, it was 
recognized that efforts ought to be made to 
restrict to 2D analysis without much loss 
of accuracy of results in comparison with 
3D analysis. 

(iv) In most of the 2D theories developed to 
predict the transient dynamic analysis of 
laminated plates, the assumed cross- 
sectional deformations of a laminate 
appear to be reasonably unrealistic. Thus, 
there is a need to consider the accurate 
and realistic deformation of the transverse 
cross-section and stress variation across 
the thickness to predict the behavior of 
composites and sandwiches. 

(v) Among finite element formulations, the 
hybrid-stress approach gave realistic and 
accurate predictions of transverse cross- 
sectional deformations and stress variation 
across the thickness but it involved a large 
number of unknown variables in compari- 

son with the conventional displacement 
approach. 

(vi) There is a need to consider the refined 
higher-order displacement models for free 
vibration and transient dynamics of aniso- 
tropic composite and sandwich laminates 
and adopt a simple C ° isoparametric 
approach for the finite element formula- 
tion. Such an approach is generally attrac- 
tive due to ease of software development 
and implementation in an existing general 
purpose program. 

The present refined theories 99 and their appli- 
cations to numerous composite and sandwich 
laminates have led to the following general con- 
clusions: 

(i) The evaluations using higher-order 
theories show considerable warping of the 
transverse cross-section for composite- 
sandwich laminates. This true behavior is 
not possible to model with a first-order 
shear deformation theory. For a sandwich 
type of laminate with high-strength facing 
layers and a soft core layer, it is shown that 
the dynamic loads induce considerable 
warping across the thickness. 

(ii) The arbitrary shear correction coefficients 
for fiber reinforced composite and sand- 
wich laminates used in the FOST are not 
justified. These coefficients depend on the 
lamina material properties, stacking 
sequence and are thus problem dependent. 
The present refined theories account for 
parabolic variation of the transverse shear 
stresses through the plate thickness and 
thus require no such shear correction 
coefficients. 

(iii) The effect of including higher-order 
degrees of freedom (0 z, w'~o) in the trans- 
verse direction is not appreciable, but the 
inclusion of the higher-order in-plane 
degrees of freedom (u*, v~) does improve 
the response of unsymmetrical laminates. 
It is thus concluded that the HOST9 is the 
optimal one out of the three theories 
considered for the analysis of unsymmetric 
laminates, while for symmetric laminates, 
it turns out to be HOST 5. 

(iv) The FOST predicts significantly lower 
values of deflection and period for compo- 
site-sandwich laminates. The prevalent 
sandwich plate theories, which account 
only for bending rigidities of the facings 
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and shear rigidities of  the core material, 
predict  lower values of frequencies and 
overestimates deflections. Considerable  
deviation in the results is noted  if the shear 
rigidities for the facings is also accounted  
for in addit ion to the bending rigidities. 

(v) T h e  variety of  case studies pe r fo rmed  99 
aid in identifying the effect of  time step, 
finite e lement  mesh, aspect ratio, side to 
thickness ratio, t ransverse shear  rigidity of  
facings and core  layers, lamination 
scheme,  number  of layers through the 
thickness, material  anisotropy on the 
dynamic  response of the laminated com- 
posite and sandwich plates. 

(vi) Finally, it is believed that the refined 
theories presented here  are definitely an 
improvement  over  the F O S T  and are 
essential for the anisotropic composi te  and 
sandwich laminates in which the elastic 
propert ies  vary drastically f rom layer to 
layer. Further  their integration with the 
simple C ° finite e lement  formulat ion has 
enhanced  the practical applicability of 
such a theoretical  development .  

A n  extension of the present  work  to reduce  the 
h igher-order  degrees of f reedom,  and express 
them in terms of pr imary degrees of  f r eedom u, v, 
w, Ox, Oy, 0 z for making it more  compatible with 
the general  purpose  p rogram (GPP) is currently 
under  investigation at the Depar tmen t  of Civil 
Engineering,  Indian Institute of  Technology, 
Bombay,  India. 
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