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Geometrically non-linear analysis of
symmetrically laminated composite and
sandwich shells with a higher-order theory and
C"? finite elements
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A" conunuous displacement based finite element formulation of & higher-
order theory for lincar and geometnically non-hincar analvsis -which accounis
for large displacements in the sense of von Karman of symmetricaliy laminaicd
composite wnd sandwich shells under transverse foads iv presented. The
displacement model accounis for non-hnear and  constant sanation of
tangential and transverse displacement components. respectisely, through te
shell thickness. The assumed displacenmient model climinates the use of shear
correction coetficients. The diserete element chosen iy o nine-node quadn-
fatrol element with nine degrees of freedom per node, The accuracy of the
present formulation is then established by companng the present results with
the available anaivtice closed-form o-dimensional solutions. three-dimen-
sional elasticity solutions und other finite clement solutions. Some new resalts
are generated {or future comparisons 1o and evaluatons of sandwich shelis

1 INTRODUCTION

Structnal elements made up of fibre reinforced
composite matenals have been extensively used in
high and tow technology areas in recent vears,
Their industrial  applications  are multiplying
rapidly because of their superior mechanical pro-
perties. However. the engineering community is
faced with many challenging problems associated
with the use of these new materials. Of these. the
geometnic non-lincar response of laminated shells
is one of the major considerations in their design.

An accurate prediction of the behaviour of
shell structures requires modelling of actual
geometry and kinematic description of the com-
poncnts. The partial  differential  equations
describing the large deflection behaviour of aniso-
tropic composite shells of arbitrary geometry are
not amenable to classical analytical methods. The
finite element method has proved to be a very
powerful tool for analvzing structural problems.
involving complex geometries. loadings, bound-
aries and non-linearities.

Many classical theories were developed origin-
ally for thin clastic shells and are based on

Love-Kirchhoff assumptions. and surveys of such
classical shell theories can be seenn the works of
Naghdi' and Bert”

The first analysis that incorporated the bending
and stretching coupling s that of  Amburt-
sumvan. ™t Ambactsumvan asumed that the in-
dividual orthotropie lavers were oriented such
that the principal axes of material symmetry co-
incided with that of the principal coordmates of
the shell reference surface. The offects of trans-
verse shear deformation. normal stress and normal
straen on the behaviowr of laminated shells can be
incorporated on the basis of 2 mathematical
muodet through the inclusion of higher-order terms
in the power series expansion of the assumed dis-
placement field. In the context of a speeial ortho-
tropic and homogeneous shefls, Hildebrand «7al”
were the first to make stenificant contrnibutions by
dispensing with all the Love assumptions and
assuming a three-term Tavlor's series expansion
for the displacement  vector. Naghdi™ has
employed Reissner’s” mixed variational principle
10 develop a complete shell formulation similar to
that of Hildebrand er o/ Dong and Tso™ were
perhaps the first o present a finst-order shear
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deformation theory (which inciades the elfects of
transverse shear deformation through the shell
thickness) and Jen to construct a laminated
ornthotropic shell theorv. Further attempts at refin-
ing theories for laminated anisotropic cvlindrical
shells have been presented by Whitney and Sun”
and Widera and Logan.® Reddy™ extended
Sander's theory for simply supported cross-ply
faminated shelis.

The second-order transverse shear deforma-
tion effects have been included by Kant'* who
developed a complete governing set of equations
for a thick shell theory, The theory s based on 2
three-term Tavlor’s series expansion of the dis-
placement vector and generalized Hooke's Jaw,
and is applicable to orthotropic material laminae
having planes of symmetry coincident with shell
coordinates. Kant and Ramesh® have presented a
aeneral orthotropie shell theory in erthogonal
curvilinear coordinates bused on a displacement
model of Hildebrand er of Kant'™'" presented
higher-order theories for general orthetropic as
well as laminated shells. which are derved from
the three-dimensional elasticity  cguations by
expanding the displacement vector in Tavlor's
series in the thickness coordinate. The theories,
account for the effects of transverse shear delor-
mation. transverse normal stress and wansverse
normal strain with an implicit non-linecar distribu-
ten of the tangential displacement components
thiough the shell thickness.

Reddy and Lw' presented o higher-order
theory for doubly curved shelis and us2d Navier's
approach for solution. Bhimaraddi and Stevens'”
and Murthy and Reddy'™ presented higher-order
displacement based shear deformation theories
based on ' continuity. Kant and Pandva'” pre-
sented different higher-order sheur deformation
theories for static analysis of laminated componite
plates using " continuity. Kant and Menon™""-~
presented various higher-order theories for lami-
nated composite cvlindrical shells using " finite
clements. Kant™ * along with co-workers. alter
doing extensive numerical investigations on lami-
nated piates and shells. both static and dynamic
linear wnalysis, using " finite clements and
various higher-order theories. proved that shear-
iree conditions at bounding planes give suffer
solutions: and he also proved that among various
displacement models. for flat laminates. the one
which has nine degrees of freedom per node gives
resulis very close to 3D elasticity solution (e.g.
Kant and Pandva™). As regards curved laminates.

the work is under progress and a definite conclu-
wion will emerge after further work,

Kabir’™ presented an analvtical solution to the
boundary value problems of static and dynamic
responses of cross-ply and arbitrarily laminated
doubly curved shells of rectangular plan form.
Three novel solution methods are proposed
based on double Fourter series.

First. a boundary discontinuous double Fourier
series method is adopted to solve the siatic and
eigenvalue problems of cross-ply and angle-ply
laminated doubly curved shells based on classical
lamination theory and static problems of eross-ply
laminated doubly curved shells based on higher-
order shear deformation theorv. Then a general
boundary discontinuous double Fourier series
method and a boundary continuous  deuble
Fourier sertes method are described to solve static
and eigenvalue problems of cross-plyv laminated
doubly curved shells and static problems of anti-
svymmetric angle-ply  laminated doubly curved
shells based on a first-order shear deformation
theary. However. hittle attention is focused on the
higher-order theory. All of these studies are
limited to smail deformation theory.

ecause of the high moduius and high strength
properties of composites, structural composites
undergo large deformations before tiiey become
tnelastic. Therelore. an accurate prediction of dis-
placements and stresses are possible only when
ene accounts for the geometric non-linearity.
Horrigmoe and  Bergan™® presented  classical
variational principles for non-linear problems by
considering incremental deformations of a con-
finuunm. Wunderlich™ and Stricklin ez al ™" have
reviewed various principles of ineyemental analy-
siv and solution procedures for non-linear pro-
blemis. respectively.

Noor and Hartlev™ empioved the shaliow shell
theory with transverse shear strains and geometric
ron-lincanties to develop triancular and quadri-
tateral finite clements. Chang  and  Sawamip-
hakdi'” presented a formulation of the degencrate
3D shell element for geometrically non-lincar
analysis  of laminated composite shelis. The
updated incremental {ormulation does not include
any numerical results for laminated shells.

Chao and Reddy™ and Reddv and Chandra-
shekhara™ have presented first-order shear defor-
mation theory by including transverse shear
strains effects in Sander’s theory for geomeirically
non-linear anahysis of doubly  curved  shells.
Recently. Kam and Mallikarjuna™ presented a
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geometrically non-linear dynamic response of
laminated plates with a higher-order theory and
" finite elements.

To the authors” knowledge there i< ne
published work on higher-order shear deforma-
tion theory including the geometric non-lincarity
with (" finite elements. In this paper. a third-
order shear deformation theorv is corspwwe 1 in
which the tangential displacemert coapoy. ats
are a cubic function of 2. whereas the trnsverse
displacement component is assumed to .. con-
stant through the thickness of the sheil. Tre cifect
of geometric non-linearity is included in the
formulation by adopting the von Karman assump-
tions {see Chao and Reddy™ and Reddy and
Chandrashekhara™: That is. the first derivatives
of tangential  displacement  components  with

2 THEORY AND FORMULATION

respect o xo v and I oare small in co
the firet derivatives of the transverse displacement
component with respect to 1. vand o

In the pre~ct investigation. a (7 nine-node bi-
quadratic Lagrangian f{inite element has heen
adopted in the numerical computations. fo ~ddi-
tion to the higher-onder shear deformations theory,
a first-order shear deformation theon by inchud-
ing first-order sheur deformation o
Sander’s shell theory see Sanders™ s develened
sooas o cnable o comparison of the presem
formulation with u peradlel formulanon, Soveral
examples drawn from the fterature are anabvsod
and anpropridie comparsons are made o shos
the simphicity, vadidiny and accuracy of the present
formulation,

s nto

A fibre reinforced composite general shell is presented which consists of homogeneous and sotrope

orthotrapic Lavers of thicknesses 7 b bl
h=ly+h.+.

thickness direction i Fig. 11

Ay, - oriented arbitrurily such thot the total thiweknew
+ fi, - where NI stands {for wotal number of lavers i the Taminate. The 3
hinear dimensional coordinates defining the mid-surdace of the <hell and the & oasis s vnented iy the

o are e cur

In the present theory the displacement components of a generic paint i the shollare assumed 1o e o

the foliowing form:

A Wl R O S

WX Y T = u, 0y

where . oy, and wy, are mid-sarfuce displacements of @ generie pomnt having displacements g0
x.vand Z directions, respectivelv: 6, and A are rotations of the iransverse normad crossesections i il
and 87 are the corresponding higher-order terms v the Tandor s

and v7 planes. respectively: w0l 67

series expansion” and the mid-surfuce displacement components o oo w8 0 # 0 #0080 are the

mne degrees of Feedom of the present nghicr -order displacenent moded,

The present theory conaders large displacemonts in the sesise of voi Borman swith smadl araes which
in particular anpiy that the first-order derivatives of tanaenitat displacement componcents with respoct 1o
o vand 7 oare smalll so that their particular products can pe neglected see Novoshdov: Chao and

3

Reddy ™ and Reddy and Chandrashekhara ™

dn w1 (a Wi’
=+ -
ooy R 2 (1.1"’
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. The followmg are the strinn - displacoment relations
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LAMINATE REFESENCE LXES

Fig. 1. Laminuce geometny with positive set of famina faminate reference axes. displacement components and  tibre
orieitatinng.

Upon substituting displacement comronents given by egns - 1oin egn ¢ 21 and simplifving. the strain
components in terms of mid-surface d.-placement components are obtained as follows:

du, w, Ay, - dur 90" 1 [owV
p 2Oy w98, Ow L 060 T o

v + a4 w3 N7 v i ~ ]
oy R, dx dx dr 2 \dx/

de, W,

a6,
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\
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dw, o, g, 5 £ : H
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The comtitutive equations of the Lih layer can be written as:
fo ] [, . o ] o | le V0
- .- b G U ‘-
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where (0. 0., 7). 7). Ta5) are the stress components and (e ooy, .0 s rare the stroln components
referred to the lamina coordinates (1, 2. 3j as shown in Fig. 1 and €, are the composite material stillness
matrix coefficients of the [ th famina in lamina axes £ 1. 2. 35 and these are defined as follow

Coo=0Gny

Through a tensor transformation. the stress strain reiations of the Lth lamina of a cross-phy laminate in
the laminate coordimates Ly, v. 2o can be written as:

o=Q¢ RN
o | o, 0. 0 0 0 W ol /
, 0. 0 0 0 ¢
!l = ¢ 0 0 Bh 3h
T.. Svmmetrice 0, 0
T ();‘-J 5
inwhicho'=g . o_r .r..roand €'=e ¢y oy oy are the stress and strain vectors with respect

to the Taminate axes iy, 2 rand the coeflicients of matrix @ corvesponding to the £oth lamina are defined
as follows:

where ¢=cos 6. s=sin 6. 6 1s the angle between fibre direction of the Tamina and the v oavis of the
laminute.
The total potential energy of the svstem T given by:

i

N=_x| e-odl'~| d-Fd g
- Jt
o o

N=_x!| ||le-adzldi-| d& Fda 7
AR l

in which - is the mid-surface arca. 17 is the sheli volume. Fis the cquivalent load vector corresponding to
nine degrees of ficedom diie. d' =i w806, 1 00 8T 07

The expressions for the strain components given by egn 3+ are substituted ineqn 7. The function
given by eqn (77 is then mimimized whilst carrving out explicit inteeration through the shetl thickness. This
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leads to a stress resufiant vector @ whose components for an NL Tayvered faminated ¢ ol are defined as
{ollows:

*
\ EA NI ;..‘lr().\
VA=V AT =N ll o 127 dz
o

[RYAR Yl B :.Jm]
MM =10 M= \_J o oo ds 181
VAR Vil IR r\\l

~
A
-

!
i

s st Hu S
s I_AIJ:I RIS

Alterintegration. these relations can be written in matrix form. which defines the stress resultant and mid-
surface strain refations of the laminated general sielt and is given by

0. 0™. 8. 8%|=

N
~
-

1

!
!

- _

N
N#

M D, D 0

M* DD, 0 €, 19a)
Q 0 0 D I3
o

5

or symbolically:
0=Dé¢

in which:

G =INLNLNLNENENE N N VMR MEME QL O 0% 05 5..S,. S5 8% 19b)

W v [y : P T s

and the stiffness coefficient matrices. ie. D, D D, and D_ corresponding to the membrane. coupling
between membrane and bending, bending and shear terms. respectively. are defined as follows:

D = :I‘ QH]ll (2,,[i;1: D = ;[ Qr;lil QHIIJ
" I—‘l Q:/[l: Q /"\l ‘ I‘l QHII" Q"’II"

19¢}
Q.1 0. Q. 01,
D N [Q,,H; Q,,]l\]: N Qw0 QI O,
Qe Q- S| Qudl 0, H, QO H Q1.

Oulls OuH. Qi O,H-

Inthe above relations i j= 1,2 3and Lan=4.5 1, = 1/kiz} ., =25 k=1.2.3.4.5.6.7: NL is number
of fayerstand €=1(€) . €. €'} represents the mid-surface membrane. bending and shear strain compo-
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nents, respectively, and are defined as follows:

B dwn, u.,_
\+h——
dx R
duy  wiy 13w’ 98, p +OMu_ 1
dx R, 2\ox ox o9y R
,aﬂ.*,ﬁ.}_l %: 8‘0 39*_”J
dy R. 2\ 9y dy 'R,
dr, Ou, dw, dw, 068, a6, £ U
Bt e i Sy 3 -
ox dy Odx Oy dx oy 'R,
£,.= €y, JE = (10)
ay ox TR ;
o 06" 8,
L - 2““_4,
ox av R
ot ou a6t a0° o
dx 9y ] dx Oy R,
9*
e
L : .

As the basic equilibrium equation. the virtual work equation for a laminated shell under the assumption
of small strain and large displacement in the total Lagrangian coordinate system is considered and can be

written in compact form as:

[ 08'.6dA+F.0d=0
J

where Fis the force vector due to applied forces.

3 C'FINITE ELEMENT FORMULATION

The finite element used here is a nine-node iso-
parametric quadridateral (Lagrangian family) ele-
ment. The laminate displacement field in the
element can be exrressed in terms of the nodal
variables as:

NN

di& y)=2 Ni(&n).d (12)

i=1

where NN is number of nodes per element,
NJ{&.n) contains interpolation functions asso-

ciated with node i in terms of the local coordi-
nates £ and 7, and d, is the noda! displacement
components vector. The generalized Green struin
and 1ts variation vectors, respectively, are € and
6, and these can be expressed in ter. o nodal
displacement components a4, displacement
gradient @, and cartesian derivatives of shape
function matrix N as follows:

é=(B,+1By )a
0é=(B,+ By ) da

(13a)
(13b)

where B, is the strain matrix giving linear strains.
B,, is linearly dependent upon the nodal dis-
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placements @ such that a'=(d\. d". d'.....d\)
and substituting eqns (12 and (13a.biinean (11
the following discrete equation is obtained:

K, a+tHla)a=F {14
where K, is a linear clastic stiffness matrix. Fis a
force vector. and Hia) is a generalized non-linear
stiffness matrix which is given by:

Hia)=| Blo, di+

i 1

B, Gd. (15)

where Gy, is a non-lincar stress vector, and the
stresses are induced by the non-lincar part of the
strain,

4 PRESENTATION AND DISCUSSION OF
NUMERICAL RESULTS

In order to demonstrate the versatility of the
refined theory and " fimite clements developed.
several examples drawn from the lierature are
evatluated and  discussed. Computer programs
have been developed for first-order shear defor-
mation theory (FOST 1 with five degrees of
freedom (i, 0. . 8,0 6,1 and a higher-order
shear deformation theory (HOST with nine
degrees of freedon [ay,. 0. vyl B 62wl el 07,
&%) per node for both lincar and geometrically
non-lincar analysis of laminated general shells. All
the computations were carried out in single preci-
ston with a 16-digit word length on CDC Cyber
180/840 computer at the Indian Institute of Tech-
noiogy. Bombay. India.

The results to be discussed are grouped into
two categories. viz. (1) lincar analvsis and (2t non-
lincar analysis. Since all the shells considered here
are cither of single laver or of cross-ply laminated
shells. only one quadrant of the shell was analvzed
using 2 2X2 uniform mesh unless otherwise
specified. In the present study the nine-node
Lagrangian quadrilateral isoparametric clement
was employed. A selective integration scheme,
based on Gauss quadrature rules, viz. 3x 3 for
integration of membrane. flexure and coupling
between membrane and flexure terms. and 2 X2
lor shear terms in the energy cxpression, was
employed in the evaluation of clement stiffness
property. All the stress values are reported ot the
Gauss points nearest to their maximum value
locations. A shear correction coelficient of 5/6 is
uscd in FOST.

The maternial  properties.  unless  otherwise

specilied. are assumed as:
Eo=25E:6G-=0G=05F.:0G,=021,:
v-=v, =025and
Ey= 100 psi (214208 N/mm-) (16)

Although these properties do not satisty the
symmetiy condition, i.c.

= (7

they are being used here for historical reasons
because of their use in many previous studies (see
¢.g. Pagano:*” Ren** and Kabir®),

The finite clement displacement formulation
developed in this paper is based entirely on
assunwed displacement functions, and thus only
displacement boundary conditions are required to
be specitied. The boundary  conditions  cor-
responding to the present higher-order formula-
tion are specified in Table 1 for different types of
supports used in the present investigation.

The corresponding boundary conditions for
the first-order shear deformation theory is stmply
obtained by omitting the higher-order starred (%1
displacemient quantities. For exampie there are
nine displacement quantities required to be speci-
fied at v =0.a lor C type boundary conditions in
this higher-order lormulation (HOST 1. whercas in
first-order formulation (FOST y the corresponding
boundary displacement quantitics shall be five
onlv. The boundary condition types S1.S2 and S3
have been especially chosen in order to compare
the present authors” results with those of other
authors. Incidentaily. the S1 type condition cor-
responds to the usual diaphragm tvpe of simple
support. The edge conditions. which have been
derived in a variationaily consistent manner in the
present higher-order theory, may not appear so
iexcept in the case of fully clamped edge specified
by C! because. in any wav. the natural boundary
conditions cannot be prescribed in the displace-
ment based finite element method.

4.1 Lincar analysis

.11 Three-laver symmvetiic cross-ply (0°5J9°)F)
laminated plate under sinusoidal transverse foad
A simply supported (S square cross-ply (0°/907°/
0%} laminate subjected to a sinusoidal transverse
louad is considered. This example is chosen with a
view to illustrate the accuracy of the present
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Table 1. Boundary conditions

Type =) x=u/2
S1 0, =0 tr, =0 wi=0 i, =4 =0
0 =0 H.=0 6% =1 0.=0 9 =0
1, =10 w, =0
S2 t,, =1 1, =4 wE =1
0, =0 t, =0 v, =0 =) [t
4.=0 #.=0 0 =i 07 =10 i -1
w, =0 w, =0
53 t, =0 u, =0
=0 1, =t ui=0 e,=0 e
w, =0 fl, =0 7 nw, =10 ) =10
C 1, =0
1, =0 r,=0 =t e
6. =0 6 =0 9,=0 05 =0
0.=0

highcr-order theory over the [first-order theory.
The present results are compared with the exact
resules of 3D clasticity solution given by Pagano.t-
The non-dimensional central  deflection  and
stresses obtained using various theories are com-
pared in Table 2 for different side to thickness
ratios.

The present hgher-order shear deformation
theory results are very close to 31D elasticity
resuits especially  from  thick-to-moderate-thick
zones when compared to first-order shear defor-
mation theory.

The f{ollowing non-dimensional quantities are
used:

. LV E
Wy = | jx 100 My
poa
. . ( h )
GoT 7= = O, or 7 VIS
i \I)n”
. 1000
M=1- —
Pad”

412 Three-laver symmetric cross-ply (0°5f90°/0%
faminarted cviindrical shell under sinusoidal
transverse load

A symmetric tiree-ply cvlindrical shell of infinite
length with radius of 10 in (254 mm). arc length of
10-172 in (20599 mm! and layers of 2qual thick-
ness is considered. The material's o direction
coincides with the @ direction in the outer layers
whilst the material's L direction is paralle! to the @

Table 2. Symmetric cross-ply (07:99 .0 ) wquare Taminste
under sinusoidal loading with simply suppoeried (S1) bound-

aries

all Vartable Pasano'’ Present
FOST 1S
4 0w, — 1-7764 14273
J, 07350 (h4143R (7621
T (0305 (+0371 (H502
1o n, Dh6y7 71N
o, (39010 03252 5924
i (1284 01232 (1282
20 W, - 44 2A 05400
. 0-5220 03304 (3580
RIS 232

7 0234

direction in the central laver. A X 10 ixx 8
directions; discretization for one-quarter of the
shell gives converged results. The transverse dis-
placement iy, and the circumierential stresses are
taken at the centre of the laminate. The results are
presented in Table 3. The following non-dimen-
sional quantities are used to present the results:

. hE N ( 'S
1w, = X 10w, g, = o, il
nR R

Dennis and Plazotto™ have adopted a higher-
order displacement model which safisfies the
shear free boundary condition on the bounding
planes of a shell. From the results of Tabie 3.4t is
clear that the present higher-order theory predic-
tions are very close to 3D elasticity results in com-
parison with another higher-order theory and
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=

Table 3. Transverse displacement (v} and extreme fibre circumferential stress (&7,) at ihe middle of an infinitely long cylin-
dricat shell (0°/90°/0%)

R/h Variable Rent? Dennis and Plazouo Present
Exact HSDT CST FOST HOST
4 Wy, 0457 (382 0-078 0-369 0-4086
(16-41) {82-490) 119:26) (10-59)
Ty 1-772 1-406 (824 (0-827 1-3631
(20-65) (53-300 (53-33) 123-07)
Gy, 1:367 1-117 97320 9729 1-2913
(18:29) (16-15) 146:65) (5-54)
10 W, 0143 0128 00777 126 0-1347
th-tn (4604 (12-55) (6:46)
G 1995 0-889 -7960 0-799 (-8943
(10-65) 120:00) (19-:69} i10-§2)
G (897 0829 7590 0-757 0-8705
17:581] {(15-38) 115561 1295}
50 W, 0-081 0-079 0776 0-079 0800
{1-49) 13:96) (1-58) (100)
Gy, (0-798 0-789 (7929 3790 07524
(1-13 (0-75) (0-791 1r70)
Gy, (782 0-774 7740 0:766 07724
(1-02} (1-02) i199) 11-22)
100 W, (-0787 0078 0078 0-078 0-0780
(076 (0-76) (076" (0-76)
Top 0-7860 (-787 7749 0-795 0-7957
(-13) 89 11-224 (1-23)
ay (781 770 U776 0-759 7616
{(1-401 (-6 12-76) (2-48)

Values in parenthesis are percentage differences with respect to the 3D elasticuty soluuon.

first-order shear deformation theory. The higher-
order theory presented by Dennis and Plazotto
gives stiffer soiutions. This may be due to the
imposition of shear free conditions on the bound-
ing surfaces. The classical shell theory (CST)
predictions are very poor, especiaily in thick
ZOnes.

From the results presented in the preceding
sections, it is clear that the present higher-order
shear deformation theory gives in general more
accurate results in comparison with first-order
shear deformation theory and other higher order
shear deformation theories based on C! con-
tinuity.

4.1.3 Cross-ply spherical shell under unifor; » and
sinusoidal loads

To show further the validity of the present
formulation, a simply supported (S1) symmeiric
cross-ply spherical shell with laminations (0°/90°/
90°/0°) and (0°/90°/0°) subjected to uniform load
and sinusoidal load is considered and the results
are compared with 2D closed-form solutions

given by Reddy and Liu'" in Tables 4 and 5. The
present results are also compared with closed-
form solutions given by Kabir* for a symmetric
cross-ply (0°/90°/0°) spherical shell with R fa= 10
and a/h=10 under different support conditions.
These are presented in Table 6, and Fig. 2 shows
the variation of displacement with respect to the
afh ratio for a clamped (C) cross-ply (0°/90°/0°)
spherical shell of R /a=10. The non-dimensional
quantities used here are as given in eqn (18) with
w, = 10W,.

From these results it is clear that there is good
agreement between the present resufts and other
reliable solutions in thick-to-thin regimes of both
shallow-to-deep shells.

4.2 Non-linear analysis

4.2.1 Isotropic shells

A clamped isotropic cylindrical shell with
a=b=508 mm, h=3175 mm, R=2540 mm,
E=3103 kN/mm* and v=03 subjected to
uniform load is considered. The present results
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Table 4. Transverse displacement (w,) for a symmetric cross-ply (0°/90°/0°) spherical shell with simply supported (51}
boundaries
Rja Theory Sinusoidal load Uniform lvad
alh =106 alh=10 alh=100 alhr=10
Reddy and Present Reddy and Present Reddy and Present Reddy and Present
Liu'® Liu'" Liut" Liut
5 FOST 1-0337 1-0310 64253 64277 1-5118 13062 4791 U-8118
HOST 1:0321 1-0314 6-7688 6-8701 15092 I-53066 10-332 1-505
10 FOST 2:4109 24077 66242 66277 36445 36395 10-116 10126
HOST 2-4099 2-4095 7-0325 7-1007 36426 36421 10:732 10-872
20 FOST 36150 36149 6-6756 66797 5-5473 55495 10-191 10204
HOST 36170 36189 71016 7-1607 5:5503 S-5556 143862 111968
50 FOST 42027 42054 66902 66944 64827 61904 1284 10-232
HOST 42071 42107 71212 71775 64895 6-4987 11+893 1{F99n
106 FOST 43026 43059 66923 66965 66421 66508 10218 1¥235
HOST 43074 4-3115 71240 7-1802 6-6496 66596 13895 1991
Plate FOST 4:3370 4-3405 66939 66972 656970 67060 10-220 16r234
HOST 4-3420 4-3462 7-1250 71810 67047 67149 10-884 IR
Table 5. Transverse displacement (w;) for a symmeitric cross-ply {€°/90°/90°/0°) spherical shell with simply supperted (S1)
boundaries
R/u Theory Sinusoidal load Uniform foad
alh=100 alli=10 alli=100) alh=10
Reddy and Present Reddy and Present Reddy and Present Reddy and Present
Liu®® Liu' Lin' Lin®™
5 FOST 0Ty 1-0251 6-3623 6-3616 i-5358 1-5329 G825 Y-R3Y
HOST 1-0264 1-0255 67865 68919 1-:3332 1:5333 10176 11653
10 FOST 2:4030 2:3993 6-5595 63623 37208 37190 i1l 10-1 57
HOST 2:4024 24014 7-0536 71269 37195 37220 FO-u0d THO3]
20 FOST 36104 36094 6-6(99 6:6137 566018 50664 14222 23y
HOST 36133 36143 7-1237 7-1883 56060 56738 117 15129
50 FOST 42015 42030 66244 66282 66148 66245 10-245 10:203
HOST 42071 42096 7-1436 7-2056 66234 66347 11049 11-137
100 FOST 4-3021 4-3041 6-6264 66303 67772 67878 10-24y 10266
HOST 4-3082 3-3111 71464 7-2081 67866 6- 7985 11-033 11-101
Plate FOST 4-3368 43389 66280 46310 68331 684340 10250 1267
HOST 43430 4:3460 7-1474 7-2089 68427 68549 [REIRN 1163
Table 6. Symmetric cross-ply (0°/90°/0°) spherical shell under uniform load with R/a=10,a/h= 0
Type Displacement (W} Beading moment 17
of o
support Kabir- Present Kabir Present
FOST HOST FOST HOST
Si 10-53 10-126 10-870 12258 12482 12342
S2 917 8-872 9474 106:78 10976 10763
53 9-17 8970 9585 106:79 112-01 10945
C 473 4542 4900 3589 3884 3791
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are compared with Dhatt*® and Reddy and
Chandrashekhara™ and are presented in Figs 3a
and 3b.

A hinged (immovable] sotropic spherical shell
with R,=R.=254 mm. A=9945 mm.
a=bh=15698 mm, £ =5895 N/mm-” and v=10-3
is considered and the results are presented in Fig
3c.

Figures 3a-3c¢ show that {or the shells con-
sidered. the present results match very well with
solutions giver, oy others. The limitation of this

167
121’
ez i
dE. E
[l 81
5 R/a=10
S pocoo CFS Kabir 2
o B aa2asa Present FOST
g h oo Present HOST
43
] \5\_‘\_‘!
O . T TTT i rIT 7] T TYTTTI T[T vrT]
5 10 15 20 25 30 35 40 45 50

G‘//h

Fig. 2. Displacement versus a;/t ratio curse tor a cross-ph
WP907/0%1 laminated spherical shell with clamped - C - sup-
ports.

10 R/a=5,a/h=160
Jeooao Reddy&Chandrasekharg *°
jessac Dhatt +4
_i*“f** Present FOST

§4—— Present HOST
coA
. /
o g o
- )i
g /
: j
5 4 /
2 of
5] /
o
2_
d
1‘
Q'?‘TTTT*{[‘rlr‘ﬁ.lrgv.lxr.‘r’uy; T
0.0 .5 1.0 1.5 20 2.5 3.0
Load, pex107° N/mm?®
Fig. 3a.  Displacement versus load curves for a clamped

1sotropic evlindrical shell under uniform load.

comparison 1s that the shells considered are
geometrically thin with ncgligible shear deforma-
tion clfects. However. this comparison  has
certainly proved the validity of the present for-
mulation in the non-linear context.

4.2.2 Nine-laver svinmetric cross-plh spherical
sheltl under unifonn load

A simply supported (S1) nine-laver svmmetric
cross-ply 10°/90G°/...0% laminated spherical shell

10+
3 R/a=5,a/h=160
J oeooco Reddy & Chandrasekhara 3°
] eecasPresent FOST
8-: —__ Present HOST /
N& 3 s
R 4
> ] /
g 3 /
0 1]
1) "
o]
5o
2
O;%TWT"i'r'T‘TT‘?_TI T T3 T TTTT T T 1]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Load, pex107° N/mmz
Fig. 3b.  Stress versus foad cunves lor a clamped isotropic
cvlindrical shell under sniform toad.
120~
] 4
] R/a=1.618,0/n=15.785 o
1 eccoo Chac&Reddy 20 *°
4 assse ChookReddy 3D 38
1 ++s++ Present FOST
£ 1 ____ Present HOST -
£ 804 /
s d /
2 B b4
. ] °
£ ] /e
@ - ~
Q d A
9 4g]
2 404 e
) :
1
3
3
1
Or--l‘13\.|II|VL.V|II=ITTFT_TFTiy|ll(l\vglvlfTT\’Tﬂ
0 10 20 30 40 50
Load, P KN
Fig. 3. Displacement versus foad curves for an isotropic

spherical shell under crown load with $2 support conditions.
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with the following materal and geometric data s
considered.

R/=R.-=1000in(254mj;a=b=1001mn
(2254 mrAi=1in 254 mmi £, =30[:
Eo=10"psi (214208 N/mm- ).
G=06E. G, =G =05 K 20

—_~

v -=025 v, =025

The' present HOST results are compared with
those given by Noor and Hartlev.” Chao and
Reddy ™ and the present FOST. These are plotted
in Fig. 4. The following non-dimensional quan-
titics are used to present the results:

o, polay' . o el
w, = : Tl B BN

I I \h o\l

2
; [\

. Ho pola
M= Mo p= -, (

Foa A W)

The present resules agree. 1 general. wiih the
other investigations. The results given by Noor
and Hartley ™ arc. however. different from other.
The diagnesis is difficult indeed.

423 Cross-piv spherical shetl wnder unifornn and
sinisordal loads

This problem is selected in order to carry out a con-
vergence studv by taking 2x 20 3x 3 and 4 x4

4o
~ o
] P
- °
3
!
3
35
1 S
3 o
-
<z 3 "
<3
[T ’
E A
@ 3 o/
¢ 1
Qo i
8 3 /
@ ]
S 2 .
| // H/c=’.0.c/n:w1FOO
3 e oocoe NoordHartley
4 assas ChaodkReddy ¢
3 «++++ Present FOST
S Present HOST
O"':\]rfs\yw-'vylvw T TT T
0 2 4 I 8 10 12
Load, p,
Fig. 4. Displacement versos foad curves for o nine-tiner
cross=phv 0O 60 e spherical shelt ander wniform

foad.

uniform meshes in a quadrant of the shell, Cross-
ply symmetric spherical shells of (0%/907/91°/0°;
and (07/90°/0°%) are considered with w/i=35. R/
=10 and simply supporied 1S T boundaries sub-
jected  to sinusotdal Joad and uniform load.
respectively. The plots for displacement versos
load and stress resultant bending moment versus
load of four-ply and three-ply sheils, respectively,
are shown in Figs 5a and 3b. Since the variation in
results is muarginal, it s concluded that o 2x 2

Ei
3
—
3
J
203
3
3
<z z
154
= 3
= =
¢ 3
£ 3
g i /a
[ ! /s
1.0 /
I= z /
5} -
o 3 /a
G5 = /
R //
* /
.
i/
3’»:—*77"71*\‘.*7**??*7* T
J gsle 208
. A
Load. Do
Fig, S0 Displacement versos Tond cunves tor o cross-pia

oot gt 0 sphericad sholl under snusendal Tooed with S

boutdares

nna . :
200~ i
3 &
< 2 -
Ltan s &
T B <
o - 0
P - -
= - .
- — >
4l N F -
< -2 yd
-~ - 4
T Ve
o - s
Bl = S
o bl e’
.~ - s
- : S
AN b ,/
5C-
2 /,/
i/
q47
o] S .
o o - .

Fig. Sh,
U9 4

Stress resultant sersus fead curves G s croseph
sphiorical shell under unitonn foad w8t
Boundaries,
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mesh gives converged result,. {he non-dimen-
sional quantitics used are as per eqn (21},

4.2.4 Sandwich spherical shell under sinusoidal
transverse load

A simply supported (S1} sandwich (07 '90°/core/
90°/0°) spherical shell with the following geo-
metrical and material properties is considered:*"

a=b=10in(25mmy R, =R,=10a

2.5 7

] R/c=10
peooa FOST,0/h=10
HOST y
P ++s+ FOST,a/h=100
204 ... HOST
%154 ;
- 4 #
c ° <
Q 1 -
£ e
8 1.0 1 -] r
= ] ®
2 7 -
[a} 4
0.5 - o
1/
0.0 ¥ T e e T
0 25 S0 75 100 125 150
A
Load, p,
Fig. 6a. Displacement versus foad curves for a sandwich

spherical shell (0°/9G°/core/90°/0° under sinusordal trans-
verse load with S1 boundanies.

1757 R/a=10
Joceo FOST,a/h=10 -
150: HOST e
$++++ FOST,0/h=100 2
N HOST
- - aQ
125
4 7 o
<i ]
. 100 7
n A e
§ ] y
A 759 o
] P
5@‘: o . s
] ;'/
25: © _,»”
G—-l“ll!;ll!][llI1]’Il‘F!!’ll](]Tlll’!
o] 25 50 75, 100 125 150
Load, pe
Fig. 6b. Stress versus load curves for a sandwich spherical

shell {0°/90°/core/9€°/0°) under sinusoidal transverse load
with S1 boundanies.

Facings {thickness of each facing layer= 005 k)
E,=1-308 x 10° psi (280-184 N/mm"):
E.=1-06 x 10° psi{227-06 N/mm?)
V.=, =028 G,=G,,=06X10"psi
128525 N/mm); and
G, =0-39x 10" psi {83-541 N/mm-)

3.0 - P
-
5 -
1 - T
2.5 g
= -~ /,’
j < //"— .
- - e o
° 2.0 Ve ,’/ -
<= 1 7 ¢
.y B s .
c B . e
2 1.5 4 ’,‘
S s
S 1
- . ; R/a=10
a. B / aQ .
AR : o/h=10
1 cacoo FOST,CORE1
14 HOST
0.5 4% s sasax FOST,CORE2
[ — HOST
# +++++ FOST,CORE3
0.0 TEI(!T!’TI_ri!ll’[irT.—]}_l'i-IAOiS—};nllii
25 30 75 160 125 150
. A
Load, pe
Fig. c.  Displuccment versus load curves for a sandwich

spherical shell (0°/90%/core/90°/0°. under sinusoidal trans-
verse foad with St boundarnies.

1507 R/a=10,

i a/n=10 -
_Joocae FOST,CORET o
:25-_5 HOST *

s sa FOST,CORE2 o

:i‘. ...... HOST .

703 FOST.CORES
16071 osT

e 757 -
n j -
50%1[
25—_‘ P/
i
4
013 LIS SO ST B A I IR SR LR I I ISR R L ]
a 75/\ 100 125 150
toad, p.
Fig. 6d. Stress versus load curves for a sandwich spherical

shell 10°/90F feoref90F/0°) under sinusoidal transverse jead
wih St boondaries.
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Core lthickness of core =08 /13

Core I:
G =0-1772x 107 psi£3:7957 N/mm’);
G =03206 X 10 psi 111152 N/mm®,
Core 2:
G =0-1772 107 psi 1037957 N/mm? =
G =032060 X 107 peit1-1 132 Nimm”

Core 3:
G =01772 x 107 ps: 0-03796 N/mm” .,
G =05206 3 107 psitO- T TS2 N/mm®

The shell is subjected 1o a sinusoidal transs erse
toad. The results for displacements and stresses
are presented in Figs 6a-6d. The non-dimen-
sional quantitics adopted are as peregn 21,

From Figs 6a and 6b. it i~ observed that for o/
A= 100 the predictions with both higher-order
shear deformation theory and first-order shear
deformation theory are exactly the same. For «
1= 10 considerable difference in the predictions
by the two theories is seen. This is due to predom-
inant shear deformation effects in the case of thick
sandwich shells.

From the plots Figs ¢ and 6d. it is observed
that when the core s made progressively weaker
the difference between the irst-order shear defor-
mation theory and  higher-order shear  defor-
mation theory predictions for displacements and
stresses inereases rapidly, In gercral. the effect i
to sofien the shell thereby inercasing the displace-
ments. {tshould be noted that there s no variation
in the predictions of first-order o8 war deformation
theory for different core properties.

Thus. the firs-order shear deformation theory
15 seen 1o he inadequate Tor sandwich shells,

5 CONCLUSIONS

Acrelimed shear flexible €7 findte clement includ-
g the eliect of  geometric non-lincarit i
coploved in the static anabysis of  laminated
general shells The theory accounts for non-linear
sartation of iransverse shear strains through the
thickness and large displacements in the sense of
von Karman and thercfore no shear correction
factors are needed in the present theony,
Numerical results are prewented for both lirear
and geometrically non-lines snadads of come
posite general shelis subjecied e vardous Joadines
with dilferent edge conditions. laminations, v,
There s no ovidenee of avatlabiliny of 31 ola.-

teity or Closed-form 2D non-lincar solutions in

the hteratere. 1t is for this reason thet o linear
analysis has 2lways been carried out with a view 10
establish the cccuracy of the present formubution
by making comparisons with availuble 3D chstic-
itv solutions,

1 prosent resudts are very close 1w the 3D
elasticity results both for the thick and thin seo-
metricad configurations »

Duc 1o nen-availubiin of the published daia
on pon-hnear behaviour, especialiv of sandwich
shells. an attempt is mude here 1o generate refiabie
daia for futere compartwons /oy aluntions,

[0 observed that the ofleet of shear detorma-
uen an moderatel thick-to-thick ~andwich <hells
with a weak core and strong facings, and i lami-
nated shells with o farge ratio of the tangennial

clasiie modulus 1o the transerse shear modutus,
I considerable, ft i belicved that the refined
higher-order shear deformation theon prosented
herein v essential for nrediciing aceurate
respon. ¢ espectally for sandwich <hells, The
PrOsent - sty may serve s reference resibts bog
Tuture e osti; dons.
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