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Abstract-An explicitly through the thickness integrated two-dimensional version of the three-dimensional 
degenerated she11 element is formulated here to study the dynamics of elastic shells. A nine-noded 
quadrilateral Lagrangian element is used with five degrees of freedom per node. A specialized mass 
diagonalization scheme, developed by Hinton, Rock and Zienkiewicz, is used which conserves the total 
mass of the element and also includes the effects of the rotary inertia terms. Hamilton’s principle is used 
to derive the equations of motion. Mode superposition coupled with Duhamel’s integral is first employed 
to obtain a solution of the equations of motion in time. Mode shapes and frequencies are computed by 
subspace iteration technique. Direct time integration using the implicit Newmark-P method is also carried 
out. Several examples are presented and the results obtained by mode superposition and direct time 
integration methods are compared. 

I. INTRODU~ION 

The study of dynamic behaviour of shell structures, 
the use of which in engineering and other fields has 
been increasing at a remarkable rate since the start of 
this century, is of crucial importance. This is so 
because often such structures are subjected to time- 
varying loadings such as impact, explosion or seismic 
effects. 

This paper places emphasis on elasto-dynamic as 
well as seismic analyses of shell structures using 
two-dimensional (2D) degenerated shell finite 
elements. In the degeneration procedure, the three- 
dimensional (3D) theory is reduced or degenerated to 
a shell theory simultaneously with the finite element 
discretization. The finite element analysis of shells 
took a new direction after the development of the 
degenerated shell element by Ahmad et al, [I]. After 
this a great deal of research activity in the last 20 
years has led to improved versions of the original 
degenerated shell element. The Gaussian quadrature 
rule for the evaluation of the energy terms in the 
eight-noded quadratic serendipity quadrilateral el- 
ement of Ahmad ef at. was 3 x 3 for all the types, 
namely membrane, ffexure and transverse shear ener- 
gies. This was the minimum order of integration 
required to produce exact results and was therefore 
considered appropriate. The results however, were 
found to be reasonable only for thick shells. In the 
case of moderately thick and thin shells, numerical 
results departed considerably from closed-form ana- 
lytical solutions. In fact the element was found to be 
too stiff with a very slow rate of convergence in such 
cases. 

t To whom all correspondence should be addressed. 

Zienkiewicz et al, [2] introduced the so-called uni- 

form reduced integration technique in which a Gaus- 
sian quadrature order of 2 x 2 was used. The results, 
without doubt, improved for moderate to thin shells, 
but below a certain thinness the element behaviour 
was erratic. This erratic behaviour led to a near 
abandonment of the eight-noded serendipity element. 
Later a heuristic explanation was provided by 
Malkus and Hughes[3]. The stiff behaviour of the 
structure was attributed to the now popularly called 
‘shear and membrane locking’ behaviour. This lock- 
ing behaviour occurred because of the inability of the 
element to model deformed states in which membrane 
strains and transverse shear strains vanished. 

Hughes et al. [4] then introduced the selective re- 
duced integration technique in which a reduced order 
of integration is used for membrane and shear energy 
terms to underestimate their effects in thin situations. 
The performance of the nine-node quadrilateral 
Lagrangian element has been found to be most 
satisfactory for both thick and thin shell problems in 
recent years. A good description of the developments 
in chronological order can be found in Pugh et al. [.5], 
Parisch [6], Belytschko et al. [7], Milford and Schno- 
brich [S] and Kant and Datye [9]. Recently, substitute 
shear strain fields have been used by Bathe and 
Dvorkin [IO] to overcome shear locking. Using a 
similar approach Huang and Hinton [I I] have devel- 

oped eight- and nine-noded Mindlin plate elements 
and degenerated shell elements with substitute 
shear-strain fields. 

2. THEORETICAL FORMULATION 

The theory on which the finite element formulation 
is based is given here for the sake of completeness; 

CAS 51) I-, 13.5 
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however, a general presentation is available else- 
where [9]. 

2.1. Coordinate systems and element geometry 

Four different sets of coordinate systems are em- 
ployed as shown in Fig. 1. The global coordinate 
system (X, Y, Z) is used to define structure geometry. 
The shape functions are expressed in natural curvilin- 

ear coordinates (5, q). A set of tangent vectors to 
mid-surface V;, V, is used to get nodal and local 
direction cosines where 

- ax. l3Y. az 
vc=g+zJ+zk (1) 

(2) 

(3) 

The nodal coordinate set (x,, yn, zn) with i,, jn, k, as 
unit vectors is defined at each nodal point. The vector 
k,, is oriented along V, [given by (V: x V,,)] and i, can 
be either along VC or along a vector given by (j x k,). 

The vector j. is given by (k, x i,). The local coordinate 

set (x, , yl, 2, ) is defined at each point on the mid-sur- 
face with i,, j,, k, as unit vectors. The vector k, is 
oriented along 0, , i, along V,, and j, is given by 

(k, x i,). The coordinates of top (X,, Y,, Z,) and 
bottom (X,,, Y,,, Z,) surface points at a node are 
usually necessary to define element geometry. Alterna- 
tively, the mid-surface coordinates and corresponding 
thicknesses can be given. The thickness at node i is 

t, = [(x, - X,,)i + (Y, - Y,,)j + (Z, - Z,)kl k,. (5) 

Z 

2.2. Displacement model 

The following displacement model is used 

U, (.u, 1 y, , G, t) = 4, CY,, yz, t) + ;zOr? (.u, 1 J’x 1 t ) 

&(X,,Y,, z,, t) = t:,,,(x,, yr, t) - Go\3(Xx’ YT, 0 

W,(X,,Y,,z,,t)= M.,,Z(.G,y,, 1) (6) 

in which t is time, u,,, D,,, and w,,, are the in-plane and 
transverse displacements of a point (?c,, y,) on the 
mid-surface respectively, and O,, and 0,, are the 
vector rotations of normal to the mid-surface about 
the x, and y, axes, respectively. The parameters u,, L’, 
and W, are the displacement components in the x,, ,r% 
and z, directions, respectively of a generic point. 

2.3. Strain expressions 

In order to easily deal with the thin shell assump- 
tion of zero normal stress in the z direction (g._* = 0), 
the strain components should be defined in terms of 
a local coordinate set of axes x,, y,, z, . In the present 
model there are eight significant strains over the 

mid-surface. From eqns (6) we get 

L = c TO1 +- km (7) 

t ,z=c,,,,+=.k,, (8) 

t,, = t:,,, = 0 (9) 

Y l;,‘l = t,,,>, + zk,, (10) 

Yrr, = 4, (II) 

li’:,, = 4, (12) 

2” 

(X.Y.Zl Global 

(xn.yn,znl Nodal 

IX,,Y~,IO) Local 
(E,?) Natural 

Fig. I. Coordinate systems. 
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in which the mid-surface strains are defined as 
follows: 

au,, 
c ‘;“1 = - ax, 

(17) 

(18) 

Thus the generalized strain vector and displacement 
vector corresponding to mid-surface become 

4 = ho, > ~0% 3 w,, 1 @x, 3 Q,.z 1’. (22) 

2.4. Stress-strain reIationship 

In confirmity with usual she11 assumptions, the 
normal stress can be assumed small enough to be 
neglected and the corresponding strain L, is equal to 
zero. The generalized Hooke’s law for an isotropic 
material can be written as 

fJzr = c, 6x, i,j= 1,2,3,4,5, (23) 

in which the coefficients Cii constitute the isotropic 
material stiffness matrix and is given in Appendix A. 
Also 

62 = k,> t,,> t,,, Y,:,7 Y,,,)‘. (25) 

Stress resultants at the middle surface can be derived 
using the potential energy expression as follows: 

(26) 

(27) 

(28) 

(29) 

(30) 

Here N,, , NY,, N,y,j,, W,, M,, , M,., , Q,, T Q,., are the 
stress resultants at the mid-surface. N,Y,, NY, are ex- 
tensional forces, Q,,, QYZ are transverse shear forces, 
M,,, M,, are bending moments, N,,.,, M,,, are the 
in-plane shear forces and twisting moments, respect- 
ively. The expressions for these forces and moments 
are given below 

J 
+I, !2 

N.w = 0.w dz (31) 
-,,:2 fl, ,‘2 

N,., = J 61, dz (32) 
- I, ,‘2 

J 
+I, ,2 

N,?., = 7rw dz (33) 
-I, ‘2 

J 
f,, r? M.r, = arrz, dz (34) 

-I,.‘2 

Mt.2 = J 
fl, ,‘? a,., z, dz (35) 

-I, ‘? 

s 

+(,I? 
M,,., = 75,,.zz, dz (36) 

- r,:2 

J 
+I, ,‘2 

Q,,= 7m dz (37) 
ml,,‘? 

+I,.? 
Qw = T\._~ dz. (38) 

-,,,‘? 
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After carrying out explicit integration in the thick- 
ness direction 

N, = D,,, G (39) 

M, = &JZ (40) 

Q, = D,,G, (41) 

where fi,,, D,,, and 6,, are the membrane, flexural 
and shear rigidity matrices, respectively, and are 
given in Appendix B. Also 

&=[z]=[t {*% ;S].Z~=D& (42) 

We can also define 

G,, = L,,d, (43) 

rh, = Ltmd, W) 

G = Ld, (45) 

Here L,, , L,,,, L,Y, are the strain operator matrices in 
the membrane, bending and shear, respectively, and 
are listed in Appendix C. 

2.5. Equation of motion 

The mathematical statement of Hamilton’s prin- 
ciple is written as 

s 

(2 
s(n - E) dt = 0, (46) 

1, 

where n and E are total potential energy and kinetic 
energy, respectively. The total potential energy I7 can 
be written as 

or 

n=u-w (47) 

n =;I t;a,dz, - jj:p,dA. (48) 

U is the strain energy stored in the shell, W represents 
work done by externally applied forces. P, is the 
vector of force intensities in the direction (x,y,z,). u, 
is the displacement of any generic point in the shell 
space. After carrying out explicit integration in the 
through the thickness direction and substituting the 
expressions for strains and stresses we get 

n =fj+&d/l -JAd:FdA. (49) 

F is the vector of the load per unit area corresponding 
to the direction of generalized displacement vector d,. 
The kinetic energy E can be written as 

(50) 

i is the velocity vector of any generic point in space 
and p is mass density of the material. An expression 
for u can be obtained from eqn (6), and after explicit 
integration through the thickness we get 

Here m is the inertia matrix and is of the form 

1 I, 0 0 0 12 -l 

0 4 0 -I, 0 

m= 0 0 I, 0 0 (52) 

0 - 1, 0 I3 0 

I, 0 0 0 I, _ 

in which I,=Jpdz; I,=jpzdz; I,=jpz*zdz. 
Thus by substituting the expression for n and E in 
eqn (46) we get the equation of motion as 

C:D,E, dA - d:F dA 

-kIA&md,dA])dr =O. (53) 

3. FINITE ELEMENT DISCRETIZATION 

3. I. Discretization in space 

In the standard finite element technique the sol- 
ution domain is discretized into NE subdomains 
(elements) such that 

NE 

n(d)= c n’(d) 
P= I 

(54) 

NE 

E(d) = c E’(d), 
c= I 

(55) 

where ll and I7’ are the total potential energies of the 
system and the element, respectively, and E and E” 
are the kinetic energies of the system and element. 
respectively. The basic discretization is carried over 
an element only and the resulting equations are 
summed over the entire domain. 
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3.2. Displacement function 3.3. Strain-displacement matrix 

The nodal and generalized displacement vectors From eqns (43), (58) and (60) we get 
are related with the help of shape functions as 

=,z 
i.e. 

N, 0 0 0 O- 

0 N; 0 0 0 

0 0 N, 0 0 

0 0 0 N, 0 

0 0 0 0 N,_ 

d, = y N,d,. 
I= I 

(56) 

(57) 

therefore 

C,,,-,, = &d, 

Similarly 

S,, = & d, 

Let the displacement at node i in the nodal coordinate 
system be 

E,, = &+d,, 

Using a transformation matrix R,, given in Appendix 
D we can write 

(60) 

If we define 

and 

N= 

Then 

Uln %, WI” e .yln e,.,, . 
4 = 4” V, w,” kit, erln . . I (61) 

U”” t’,” W,,, e rnll e,.,, 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

where &, B,*, Bf are the strain matrices of the 
membrane, bending and shear displacements, respect- 
ively. The forms of &,, , B,&, Bz, are given in Appen- 
dix E. Thus 

Cz = B*d,, , (73) 

where 

B* = [&, @, B,f I’. (74) 

3.4. Isoparametric representation 

In isoparametric representation the geometry and 
the displacement fields are interpolated using the 

N, 0 0 0 0 - N, 0 0 0 0 - N,,,, 0 0 0 0 

0 N, 0 0 0 - 0 N, 0 0 0 - 0 N,,,, 0 0 0 

0 0 N, 0 0 - 0 0 N, 0 0 - 0 0 N,,,, 0 0 (62) 
0 0 0 N, 0 - 0 0 0 N, 0 - 0 0 0 N,,,, 0 

0 0 0 0 N, - 0 0 0 0 N, - 0 0 0 0 N,,,, _ 

=W,,Nz,....N,t,,l 

R = diag[R,, , Rz2, . . , Rx,,,,1 

d,= “C”N,R,,d,,,=NRd,,. 
,=I 

(63) 

(W 

(65) 

same shape functions. The space coordinates are 
expressed as 

[:;]=,!J! JL;:] (75) 

in which x,, y, are coordinates of node i and N,s are 
shape functions in terms of < and q. In the present 
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formulation we require the derivatives of the shape similarly 
functions with respect to x,, y, coordinates. The 
Jacobian matrix relates the area integral in x,, y, 
coordinate to that in 5 and q coordinate system and K;, = i ~,,(B,*‘),i(bhr)R(Bh*),~lJl,( (86) 

p = I 
is given by 

J= 

K: = i ~,p(Bi’),~(fi,,),(Bf),~IJl6. (87) 

(76) 
jr= , 

Here WA, Krh. IL: are the element membrane, bending 
and shear stiffness matrices, respectively, m is the 

After adopting the chain rule we get the Jacobian number of Gauss points and w,~ are the weights of 
matrix as Gauss points. Thus, any order of integration (either 

where I,,, m,,, n,, and f,,, rn2%, n,, are the direction 2 x 2 or 3 x 3) can be independently applied to 
cosines of the local i, and j, axes with respect to global calculate any of the individual K matrix. 
i, j, k, respectively. An elemental area on the mid- 
surface is given as 3.6. Element mass matrix 

This is derived from the kinetic energy exaression. 

-- ’ [ dA = i dx,dy,= [’ [’ IJldtd?. (78) Using eqn (51) 
JA JA J-I J-I . n 

3.5. Element s@ness matrix 

From eqn (53) we get the expression of the strain 
energy for an element from eqn (65) 

~1’ = _! deimdr dA 
2,’ z J . 

(88) 

U’ = ; r:‘D;i; dA. 
d; = NRdf,, (89) 

(791 

substituting in eqn (88) 

Using eqn (73) and substituting into the above 
equation E = i 

s 
c,‘R’N’mNRd:; dA (90) 

A 
1 

u” = - 

s 
#,*c15y B*d’ dA 

2,” = n 
(80) = ;d;M'd:; , (91) 

= fd$K’d’, . (81) where M’ is the element mass matrix and is given by 

Here W is the element stiffness matrix and is given by M’= 
I 

R’N’mNR dA. (92) 
4 

K’ = 
I 

B*‘m B* dA 1 (821 m and N are inertia and shape function matrices, 
A 

respectively. The consistent mass matrix M’ is evalu- 

using eqn (74) and (42) and simplifying the expression ated using the 3 x 3 Gauss quadrature rule as follows: 

where 

R:N:mN,R,lJ] d< dq 

K:;, = (84) 
w,,w,,IJIR:N:mN, R,, i,.j = I, NN, 

(94) 

W where p is the number of Gauss points in any one 
direction and IV,,. lrh are corresponding weights. A 
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special mass lumping procedure which is given in [ 121 
is used here. 

3.7. Element load vector 

This can be derived from the expression of work 
done by external forces. From eqn (53), we get 

w’= d:‘FdA. 
s 

(95) 

Using eqn (65) we get 

W”= 
s 

d:‘FdA =d;f#, (96) 
A 

where 

P = R’N’F d/f, (97) 

F is a matrix containing magnitude of forces in each 
of five degrees of freedom direction. 

3.8. Discrete equations of motion 

Using eqn (47), we can write 

nc=ue- we. (98) 

Here II’ is the total potential energy of an element e 
and u’, w’ are the internal strain energy and external 
work done, respectively. From eqn (81) we get 

Li’ = ‘d”K”d’ 2” Il. (99) 

The first variation of the internal strain energy can be 
written in matrix form as 

SU, = sd:K’d:,. (100) 

Here K’ is the element stiffness matrix. The first 
variation of the external work done on the element 
can be written in matrix form using eqn (96) as 

6 W’ = Sd”T n 9 (101) 

P is the element load vector. Also the first variation 
of kinetic energy 6.P’ for an element can be written 
in matrix form using eqn (91) as 

SE’= -&d’,‘M”$; (102) 

Here dz is vector of element nodal accelerations. 
Substituting the above expressions in eqn (46) we get 
the following form of Hamilton’s equation 

s 
” (&c/’ - 6 w’ - SE”) dt = 0 
11 

(103) 

or 

s 

(2 
6d;[M’$+K’d:,-f;]dt =O. (104) 

II 

Since this relation is valid for every virtual disptace- 
ment 6d’, we get 

M’$+K’d:,=f:,. (105) 

This is a finite element equation of motion for one 
element of domain. These element equations are now 
assembled as in equations (54) and (55) to yield the 
global equation of motion for the entire domain, i.e. 

Mii+Kd=f. (106) 

Here d, ii are the global vectors of unknown displace- 
ment and acceleration, respectively. M, K, fare global 
mass, stiffness and nodal load vectors, respectively, 
and are given as 

K= y K” (107) 
e=i 

Nh 
M=xM” (108) 

*=I 

f= f f”. (109) 
u=, 

3.9. Seismic input 

In the case of seismic input problems the load 
vector is of the following form in the equation of 
motion (106) 

f = -Mrii,. (110) 

Here M is the mass matrix of the system as derived 
earlier, r is the influence matrix which is a column 
matrix containing ones and zeros, ii, is the ground 
acceleration input which varies with time. 

4. NUMERICAL RESULTS AND DlSCUSSlON 

4. l . Preliminary remarks 

Nine-noded biquadratic Lagrangian elements with 
five degrees of freedom per node are used for the 
analysis. Numerical quadrature is used for the evalu- 
ation of the etement matrices. A 2 x 2 Gauss quadra- 
ture rule is employed to evaluate the shear energy 
term, while a 3 x 3 Gauss rule is utilized for all the 
remaining terms in stiffness, mass and load matrices. 
Zero initial conditions are assumed in all the cases. 
All the computations are carried out in single pre- 
cision on a CDC Cyber 180/840 system with 16 
significant digits accuracy. Nodal boundary con- 
ditions are prescribed. The results from the software 
SHELDYNA (program for mode superposition 
analysis), and TIME (program for time integration 
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analysis) developed by the authors are compared with 
BLAST (program for clasto-dynamic analysis of 
shells using assumed strain degenerate shell clement 
developed by Huang [IS]). 

4.2. Boundary conditions and prohim datu 

The following boundary conditions arc employed 

Fixed u,, = 0, r,, = 0, w,, = 0, (),,a = 0, O,,,, = 0. 
SSI (simply supported diaphragm): r = const, 
tr,, = 0, MS,, = 0. O,,, = 0; s = const, I’,~ = 0. I$;, = 0, 
o,,f = 0. 
SS2 (simply supported hinged): y = const, 
rl,, = 0. I‘,, = 0, be,, = 0. (I,,, = 0, .Y = const. u,, = 0, 
I’,, = 0, II’,, = 0, (I (,, = 0. 
Symmetric: J’ = const. t’,, = 0. (I,,, = 0: .y = const, 
U,, = 0, o,,, = 0. 

The following sets of data are used for the numerical 
examples analysed in this section. 

Data 1: A deep thin arch--this example is taken 
from [ 141 

radius (R) = 67. I I5 in, thickness (h) = I .O in 
central angle ([I) = 15 , width (h) = I .O in 
density (p) = 2.44 x 10. ‘lb sec’/in” 
Young’s modulus (E) = 1.0 x 10’ lb/in’ 
Poisson’s ratio (v) = 0.3. 
load intensity Q) = 0.25 lb/in’. 

Data 2: A deep thin spherical cap-this example is 
taken from [ 131 

radius (R) = 20.0 in. thickness (h) = 0.3 in 
central angle (b) = 120 . 
density (p) = 7.33 x IO ’ lb sec’iin’, 
Poisson’s ratio (r) = 0.3 
Young’s modulus (E) = 3.0 x IO’ lb/in’ 
load intensity @) = 600 lb/in’. 

Dutu 3: A thin cylindrical diaphragm-this 
example is taken from [ I.51 

radius (R) = 300.0 in, thickness (11) = 0.3 in 
central angle (CC) = 40 . length (L) = 100.0 in 
density ($1) = 2.25 x IO ’ k sec’/inJ, 
Young’s modulus (E) = 3.h x lff’kipin’ 

Fig. 2. A deep thin arch subjected to impulsive u.d.1 

--Implctt (Tfme) 
---implKlt (fliost) 
X Sheldyno (IO modes) 

1 I / I t i 

0002 o.co4 0003 0008 0010 0012 

Time (seci 

Fig. 3. A thin arch subjected to suddenly applied u.d.1. 

Poisson’s ratio (v) = 0.15 

vertical acceleration (u,), = I 15.9 in/set?. 

Data 4: Briones dam intake tower--this example is 

taken from [l6] 

height (L ) = 230 ft 
inner diameter at bottom (elevation 360.0) 

=20ft 
inner diameter at top (elevation 575.0) = 10 ft 
thickness at bottom = 1.33 ft 
thickness at elevation 575.0 = 1.1 I3 ft 
density (p) = 4. I8 lb sec’/inJ 
Young’s modulus (E) = 6.48 x IO’ lb/in’ 
Poisson’s ratio (v) = 0.17. 

4.3. Examples and discussion 

E.xwnpk~ I. A deep thin circular arch of radius 

67. I I5 in and unit cross-sectional area with a central 
angle of 15 is modelled in this case using shell 
elements. It is simply supported (SS2) at the ends and 
subjected to an impulsive step loading in the form of 
a uniformly applied pressure over its span as shown 
in Fig. 2. This has been analysed by SHELDYNA 
using the lirst ten modes. The same has also been 
analysed by TIME and BLAST using an implicit time 
scheme with a time step of 3.315 x 10 ’ SW. The 
results have been recorded in the form of transient 
variation of centrel deflection as shown in Fig. 3. 

~L--_~~ i-.----___ 

Fig. 4. A deep thin spherical cap subjected to suddenly 
applied pressure. 
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004 r a Time (impleitl 
0 Blast hmplicitt 
Y Shcldyw i: 

-008 1 I 
0 0 0025 

Time kc) 

Fig. 5. Variation of central deflection of a thin shell cap Fig. 7. Variation of deflection of an edge point of a thin 

subjected to suddenly applied pressure. cylindrical cap subjected to vertical acceleration. 

Uniform periodic variation of the devotion is ob- 
served. The maximum value of the centra1 deflection 
observed is 3.9 x 10-s in all the three cases. It can be 
seen from Fig. 3 that the results by all the methods 
are in good agreement. 

Example 2. In this example a deep thin spherical 
cap, shown in Figs 4(a) and (b), is analysed. This is 
clamped all around its boundary. This is subjected to 
a suddenly applied uniform pressure of intensity 
600 lb/in’, the variation of which is shown in 
Fig. 4(c). Taking advantage of symmetry, only one 
quarter of the shell is taken and is discretized using 
12 shell elements. In the analysis by SHELDYNA the 
first ten modes were considered. A time step of 
2 x 10e5 set was adopted in the analysis using TIME 
and BLAST. The transient variation of the central 
deflection has been recorded in the form of a graph 
as shown in Fig. 5. The maximum central deflection 
observed is 3.5 x 10m2 in. The closeness of the results 
by TIME and BLAST is clearly depicted in Fig. 5. A 

(a) z 

I 
+.-11.51_+l.5L -1 21 

*Y 

(bt 

IIS9 

+ 

% 

Fig. 6. A thin cylindrical cap subjected to base acceleration. 

l Time (implicit) 
0 Blast iimdicit) 
xShcMyna (IOmodesf 

Time kec) 

1 
0.0 

slight difference in the results by SHELDYNA is 
observed. It is expected that improved convergence 
will be achieved by increasing the number of modes. 

Exampie 3. In this case a thin cylindrical cap as 
shown in Fig. 6(a) is analysed for the vertical base 
acceleration shown in Fig. 6(b). This is simply sup- 
ported (SSl) along the curved edge. Taking symmetry 
into account again only one quarter of the structure 
is discretized using four shell elements. The loading is 

Normal water 

v Et 5480 
z 

j 

Ey.Z;li + 171 

EL 3470 IO’- 

I I 33’4 

Y c-20’ 

I-- 30- 

Fig. 8. Brione’s dam intake tower. 
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03 
S69E component 

Time (set) 

Fig. 9. Ground motion recorded at Taft Lincoln School Tunnel, California, earthquake. 21 July 1952 

in the form of vertical ground acceleration which 
varies as a saw-tooth wave as shown in Fig. 6(b). The 
variation of the vertical deflection of the corner edge 
point (node 5) is shown in Fig. 7. In this case also the 
first ten modes were considered while analysing by 
SHELDYNA and in the case of analysis by TIME 
and BLAST a time-step of value 0.005 set was used. 
The maximum value of the deflection observed is 
1.63 in in the case of SHELDYNA and TIME and 
1.53 in in the case of BLAST. It is observed in Fig. 7 
that the variation is more or less similar in all the 
cases. 

Example 4. In this example a Briones dam intake 
tower, as shown in Fig. 8 and adopted from [16], has 
been analysed. The tower tapers with an internal radii 
of loft at bottom to 5 ft at the top. The effective 
height of the tower is 230 ft. This has been analysed 
as a hollow tapering cylindrical cantilever fixed at the 
base. This is subjected to an earthquake input of 
S69E component recorded by the Taft Lincoln 
School Tunnel, California, as shown in Fig. 9. Due 
to unidirectional symmetry only one half of the 
structure is considered and is discretized using II 
shell elements along the axis. The analysis is done for 
the ‘no water condition’ only. In the analysis using 
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Fig. IO. Variation of tip deflection of a chimney subjected 
to seismic input of Fig. 9. 

SHELDYNA the first 20 modes were considered and 
a time-step of 0.01 set was taken in the case of 
analysis by TIME and BLAST. The variation of the 
tip deflection is recorded as an output in Fig. IO. In 
the actual case this was analysed by taking it as a 
cantilever beam and was discretized using beam 
elements. Five percent damping was considered in 
each mode and first five modes were taken. The 
maximum displacement observed was 3.0 in. The 
maximum deflection observed in the present case with 
no damping being considered is 4.5 in. It can be seen 
from the results that although the results differ in the 
initial stage slightly, they are more or less similar in 
the later stage by all the three approaches. 

5. CONCLLWONS 

The Mindlin-Reissner theory is employed with 
explicitly integrated three-dimensional degenerated 
shell elements for undamped elasto-dynamic as well 
as seismic analysis of shells. Excellent agreement 
between the results by SHELDYNA (software devel- 
oped by authors for mode superposition) and TIME 
(software developed by authors for time integration) 
is observed both in the case of dynamic loading as 
well as in base input problems. Also the closeness of 
results with BLAST (software developed by Huang 
for elasto-dynamic analysis using assumed strain 
degenerate shell element) shows the accuracy and 
efficiency of the present explicitly integrated element. 
For the same level of accuracy, a considerable saving 
in computation time is achieved in the mode supcrpo- 
sition as compared to time integration methods since 
only the first few modes were suficient to obtain the 
results with the same accuracy. As the formulation 
is on a nodal basis the imposition of boundary 
conditions is found to be straightforward. 
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APPENDIX A 

The constitutive matrix C is given below 

- E VE 

(I - vv) (I - vv) 
0 0 0 

vE E 

(I - vv) (I - vv) 
0 0 0 

E 
c= 0 O--- 0 0 

2(l + v) 

E 
0 0 0 ___ 

2(l + v) 
0 

E 
0 0 0 0 ___ 

2(1 + v) 

APPENDIX B 

The D matrices in the membrane, bending and shear elements are given below 

Er, VEI, 

(1 -vv) (I -vv) 
0 0 0 0 0 0 

YEI 
D”,, = 1 El, 

(I - vv) (I - vv) 
0 0 0 0 0 0 

0 0 El, 0 0 0 0 0 

2(l + v) 

Et: VEI; 

O O O l2(l -vv) l2(l - vv) 
0 0 

D,,, = 0 0 0 _!Er:~_ . . . F!_. 0 0 
l2(l - vv) l2(l - vv) 

0 0 0 0 0 El: o 

24(l + v) 

i 

Et, 

O O O O O O 2.4(1 +v) 
0 

P, = 
000000 0 El, 

~~ 1 2.4(1 + 1’) 
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APPENDIX C 

The L matrices for the membrane. bending and shear elements are given below 

0 0 

0 0 

0 0 

0 I 

-I 0 I 
APPENDIX D 

The local to nodal transformation matrix at a node i is 

i, i, i, in i, k n 0 0 

j, ‘4 j, ‘j, j, k,, 0 0 
4, = k, i,, k, j, k, k,, 0 0 

0 0 0 i, i, i, ,j, 

0 0 0 j,. i,, j, ‘it 

APPENDIX E 

The B matrices for membrane, bending and shear are 

R, = 

1 0 0 0 0 

0 
0 0 

?N, 
-_- 

( .I‘,, 

0 
0 0 

- c’N, 

i.r,, 


