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Abetraet-New numerical algorithms are proposed for the accurate evaluation of transverse stresses in 
general composite and sandwich laminates. A set of higher-order theories with Co isoparameteric finite 
elements and exact three-dimensional equilibrium equations are used. The integration of the equilibrium 
equations is carried out through exact surface fitting method, direct integration method and forward and 
central direct finite difference methods. Sixteen- and nine-noded quadrilateral Lagrangian elements with 
selective numerical integration techniques based on Gauss-Legendre product rules are used in the analysis. 
Validity of the present numerical techniques and the higher-order theories are demonstrated by comparing 
the present results with the available elasticity and other closed-form solutions for cross-ply, angle-ply and 
sandwich laminates. The exact surface fitting method is seen to give accurate estimate of the transverse 
stresses compared to other methods. 

INTRODUCTION 

Composite materials are currently enjoying a variety 
of engineering applications and their strength and 
weaknesses are beginning to be properly appreciated 
by designers, and they are being employed in a more 
rational manner [l]. One form of these materials, 
being used in current design studies for aircraft, is the 
unidirectional fibre reinforced plastic lamina. Conse- 
quently, these design studies incorporate structural 
elements such as plates and shells which are fabri- 
cated from a number of unidirectional laminae and 
the desired strength/stiffness properties of these el- 
ements are achieved by suitably orienting the laminae 
relative to the plate or shell principal axes. 

In many instances these laminate structural el- 
ements will be moderately thick in relation to their 
span dimensions and in consequence of this a more 
refined analysis, one that takes into account trans- 
verse shear deformation, is required if the flexure 
response is to be adequately predicted. The classical 
lamination theory based on the Kirchhoff hypoth- 
esis [l] and the first-order shear deformation theories 
based on Reissner [2] and Mindlin [3] cannot be em- 
ployed for this analysis. This is because the classical 
lamination theory ignores the effect of transverse 
shear deformation, normal stress/strain and non- 
linear in-plane normal strain distribution through the 
laminate thickness [l] and the first-order shear defor- 
mation theory even though it considers the effect of 
transverse shear deformation, but assumes it as con- 
stant, thus a fictitious shear correction coefiicient 
is used to correct the strain energy of deformation. 
To overcome all these discrepancies, Reissner [4], 

t To whom all correspondence should be addressed. 

Lo et al. [5,6] and Kant [7] presented higher-order 
theories which take care of the shear deformation, 
transverse normal stress/strain effects. Kant et al. 181 
were the first to present a Co finite element formu- 
lation of a higher-order theory. 

Pandya and Kant [9-l l] and Kant and Manju- 
natha [12, 131 have extended this theory for general 
composite and sandwich laminates. Reddy [14], 
Phan and Reddy [15] and Pucha and Reddy 1161 
have presented a closed-form, C’ displacement 
finite element and Co mixed finite element formu- 
lations, respectively, of a theory based on a 
displacement model given by Murthy [17] and 
Levinson [18]. But these neglect the effects of trans- 
verse normal stress/strain. Pandya and Kant [l l] 
have also given a novel approach of imposing the 
zero transverse shear stress conditions on top and 
bottom bounding planes of the laminates by modify- 
ing the shear rigidity matrix instead of the displace- 
ment model [14, 17, 191. 

Further, in the evaluation of in-plane and trans- 
verse stresses, the constitutive relation can be used to 
accurately evaluate the in-plane stresses, but the same 
cannot be used for the evaluation of transverse 
stresses as it violates the continuity of these stresses 
at the interfaces. Thus, transverse stresses are gener- 
ally evaluated by using the three-dimensional equi- 
librium equations. Engblom and Ochoa [20,21] have 
modified the displacement field to specify element 
behaviour and to get a good estimate of in-plane and 
transverse stresses by using higher-order theories. 
But, in estimation of these stresses, the formulation 
obtains n equations in n - 1 unknowns, thus the 
equations set becomes overdetermined. These 
equations are solved by utilizing a least square 
orthononnalization procedure. 
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The main aim of the present work is to accurately 
evaluate the transverse shear and normal stresses by 
using three-dimensional equilibrium equations. The 
integration of the equilibrium equations is attempted 
through direct integration method, forward and 
central direct finite difference methods and a new 
approach called exact surface fitting method. 
The numerical results obtained by these methods 
for different models are compared with the 
available two-dimensional finite element [14-211, 
elasticity [22,23] and two-dimensional closed- 
form [24-271 solutions. 

wfx,Y,z)=%(x,Y) (2) 

HOST1 1 

THEORY AND FORMULATIONS 

The formulations are developed with the assump- 
tion of dispia~m~nt (Fig. 1) models for an 
anisotropic laminate in the following form 

HOST7 

w(x,y,z)=~c(x~Y) (1) 

S. MANJUNATHA 

HOST9 

@,Y,Z) =4&y) + &(x,y) 

+zZtr,*(x,y)fz30,*(x,y) 

W, Y, z) = &4x, Y) “I- zqx, y) 

+z2v,*(x,y)f238_~(x,y) 

4% Y, z) = w*(x, y) + ze,(x, y) -I- 22WQ(X, y) (3) 

( 1,2,3) - Lamina reference axc8 

Fig. 1 

(x.y.2) - Laminate reference axes 

. Laminate geometry with positive sat of l~ina/iaminata reference axes, displa~ment 
and fibre orientation. 

components 
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HOST12 

u(x, Y, z) = dx, Y) + zUx, Y) + Z2~~(X, Y) 

+ 3ef(x, Y). (4) 

In the above relations, the terms u, u and w are the 
displacements of a general point (x, y, z) in the 
laminate domain in the x, y and z directions 
respectively. The parameters u,,, v,, are the in-plane 
displacements and w, is the transverse displacement 
of a point (x, y) on the middle plane. The functions 
e,, 8, are rotations of the normal to the middle plane 
about y and x axes, respectively. The parameters u$, 

Ud, w;, 0:) 0;) 0: and 0, are the higher-order terms 
in the Taylor’s series expansion and they represent 
higher-order transverse cross sectional deformation 
modes. 

The full three-dimensional and its reduced 
forms of strain displacement and constitutive 
relations appropriate to the chosen displacement 
models are used in this formulation [g-13,31]. 
The theories based on the above higher-order 
displacement models lead to non-vanishing trans- 
verse shear and normal stresses on the top and 
bottom bounding planes of the laminate. Pandya 
and Kant [ll] have modified the shear rigidity 
matrix as against the displacement model [14, 17,191 
to incorporate the zero shear conditions. Their tech- 
nique retains the Co continuity of displacements 
including the higher-order ones. This procedure is 
used for displacement model with seven degrees 
of freedom (HOST7B). But the results obtained by 
models which do not satisfy top and bottom zero 
shear condition are in general better compared to 
models where this condition is satisfied. This 
was seen to be more true in the case of thick 
laminates [ 1 I]. 

The evaluation of transverse stresses (T,, , Tag, a,) 

from the stress-strain constitutive relations leads 
to discontinuity at the interface of two adjacent 
layers (laminae) of a laminate and thus violates the 
equilibrium conditions. The three-dimensional 
analysis becomes very complex due to the thickness 
variation of constitutive laws and continuity require- 
ments of transverse stresses and displacements across 
the interfaces. Thus, elasticity equilibrium equations 
are used to derive expressions for the transverse 

stresses in the Lth lamina of a multilayered laminate, 
namely 

!%+c!s+!+ 
aY 

!.!A+%++). 
ay 

(5) 

The integration of these equilibrium equations is 
attempted here through different novel approaches: 
direct integration method, forward and central direct 
finite difference methods and a new approach called 
an exact surface fitting method. These methods are 
explained below. 

(a) Direct integration method 

The three differential equations of equilibrium 
given by eqns (5x7) give three relations, namely, 

~=_(~+f!$Y) (8) 

and 

ab ah 
2=2+ 

a+7 --2+2!.& 
a22 ax2 ay2 (10) 

from which the transverse stresses 7_, T,,~ and a, can 
be evaluated through integration with respect to the 
laminate thickness z. The in-plane stresses CT~ and uY 
and the in-plane shear stress TV,, obtained by constitu- 
tive relations are substituted in eqns @-(IO). It can 
be seen that eqns (8) and (9) are first-order equations 
in 7xr and 7yz. Solving these equations one obtains 
only one constant of integration, this being an initial 
value problem. However, this problem is vexing 
because the value of transverse shear stresses are 
normally known at both top and bottom boundary 
surfaces of the laminate. Thus one obtains only a 
non-unique solution for transverse shear stresses as 
two prescribed condition for these stresses cannot be 
simultaneously enforced in the solution. In the case 
of transverse normal stress [eqn (lo)] a second-order 
equation is obtained. By integrating the second-order 
differential equation twice, two constants of inte- 
gration are obtained. These constants of integration 
can be determined by substituting the two boundary 
conditions on the top and bottom surfaces of the 
laminate. 
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AA = ax(GP + 4) - a,(GJ’) 

AX I 

The final form of the computational algorithms for 
7rr, 7!._ and eZ after integration through the laminate 
thickness can be written as follows: 

.,,,,,=-~,~~+‘(~+~)dz+C, (11) 

+2 
a22, 
ax ay > > 

dz dz + zC, + C,. (13) 

The constants C, and C, are obtained from the 
known values of 7xr and tyz at either of the two 
boundaries at z = &h/2 while constants C, and C, 
are obtained from the known values of Q, at 
z = f h/2. However, eqn (13) requires the use of third 
derivatives of displacements. For this reason cubic 
sixteen-noded quadrilateral Lagrangian elements in 
addition to nine-noded elements are used here. The 
presence of second and third derivatives of displace- 
ments in the stress evaluation dictates the use of high 
degree polynomial elements and further introduction 
of numerical error in the estimation of transverse 
shear and normal stresses. Thus, forward and central 
direct finite difference (FDM) methods and a new 
approach called exact surface fitting method (ESFM) 
are proposed to accurately estimate the transverse 
shear and normal stresses. Here a formulation for 
sixteen-noded element is presented. The same pro- 
cedure is also used for nine-noded element. 

(b) Finite difference methods 

Here also in-plane stresses are evaluated by using 
constitutive relations at different Gauss points in an 
element (4 x 4 sixteen points for sixteen-noded and 
3 x 3 nine points for nine-noded). After that, the 
forward difference method (stresses are maximum at 
the edges of the laminate) is used in the x-y plane to 
evaluate the derivatives of in-plane stresses at a 
particular Gauss point inside the element and either 
a forward difference or a backward difference method 
is used for the evaluation of the same at the edges of 
the laminate depending on whether the edge is a 
positive or negative one. The following equations 
corresponding to eqns (8) and (9) are obtained 

S=_*B 
az 

(14) 

(15) 

+ 
7,W + 1) - 7,JGP) 

AY 1 (16) 
BB = qv(Gf’ + 1) - QGJ’) 

AY 1 
+ 

7,,(Gf’ + 4) - r,(GP) 

AX 
]> (17) 

where GP is the Gauss point number at which stresses 
are evaluated and GP + 4 and GP + 1 are the next 
Gauss point numbers in the .Y and y directions 
respectively, where the stresses are evaluated. 

Forward difference method. The final form of the 
computational algorithms for t,: and 7!; after using 
the forward difference operator along the thickness 
direction in eqns (14) and (15) are written as follows 
(these are designated as the forward-direct difference 
method) 

71;llL+,=71;21-_L-[AAlL*(-1L+,-=L) (18) 

7titrr+, =7,LZI;,-[[BB]L*(=L+,-~L). (19) 

Central difference method. The following compu- 
tational algorithms are obtained for r,: and rvI after 
using the central difference operator along the thick- 
ness direction in eqns (14) and (15) (these are desig- 
nated as central-direct difference method) [30] 

in which 

@L-t, -2L) 
a =(z,-zL_,). (22) 

As the central difference method is a two-step 
non-self-starting method, the forward difference 
method is used to evaluate the transverse stresses at 
first step and for subsequent steps central difference 
method is used. This method can be effectively used 
for isotopic laminates. For laminates having different 
isotropic, orthotropic or anisotropic laminae, the 
in-plane stresses are discontinuous and two values are 
obtained at an interface of two layers. As the trans- 
verse stresses are continuous through the interface of 
two layers, the derivatives of in-plane stresses must 
also be continuous through the interface. Thus, an 
average of the two values at the interface is used in 
the above techniques. 
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(c) Exact surface fitting method 

Here also in-plane stresses are evaluated through 
constitutive relations at different Gauss points in an 
element. After obtaining the in-plane stresses acting 
on lower and upper surfaces of a particular layer, the 
variation of these stresses over a particular surface of 
an element can be expressed as a polynomial in 
laminate axes (x, y) as follows: 

a,(z) = Cf + c&X + c;y + c; x* + c;xy + c:y* 

+c;x3+c;xzy+c;xy*+c;,y3 

+ c;,x3y + c;,xzy* + c;,xy3 + c;,x3y* 

+ c;,x*y3 + Cf,x3y3. (23) 

Similar equations are obtained for av and rXy. The 
parameter in eqn (23), z refers to a particular surface 
in the laminate at a distance z from the middle plane 
and this may be the top or bottom surface of a 
particular lamina or a subset of a particular lamina 
having same ply orientations. The following equation 
is obtained by substituting the in-plane stresses at is 
obtained by subsltituting the in-plane stresses at 
different Gauss points in an element 

[ A, I[ CJ I = [,,fE;,l, (24) 
(16 x 16) (16 x I) 

Similar equations are obtained for u,, and T.+,. The 
above equation is solved and the sixteen polynomial 
constants are obtained. Equation (23) is differentiated 
with respect to x and y and thus derivatives of 
in-plane stresses are obtained. These are written as 
follows: 

au 
2 = c; + 2c;x + c;y + 3c;x* + 2c;xy + c;y* ax 

+ 3c;,x*y + 2Cf,xy2 + c;,y3 + 3c;,xry* 

+ 2c;,xy3 + 3c;,x*y3 (25) 

a% 
I = 2C; + 6C;x + 2C;y + 6C;,xy + 2C;,y* ax* 

+ 6C;4xy2 + 2C;,y3 + 6C;,xy3. (26) 

Similar equations are obtained for o,, and rXy. 
These derivatives are then used in eqns (8) and (9) and 
the same procedure as used for the direct finite 
difference method is used following eqns (18)-(22). 

The final form of the computational algorithm for 
a, after using the central difference operator along the 
thickness direction in eqn (10) is written as follows: 

2. (27) 

The double derivatives of in-plane stresses are 
substituted in eqn (27) and this equation is solved as 
a boundary value problem by substituting the two 
boundary conditions for transverse normal stresses at 
top and bottom surfaces of the laminate. 

The displacement models given by eqns (l)-(4) are 
used in conjunction with Co isoparameteric finite 
elements in the x-y plane and the same has been 
explained in detail in [12]. Lagrangian quadrilateral 
elements with 9 and 16 nodes are used. A selective 
numerical integration technique based on 
Gauss-Legendre product rules is used here for the 
evaluation of the element stiffness properties. 

NUMERICAL RESULTS AND DISCUSSION 

To demonstrate the accuracy and efficiency of the 
present higher-order theories and the new numerical 
techniques, a set of computer program incorporating 
the higher-order theories are developed for the elasto- 
statics of general composite and sandwich laminates. 
All the computations are carried out on a CYBER 
180/840 computer in single precision with sixteen 
significant digits word-length. A computer program 
based on the Reissner/Mindlin theory has also been 
developed to support the numerical evaluations of the 
present formulations. The transverse shear energy 
terms in the Reissner/Mindlin theory are corrected by 
using a shear correction coefficient of 5/6 for all the 
materials used here. Selective numerical integration 
technique, based on Gauss-Legendre product rules, 
namely 4 x 4 for flexure/membrane and 3 x 3 for 
shear terms has been employed for sixteen-noded 
elements and 3 x 3 for flexure/membrane and 2 x 2 
for shear terms, has been employed for nine-noded 
elements in the analysis. Due to biaxial symmetry, 
only one quadrant of the laminate is considered in the 
case of crossply laminates and for angle-ply and 
general sandwich laminates full laminate is con- 
sidered in the analysis. 

The values of in-plane, transverse stresses are 
evaluated at the Gauss points, whereas the displace- 
ments are computed at the nodal points. A 2 x 2 
mesh (four elements) for cross-ply laminates (quarter 
laminate) and a 4 x 4 mesh (sixteen elements) for 
angle-ply and general sandwich laminates (full lami- 
nate) were seen to give generally converged displace- 
ments and stresses for nine-noded elements. 
Similarly, one element for cross-ply laminates and 
2 x 2 mesh (four elements) for angle-ply and general 
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Table 1. Comparison of maximum transverse displacement and transverse shear stress (i,,) for simply supported laminate 
under sinusoidal loading (u/h = 4) (O/90) 

Transverse shear stress f,, 
__~~___ 

Surface fitting methods Direct 
Direct Forward Central difference methods 

Source Go Constitutive integration diff. diff. Forward Central 

HOST7A (9N) 
HOST7A (16N) 

HOST7B (9N) 
HOST7B (16N) 

HOST9 (9N) 
HOST9 (16N) 

HOST1 l(9N) 
HOST11 (16N) 

HOST12 (9N) 
HOST12 (16N) 

FOST (9N) 
FOST(l6N) 

Elasticity [23] 

Ren 1241 

2.032656 
2.032188 

1.956250 
1.954688 

2.055469 
2.055000 

2.032813 
2.031250 

2.032813 
2.031250 

2.149844 
2.149375 

0.252750 
0.275000 

0.212275 
0.211650 

0.270000 
0.269750 

0.271500 
0.27 1500 

0.271750 
0.271500 

0.221000 
0.220850 

0.29600 
0.34900 

0.30050 
0.35275 

0.29025 
0.33775 

0.28725 
0.33750 

0.28775 
0.33700 

0.29825 
0.34800 

0.31270 

0.32540 

0.301818 0.315878 0.313515 0.299480 
0.380743 0.363395 0.336813 0.321558 

0.3 19685 0.306055 0.318048 0.304440 
0.386018 0.369703 0.341053 0.326630 

0.309999 0.296528 0.307333 0.293098 
0.371570 0.355113 0.329003 0.314523 

0.308850 0.395635 0.306268 0.293098 
0.373483 0.356823 0.331018 0.316575 

0.309180 0.295960 0.306523 0.293353 
0.372893 0.356248 0.330755 0.316315 

0.315815 0.304130 0.313343 0.301678 
0.380200 0.365805 0.336455 0.323793 

sandwich laminates were seen to give converged (a) Orthotropic laminate. A simply supported two- 
results with sixteen-noded elements. Thus, unless layered general cross-ply (O/90) square laminate sub- 
otherwise specified, these discretizations are adopted jetted to sinusoidal loading is considered for 
in this paper. comparison of displacement and stresses. The follow- 

The displacements, as well as in-plane and trans- ing material properties are used here [23] 
verse stresses are presented here in the non-dimen- 
sional form using the following multipliers E, /El = 25; G,JEz = 0.50; G2JE2 = 0.20 

biJCj= 
10Ezh3w,(a/2, b/2,0) _ 

qoa4 rxzh(O: b,2,$ 
= 

qoa 

Ez=E,; G,, = G,,; ~3,~ = vz3 = vi3 = 0.25. 

130) 

The results of maximum transverse displacement 
F?: 

= r,,h(a/2,0, r) 
6; = 

a&/2, b/2,2) 
GO, transverse shear and normal stresses are presented 

qOa ’ 
in Tables l-6 for the two a/h ratios (a/h = 4 and IO). 

40 The variation of maximum transverse displacement 

E,@, b/2, z) 
Go with a/h ratio is shown in Fig. 2 and the variations 

G= 
hq, . 

(28) of transverse shear and normal stresses (f,,, TVl, 6:) 
through the laminate thickness are shown in Figs 3-5 

The percentage difference (PD) in the results are 
for a/h = 4. 

The results show that (Tables l-6), out of all the 
calculated as follows: models used for evaluation of transverse shear stress 

value - true value 
(fXZ), the model HOST7A results are close to the 

PD= 
approximate 1 x 100 elasticity [23] (- 0.260633PD) and closed-form sol- 

true value utions [24] (Fig. 3). But in the case of transverse shear 

(29) stress (Q,:), it is seen that model HOST11 gives a 

Boundary conditions 

These are clearly specified below 

edge simply supported symmetry line 

At x = constant 

At y = constant 

vo=Vg*=wo=w~=o 
e,. = e,t = 0 

u~=r4o+=w~=wg*=o 
e,= e:=o 

u,=u,*=o 
e,=e: =o 

00 = v$ = 0 
e,. = e_; = 0 
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Table 2. Comparison of transverse shear stress &) for simply supported laminate under sinusoidal loading (a/h = 4)(0/W) 

Transverse shear stress fYz 

source Constitutive 
Direct 

integration 

Surface fitting methods Direct 
Forward Central difference methods 

diff. diff. Forward Central 

HOST’IA (9N) 0.2750 0.29050 0.293795 0.293158 0.294540 0.293950 
HOST’IA ( 16N) 0.2750 0.34900 0.368240 0.367645 0.322775 0.322195 

HOST7B (9N) 0.2785 0.29575 0.302445 0.298760 0.303623 0.299993 
HOST’IB (16N) 0.2117 0.35450 0.376105 0.371475 0.329635 0.325538 

HOST9 (9N) 0.2838 0.28450 0.288605 0.287533 0.289323 0.288295 
HOST9(16N) 0.2835 0.34150 0.360890 0.359755 0.316363 0.315315 

HOST1 l(9N) 0.2768 0.28375 0.290025 0.289123 0.290443 0.289590 
HOST1 l(l6N) 0.2680 0.35600 0.367943 0.367165 0.320135 0.319233 

HOST12 (9N) 0.2808 0.28400 0.290318 0.289443 0.290718 0.289885 
HOST12 (16N) 0.2683 0.34600 0.368248 0.367480 0.320235 0.319463 

FOST (9N) 0.2210 0.29225 0.295715 0.294550 0.296535 0.295420 
FOST (16N) 0.2209 0.35150 0.371278 0.370045 0.325375 0.324240 

Elasticity [23] 0.31880 

Ren [24] 0.32580 

better estimate of this stress than other models, when direct integration method give almost similar vari- 
compared with elasticity (0.13582PD) and other ation through the thickness of the laminate which is 
closed-form solutions (Fig. 4). The sixteen-noded slightly different from the elasticity and the CPT 
element gives good estimate of the transverse stresses results, but it converges to the same value as in 
compared to nine-noded element. elasticity and CPT results at the top and bottom 

In the case of transverse normal stress (Fig. 5), the surface of the laminate. Since the elasticity or 
central difference exact surface fitting method and the closed-form solutions are not available for transverse 

Table 3. Transverse normal stress (Zz) for simply supported laminate under sinusoidal loading (direct 
integration method) (u/h = 4) (O/90) 

Transverse normal stress ez (displacement models) 

Thickness HOST’IA HOST’IB HOST9 HOST1 1 HOST12 Elasticity [22] 

-0.5 0 0 0 0 0 0 
-0.4 0.072450 0.071702 0.072587 0.068390 0.068505 0.078940 
-0.3 0.175368 0.173535 0.175074 0.171356 0.171758 0.250000 
-0.2 0.289661 0.286134 0.289113 0.287604 0.288268 0.460526 
-0.1 0.399147 0.393730 0.399094 0.398570 0.399358 0.671050 

0.0 0.489579 0.482951 0.491027 0.487923 0.488650 0.789474 
0.1 0.581884 0.574045 0.584600 0.578146 0.578746 0.86842 I 
0.2 0.696006 0.687427 0.698580 0.691239 0.691730 0.921053 
0.3 0.816158 0.809214 0.817625 0.811028 0.811367 0.960526 
0.4 0.924480 0.921438 0.924730 0.920247 0.920384 0.973684 
0.5 l.OOOOOO l.OoOOOO MtOOOOo l.OOOOOO l.OOoOOO l.oooooo 

Table 4. Transverse normal stress (5,) for simply supported laminate under sinusoidal loading (central 
difference exact surface fitting method) (u/h = 4) (O/90) 

Transverse normal stress 8: (displacement models) 

Thickness HOST7A HOST’IB HOST9 HOST1 1 HOST12 CPT [22] 

-0.5 0 0 0 0 0 
-0.4 0.050674 0.054515 0.049754 0.040865 0.040777 
-0.3 0.148434 0.158050 0.146378 0.133993 0.134141 
-0.2 0.268517 0.279560 0.265800 0.252848 0.253262 
-0.1 0.389826 0.397000 0.387564 0.374165 0.374733 

0.0 0.493748 0.494420 0.493407 0.477170 0.477470 
0.1 0.592460 0.586593 0.594320 0.575045 0.575550 
0.2 0.711721 0.701161 0.714315 0.696275 0.696675 
0.3 0.833640 0.823384 0.835752 0.821926 0.822163 
0.4 0.937712 0.932668 0.938725 0.930980 0.931029 
0.5 l.OOOOOO l.OOOOOO 1.OOOOOO l.OOOOOO l.OOOOOO 

0 
0.078940 
0.263150 
0.500&O 
0.723580 
0.847368 
0.921050 
0.952636 
0.978947 
0.989470 
l.OOOOOO 
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Table 5. Comparison of maximum transverse displacement and transverse shear stress (f.rz) for simply supported 
laminate under sinusoidal loading (a/h = 10) (O/90) 

Transverse shear stress i.XL 

Surface fitting methods Direct difference 
Direct Forward Central methods 

Source WO Constitutive integration diff. diff. Forward Central 

HOST’IA (9N) 1.2203 0.2564 0.2980 0.315881 0.303760 0.313420 0.301321 
HOST’IA ( 16N) 1.2201 0.2565 0.3476 0.380247 0.365304 0.336454 0.323314 

HOSTIIB (9N) 1.2128 0.2780 0.2975 0.315874 0.303209 0.313437 0.300749 
HOST’IB ( 16N) 1.2124 0.2782 0.3476 0.380389 0.365335 0.336571 0.323273 

HOST9 (9N) 1.2237 0.2728 0.2972 0.315226 0.303227 0.312724 0.300749 
HOST9 ( 16N) 1.2236 0.2729 0.3463 0.378674 0.363899 0.335126 0.322131 

HOST1 l(9N) 1.2200 0.2735 0.2974 0.315731 0.303784 0.313193 0.301270 
HOST1 l(l6N) 1.2200 0.2736 0.3467 0.379306 0.364467 0.336032 0.323012 

HOST12 (9N) 1.2200 0.2735 0.2974 0.3 15743 0.303795 0.313200 0.301277 
HOST12 (16N) 1.2200 0.2736 0.3467 0.379293 0.364455 0.336026 0.323006 

FOST (9N) 1.2378 0.2209 0.2983 0.315853 0.304167 0.313375 0.301710 
FOST (16N) 1.2377 0.2208 0.3480 0.380177 0.36578 1 0.336416 0.323752 

Elasticity [23] 0.3310 

Ren [24] 0.3320 

displacement Ws, this has been compared with 
Mindlin theory for model HOST9 (Fig. 2). 

(b) Angle-ply laminate. A two-layered simply sup- 
ported general angle-ply (1 So/ - 15”) square laminate 
subjected to sinusoidal loading is considered. The 
following material properties are used [25] 

E, /El = 40; G,2/E2 = 0.50: G,,/E, = 0.60, 

E,=E,; G,, = G,z; VIZ = v2, = v,j - - 0.25. 

(31) 

The results of maximum transverse displacement 
Go, transverse shear and normal stresses for a/h = 10 
are presented in Tables 7-10. The variation of the 
maximum transverse displacement G,, with a/h ratio 
is shown in Fig. 6 and the variations of transverse 

shear and normal stresses through the laminate thick- 
ness are shown in Figs 7-9 for a/h = 10. 

The results show that the transverse displacement 
G,, obtained by model HOST9(9N) is close to closed- 
form solution [25] (- 1.5148PD) compared to other 
models. The classical plate theory underestimates the 
value and gives a poor estimate for thick laminates 
(Fig. 6) (-28.0111PD). As the laminate thickness is 
reduced (a/h = 50 and above) all the theories almost 
give same results, thus showing the validity of the 
present higher-order theory. 

The transverse shear stress (fVI) results show 
that the model HOST9 gives a good estimate of 
the stress (-0.02158PD) compared to other 
models. Out of the two elements used, it is seen 
that sixteen-noded elements give a better estimate 
of these stresses compared to the other element. 

Table 6. Comparison of transverse shear stress (fYz) for simply supported laminate under sinusoidal 
loading (a/h = 10) (O/90) 

Source 

HOSTIIA (9N) 
HOST’IA (16N) 

HOST7B (9N) 
HOSTIIB (16N) 

HOST9 (9N) 
HOST9 (16N) 

HOST ll(9N) 
HOST11 (16N) 

HOST12 (9N) 
HOST12 (16N) 

FOST (9N) 
FOST (16N) 

Constitutive 

0.2811 
0.2811 

0.3178 
0.3179 

0.2880 
0.2881 

0.2816 
0.2869 

0.2868 
0.2869 

0.2209 
0.2208 

Transverse shear stress $,._ 

Direct 
integration 

0.2922 
0.3513 

0.2917 
0.3513 

0.2914 
0.3501 

0.2898 
0.3509 

0.2898 
0.3509 

0.2924 
0.3517 

Surface fitting methods Direct difference 
Forward Central methods 

diff. diff. Forward Central 

0.295680 0.294610 0.296484 0.295463 
0.371078 0.369960 0.325146 0.324110 

0.294803 0.293813 0.295586 0.294645 
0.371053 0.369942 0.325034 0.324020 

0.295259 0.294108 0.296050 0.294946 
0.369912 0.368695 0.324131 0.32301 I 

0.293897 0.292744 0.294885 0.293779 
0.369420 0.368222 0.306180 0.300894 

0.293920 0.292768 0.294898 0.293793 
0.369435 0.368238 0.323298 0.322191 

0.295917 0.294750 0.296736 0.295618 
0.371634 0.370399 0.325621 0.324483 
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0.50 
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Fig. 2. Convergence of transverse displacement w,, with a/h 
ratio for simply supported laminate under sinusoidal load- 

ing (O/90). 

Thus, in Fig. 8, the variation of transverse shear 
stress obtained by different methods has been shown 
for the model HOST9. From this figure, it can be 
seen that direct finite difference method gives good 
estimate of transverse shear stresses compared to 
other methods. As the closed-form solutions for 
transverse shear (CXZ) and normal stresses are not 
available, these results are compared with the 
Reissner/Mindlin theory for model HOST9. These 
results show that central difference exact surface 
fitting method gives a much better estimate of the 
transverse normal stress compared to direct inte- 
gration method. 

(c) Sandwich laminate. A clamped general eight- 
layered sandwich laminate (O”/4So/ - 45”/3O”/core/ 
O”/900/Oo) under uniformly distributed loading is 
considered. The following material properties are 
used [28,29] 

cl 0 0 Elasticity [23] 
AAA bn[24] 
---PraemtFD-Bsm 
- 0.30 PreaentFD-FDM 
0 0 0 Pmaent direct rnteg. 

-0.10 - 

-0.30 - 

Fig. 3. Variation of transverse shear stress (T, ) through the 
thickness of a simply supported laminate under sinusoidal 

359 

o o o Blasticity 1231 
AAA h-Il[24] 

- 0.30 ---PfwentFD-FDM 
- x%eBentcD-FDM 
0 00 Prcaent Direct Integ. 

- 0.50~ 
Fig. 4. Variation of transverse shear stress (rYz ) through the 
thickness of a simply supported laminate under sinusoidal 

loading (u/h = 4) (O/W) (HOST1 1)(16N). 

stiff layers 

E, = 0.1308 x 108 psi; E,=E,=O.l06x 1O’psi 

G,r = G,, = 0.6 x lo6 psi; G,, = 0.39 x lo6 psr 

VI2 = VI3 - - 0.28; v23 = 0.34 

core layers 

G,, = 0.1772 x lo5 psi; G,, = 0.5206 x IO5 psi 

h,/h, = 8 [other properties are zero]. (32) 

- 0.30 0 0 0 Slaaticity [22] 
AAA Cm[22] 
- - - Resent Direct Meg. 
- PrcsentBSFM 

-o.mA 

loading (u/h = 4) (O/W) (HOST7A)(9N). 

Fig. 5. Variation of transverse normal stress (u, ) through 
the thickness of a simply supported laminate under sinu- ._ . . . 

soidal loading (a/h = 4) (O/W) (HOST9)(16N). 
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Table 7. Comparison of maximum transverse displacement and transverse shear stress (f,,) for simply supported 
angle-ply laminate under sinusoidal loading (u/h = 10) (15/ - 15) 

Transverse shear stress f.X,, 

Source Constitutive 
Direct 

integration 

Surface fitting methods Direct difference 
Forward Central methods 

diff. diff. Forward Central 

HOST7A (QN) 0.62360 
HOST7A (16N) 0.62359 

HOST’IB (QN) 0.61948 
HOST’IB (16N) 0.61951 

HOST9 (QN) 0.63779 
HOSTQ(16N) 0.63774 

HOST1 1 (QN) 0.63430 
HOST1 l(l6N) 0.63430 

HOST12 (QN) 0.63440 
HOST12 (16N) 0.63430 

FOST (QN) 0.63647 
FOST (16N) 0.63646 

Ren [25] 0.64760 

Turvey [27] 0.46760 

CRT f261 0.46620 

0.2998 0.3055 0.316829 0.307303 0.318074 0.308574 
0.3001 0.3609 0.387928 0.376566 0.345425 0.335205 

0.3186 0.3044 0.316276 0.306203 0.317491 0.307427 
0.3185 0.3597 0.387345 0.375324 0.34493 I 0.334120 

0.3036 0.3054 0.316352 0.307223 0.318079 0.308946 
0.3040 0.3623 0.389425 0.378470 0.346239 0.336357 

0.3025 0.3039 0.314813 0.305811 0.316312 0.307302 
0.3018 0.3593 0.393045 0.378470 0.343811 0.334066 

0.3026 0.3039 0.3 14746 0.305747 0.316283 0.307275 
0.3019 0.3593 0.392913 0.379935 0.343813 0.334068 

0.2524 0.3068 0.317322 0.308682 0.318566 0.309962 
0.2526 0.3625 0.388543 0.378295 0.345961 0.336727 

- 

- 

Table 8. Comparison of transverse shear stress (iYz) for simply supported angle-ply laminate under 
sinusoidal loading (a/h = IO) (15/- 15) 

Transverse shear stress f,,._ 

Source Constitutive 
Direct 

integration 

Surface fitting methods 
Forward Central 

diff. diff. 

Direct difference 
methods 

Forward Central 

HOST’IA (QN) 0.06627 0.07483 0.078771 0.076366 0.076027 0.073687 
HOST7A ( 16N) 0.06083 0.08017 0.084976 0.082348 0.078247 0.075816 

HOST’IB (9N) 0.07097 0.07453 0.075807 0.076039 0.075779 0.073372 
HOST’IB (16N) 0.07062 0.07995 0.084835 0.082100 0.078125 0.075592 

HOST9 (9N) 0.06983 0.07347 0.077283 0.075070 0.074462 0.0723 I3 
HOST9 (16N) 0.06958 0.07833 0.082808 0.080420 0.076365 0.074146 

HOST1 l(9N) 0.06633 0.07386 0.077656 0.075446 0.074765 0.072624 
HOST1 l(16N) 0.06941 0.07836 0.082924 0.080520 0.076598 0.074368 

HOST12 (9N) 0.06633 0.07386 0.077645 0.075435 0.074765 0.072624 
HOST12 (16N) 0.06502 0.07832 0.082874 0.080474 0.076578 0.074349 

FOST (9N) 0.05652 0.07538 0.079200 0.076944 0.076453 0.074255 
FOST(16N) 0.05629 0.08083 0.085533 0.083055 0.078724 0.076538 

Ren [25] 0.07413 

Table 9. Transverse normal stress (6;) for simply supported angle-ply laminate under sinusoidal loading 
(direct integration method) (a/h = 10) (IS/- 15) 

Transverse normal stress d, (displacement models) 

Thickness HOST’IA HOST’IB HOST9 HOST1 1 HOST12 FOST 

-0.5 0 0 0 0 0 0 

-0.4 0.064180 0.066407 0.061398 0.062888 0.062887 0.061493 
-0.3 0.185102 0.190181 0.178793 0.180703 0.180740 0.178978 
-0.2 0.334033 0.340720 0.324729 0.326901 0.326980 0.326312 
-0.1 0.484538 0.491339 0.473509 0.476119 0.476238 0.477349 

0.0 0.611708 0.617966 0.600413 0.603598 0.603774 0.605944 
0.1 0.708096 0.714068 0.697938 0.701466 0.701678 0.703392 
0.2 0.787364 0.792734 0.779724 0.783140 0.783325 0.783661 
0.3 0.857099 0.860976 0.852794 0.852794 0.855626 0.854610 
0.4 0.925194 0.926854 0.923963 0.925685 0.925721 0.924103 
0.5 l.OOOOOO l.OOOOOO 1.OOOOOO 1.OOOOOo 1.OOOOOO 1.OOOOOO 



Estimation of transverse stresses in multilayer laminates 361 

Table 10. Transverse normal stress (8z) for simply supported angle-ply laminate under sinusoidal loading 
(central difference exact surface fitting method) (o/h = 10) (lS/- 15) 

Transverse normal stress Cz (displacement models) 

Thickness HOST7A HOST’IB HOST9 HOST1 1 HOST12 FOST 

-0.5 0 0 0 0 
-0.4 0.046765 0.047343 0.046776 0.047250 
-0.3 0.138376 0.139929 0.137452 0.137947 
-0.2 0.253995 0.255835 0.252429 0.253302 
-0.1 0.374325 0.375566 0.373186 0.374740 

0.0 0.481108 0.481269 0.481767 0.483730 
0.1 0.584960 0.584001 0.587567 0.589245 
0.2 0.708632 0.706888 0.711581 0.712717 
0.3 0.832948 0.831281 0.834912 0.835578 
0.4 0.937403 0.936627 0.937914 0.938286 

0.0407250 
0.137977 
0.253343 
0.374771 
0.483758 
0.589284 
0.712757 
0.835600 
0.938284 

0 
0.045767 
0.135768 
0.250970 
0.372341 
0.480850 
0.586451 
0.711448 
0.835704 
0.938721 

0.5 1.oooooO 1.oooOoo 1.oooooO 1.OOOOOO l.OOOOOO 1.OOOOOO 

** * REN [25} 
- - - CPT [261 
AAA Tnrviy[271 
- ReEent HOSlY(9N) 
o o o present HOST9(16N) 

OeZOZ 50 

a/h Ratio 

Fig. 6. Convergence of transverse displacement w0 with U//I 
ratio for simply supported angle-ply laminate under sinu- 

soidal loading (15/- 15). 

The results of maximum transverse displacement 
@,,, transverse shear and normal stresses are presented 
in Tables 11-16 for a/h = 10 and 50. The variations 
of transverse shear stresses (fXz. f,,), transverse nor- 
mal stress (8,) and in-plane displacement through the 

- - - Prerent PD-BSFM 
- ResentcD-ESFM 
000 PitwelltDlrectlnteg. 
l ** FOSTCD-BgFM 
A A A POST Direct Inbeg. 

0.30 - 

0.10 - 

Fig. 7. Variation of transverse shear strew (7, ) through the 
thickness of a simply supported angle-ply laminate under 

sinusoidal loading (a/h = 10) (15/- 15) (HOST9)(16N). 

-em Resent FD-FDM - Present CD-FDM 
Ooo PresentDirectInteg 
000 Ren[25]. 

A 
0.10 

Fig. 8. Variation of transverse shear stress (7 ,: ) through the 
thickness of a simply supported angle-ply laminate under 

sinusoidal loading @//I = 10) (15/- 15) (HOST9) (I 6N). 

---ResentDirectInteg. 
- PmaentEsFM 
Ooo FOSTBSFM 

Fig. 9. Variation of transverse normal stress (u, ) through 
the thickness of a simply supported angle-ply laminate 
under sinusoidal loading (o/h = 10) (IS/- 15) 

(HOST9)(16N). 

CAS 50:3-E 
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Table 11. Comparison of maximum transverse displacement and transverse shear stress (6) for clamped general 
sandwich laminate under uniformly distributed loading (a/h = 10) (O/45/ -45/3O/core/30/90/0) 

Transverse shear stress fXz 

Source 

HOST7A (9N) 
HOST7A (16N) 

HOST7B (9N) 
HOST’IB (16N) 

HOST9 (9N) 
HOST9 (16N) 

HOST ll(9N) 
HOST1 l(l6N) 

HOST 12 (9N) 
HOST12 (16N) 

FOST (9N) 
FOST (16N) 

*o 
2.21540 
1.88489 

1.81536 
1.92189 

2.26427 
1.92581 

2.25568 
1.92390 

2.27158 
1.93026 

1.20586 
1.20193 

Constitutive 

0.10240 
0.10030 

0.09762 
0.09556 

0.12260 
0.12320 

0.12549 
0.11271 

0.13780 
0.13800 

0.10880 
0.10780 

Direct 
integration 

0.3821 
0.3965 

0.3279 
0.3449 

0.3929 
0.4083 

0.3884 
0.4050 

0.3754 
0.4050 

0.3297 
0.3415 

Surface fitting methods Direct difference 
Forward Central methods 

diff. diff. Forward Central 

0.412020 0.391712 0.404891 0.384793 
0.430220 0.410952 0.370800 0.355310 

0.348582 0.334808 0.342354 0.328515 
0.372943 0.358484 0.340535 0.329518 

0.424156 0.402516 0.416522 0.395107 
0.443873 0.422986 0.381884 0.365075 

0.418365 0.396700 0.413275 0.391924 
0.438911 0.417986 0.380258 0.36343 1 

0.495076 0.385445 0.393505 0.374439 
0.441727 0.421482 0.378987 0.362909 

0.343860 0.336622 0.333840 0.326624 
0.363291 0.354409 0.332348 0.324794 

Table 12. Comparison of transverse shear stress (fYz) for clamped general sandwich laminate under 
uniformly distributed loading (a/h = 10) (O/45/ -45/30/tore/30/90/0) 

Transverse shear stress F,, 

Surface fitting methods Direct difference 
Direct Forward Central methods 

Source Constitutive integration diff. diff. Forward Central 

HOST’IA (9N) 0.07191 0.19060 0.197163 0.194537 0.192243 0.189669 
HOST’IA (16N) 0.03243 0.21130 0.230643 0.227588 0.192959 0.190494 

HOST7B (9N) 0.03528 0.22490 0.234654 0.233014 0.226215 0.224599 
HOST7B (16N) 0.03487 0.24770 0.266756 0.265128 0.226008 0.224582 

HOST9 (9N) 0.04469 0.19340 0.200892 0.197583 0.195567 0.192269 
HOST9 (16N) 0.94364 0.20910 0.229725 0.226161 0.190678 0.187909 

HOST1 l(9N) 0.04524 0.19470 0.203255 0.199490 0.198053 0.194291 
HOST1 l(l6N) 0.04455 0.20580 0.225372 0.221257 0.188731 0.185588 

HOST12 (9N) 0.04846 0.20170 0.216298 0.211936 0.202786 0.198791 
HOST12 (16N) 0.04815 0.21470 0.234758 0.231736 0.190630 0.188495 

FOST (9N) 0.03691 0.24890 0.255624 0.254392 0.245254 0.244044 
FOST(l6N) 0.03641 0.26770 0.282116 0.280673 0.243843 0.242606 

laminate thickness are shown in Figs IO-13 for A comparison of maximum transverse displace- 

a/h = 10. As the elasticity and other closed-form ment G,, ( - 46.74398PD) and transverse shear 
solutions are not available for this problem, the (- 16.21259PD for fX,, and -24.10318PD for f,,=) and 
results have been compared with Reissner/Mindlin normal stresses show a large difference between the 
theory. results of present higher-order theory (HOST9) (16N) 

Table 13. Transverse normal stress (a,) for clamped general sandwich laminate uniformly distributed loading (direct 
integration method) (a/h = 10) (O/45/-45/30/tore/30/90/0) 

Transverse normal stress 8, (displacement models) 

Thickness HOST’IA HOST’IB HOST9 HOST1 1 HOST12 FOST 

-0.50 0 0 0 0 0 0 
-0.46 0.253412 0.120091 0.345277 0.311682 0.154449 0.012800 
-0.42 0.304468 0.122620 0.515862 0.442858 0.365606 -0.074818 
-0.38 0.342245 0.177984 0.581164 0.482060 0.469585 -0.038654 
-0.34 0.497789 0.273473 0.858696 0.724058 0.723075 - 0.043678 

0.41 0.290064 0.821224 0.595232 0.416973 0.268363 1.249890 
0.44 0.446190 0.918987 0.64643 1 0.530174 0.320487 1.178470 
0.47 0.834263 0.944653 0.911620 0.849561 0.737319 1.093010 
0.50 l.OOOOoO 1OOOOOO l.OOOOOO l.oOOOOO l.OOOOOO l.OOOOOO 



Estimation of tramwu~ stresses in multilayer laminates 363 

Table 14. Transverse normal stress (8,) for clamped general sandwich laminate uniformly distriiuted loading 
(central difference exact surface twnB method) wlr = 10) (O/45/-45/30/tore/30/90/0) 

Thickness HOST7A HOST7B HOST9 HOST1 1 HOST12 FOST 

-0.50 0 
-0.46 0.085398 
-0.42 0.204132 
-0.38 0.339203 
-0.34 0.478331 

0.41 0.622189 
0.44 0.760971 
0.41 0.890262 
0.50 1.oooooo 

0.08%44 0.10&82 
0.203720 0.243022 
0.338 140 0.398867 
0.480593 0.556702 
0.624164 0.684619 
0.762994 0.802725 
0.890873 0.910865 
l.OoOoOO l.OooOOO 

0 0 0 
0.089628 0.106582 0.018231 
0.216715 0.247263 0.057263 
0.361769 0.40625 1 0.116415 
0.510081 0.569144 0.192099 
0.642993 0.6925% 0.404741 
0.771268 0.806239 0.620268 
0.893421 0.911901 0.819961 
l.OooooO l.OOOOOO l.OoowO 

Transveme normal stress 8, (displacement models) 

Table 15. Comparison of maximum transverse disphwcment and transverse shear stress (f,) for clamped general 
sandwich laminate under uniformly distributed loading (a/h = 50) (O/45/-45/3O/core/30/90/0) 

Transverse &ear stress f_ 

source Constitutive 
Direct 

integration 

Surface fittiog methcds 
Forward Central 

diK diff. 

Direct difference 
methods 

Forward Central 

HOST’IA (9N) 0.62662 0.10256 0.3524 0.362388 0.353498 0.355146 0.346266 
HOST7A (16N) 0.59857 0.10606 0.3888 0.411172 0.400344 0.360626 0.351558 

HOST7B (9N) 0.60301 0.10668 0.3504 0.358934 0.350516 0.352030 0.343620 
HOST7B (16N) 0.59950 0.10876 0.3836 0.406526 0.396038 0.357104 0.348314 

HOST9 (9N) 0.62990 0.13594 0.3524 0.362790 0.353800 0.3554% 0.346520 
HOST9 (16N) 0.60059 0.13544 0.3890 0.411410 0.400508 0.365936 0.351808 

HOST1 l(9N) 0.62684 0.13706 0.3596 0.3722% 0.363166 0.360222 0.351188 
HOST11 (16N) 0.59750 0.13676 0.3956 0.421338 0.410338 0.364406 0.355268 

HOST12 (9N) 0.62684 0.13888 0.35% 0.372344 0.363154 0.360222 0.351172 
HOSTl2(16N) 0.59750 0.13902 0.3956 0.401370 0.410304 0.364422 0.355256 

FOST (9N) 0.57508 0.12068 0.3498 0.356864 0.348728 0.350380 0.342250 
FOST (16N) 0.56766 0.12394 0.3866 0.407498 0.397234 0.355806 0.3471% 

and the Reissner/Mindlin theory for thick sand- present theory and the Reissner/Mindlin theory 
with laminates (a/h Q 10). The error is due to the decreases and for very thin laminates (a/h 2 50), 
simplifying assumptions made in the Reiss- the results of both the theories converge to the 
ner/Mindlin theory. As the laminate thickness is same value (- 8.70297PD for &, and -0.81746PD 
reduced, it is seen that the discrepancy between the for Z,). 

Table 16. Comparison of transverse shear stress &v,) for clamped general sandwich laminate under 
uniformly distributed loading (a/h = 50) (O/45/ - 45/3O/c4we/30/90/0) 

Transverse shear stress iw 

SOUICC 

HOST7A (9M 

Direct 
Constitutive integration 

0.04570 0.2432 
HOSIYA (16N> 0.04548 0.2692 

HOST7B (9N) 0.04324 0.2500 
HO!JT7B (16N) 0.04398 0.2772 

HOST9 (9N) 0.06667 0.2422 
HOST9(16N) 0.06346 0.2680 

HOST1 l(9N) 0.06684 0.2534 
HOST11 (UN) 0.06372 0.2780 

HOST12 (9N) 0.06746 6.2534 
HOST12 (16N) 0.06446 0.2780 

Surface fitting methods 
Forward Central 

diff. diff. 

0.2434% 0.242154 
0.281160 0.279576 

0.249488 0.248230 
0.289012 0.287490 

0.242710 0.241350 
0.280242 0.278644 

0.257768 0.256116 
0.294420 0.292546 

0.257768 0.256056 
0.294408 0.292474 

Direct difference 
methods 

Forward Central 

0.237242 0.235908 
0.237432 0.236114 

0.243034 0.241784 
0.243248 0.241974 

0.236468 0.235116 
0.236728 0.235402 

0.244336 0.242798 
0.242052 0.240594 

0.244336 0.242756 
0.242052 0.240570 

I 0.04098 0.2530 0.251250 0.250008 0.245086 0.243850 
FOST (16N) 0.04198 0.2842 0.293978 0.292448 0.246078 0.244802 
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Fig. 10. Variation of transverse shear stress (t, ) through 
the thickness of a clamped general sandwich laminate under 
uniformly distributed loading (a/h = 10) (HOST9)(16N). 
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Fig. 12. Variation of transverse normal stress (uz ) through 
the thickness of a clamped general sandwich laminate under 
uniformly distributed loading (o/h = 10) (HOST9)(16N). 

The transverse normal stress variation distinctly These theories assume the realistic non-linear vari- 

shows the difference between the present higher-order ation of displacements. The numerical results for 
theory and the Reissner/Mindlin theory (Fig. 12). As displacement and transverse stresses when compared 

seen in previous problems, here also the exact surface with the available elasticity and other closed-form 
fitting method gives a good estimate of the stress solutions show good agreement. The convergence has 
compared to the direct integration method. The been demonstrated in all cases in the limit when a/h 
in-plane displacement variation clearly brings out ratio tends to be large. The results obtained by models 
the realistic cubic variation of the cross-section of the when zero top and bottom shear conditions are not 
laminate for model HOST9 (Fig. 13). But the Reiss- enforced are close to the elasticity and other closed- 
ner/Mindlin theory gives an unrealistic straight line form solutions compared to the models when this 
variation through the thickness of the laminate. condition is enforced especially for thick laminates. 

CONCLUSIONS 

It has been demonstrated in this paper that the 
versatile finite element analysis of the Co higher-order 
theories can accurately predict the complex transverse 
stresses and deformation behaviour of composite and 
sandwich laminates subjected to a variety of loadings. 
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Fig. 11. Variation of transverse shear stress (To: ) through 
the thickness of a clamped general sandwich laminate under 
uniformly distributed loading (a/h = 10) (HOST9)(16N). 
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Fig. 13. Variation of in-plane displacement through the 
thickness of a clamped general sandwich laminate under 
uniformly distributed loading (a/h = 10) (HOST9)(16N). 

The delamination stress evaluation using the finite 
element method under any type of loading conditions 
is not going to be a simple job in composite and 
sandwich laminates. This is due to the higher-order 
numerical differentiation (third derivative) in the 
longitudinal direction associated with the integration 
of the elasticity equilibrium equations in the thickness 
direction. The use of the proposed ne.w methods and 
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cubic Co elements seems to have given fairly accurate 
estimates of these stresses. 

The proposed exact surface fitting method can be 
efficiently employed for evaluating the transverse 
shear stresses and central difference exact surface 
fitting method is recommended for evaluation of 
transverse normal stress. The results obtained by 
these methods are close to the available closed-form 
elasticity solution when compared to direct inte- 
gration and finite difference methods. The results of 
transverse shear and normal stresses are also pre- 
sented for new problems where elasticity solutions are 
not available with a view to provide data for future 
reference. 

The displacements and transverse stresses obtained 
by model HOST9 (nine degrees of freedom per node) 
are close to the closed-form elasticity solutions com- 
pared to the other models. Thus, this model is 
recommended for general composite laminates. But 
for sandwich and highly anisotropic composite lami- 
nate, model HOST12 is recommended as this model 
considers the three-dimensional material properties 
and non-linear variation of transverse displacement 
through the thickness of the laminate. 
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