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Ahatraet-The well-known central difference predictor method used for the analysis of nonlinear systems, 
subjected to transient dynamic loads, is modified by incorporating Rayleigh’s damping into the governing 
incremental equation of motion. The new time-stepping scheme requires a starting algorithm for both the 
first and second time-steps, and can effectively be used to analyse the nonlinear damped systems in general. 

1. INTRODUCTION 

When any structure is subjected to earthquake, blast, 
impact or shock loadings, the constituent material 
becomes plastic and the resulting structural be- 
haviour will be highly nonlinear. In order to predict 
the nonlinear material behaviour, under transient 
loadings, the state of the material has to be known 
between one time-step and the next. As the material 
behaviour is likely to change during every time-step, 
the stresses and the internal forces need to be evalu- 
ated in such a way that they are based on the exact 
state of material at any particular time interval. 

Moreover damping would be necessary for examin- 
ing problems where the rate of loading or unloading 
is very high. Such a condition exists during impact 
loading and shock propagation. In order to analyse 
the nonlinear systems under such loadings, the 
equation of motion with damping in the incremental 
form, therefore becomes an essential requirement. 
But it can be seen that many of the works on 
nonlinear transient dynamic behaviour of structures, 
considering the equation of motion, either in incre- 
mental form [l-8] or in nonincremental form [9, lo], 
do not include damping and the undamped equation 
of motion is solved by direct integration schemes, to 
obtain the displacements at every time-step. 

Uzgider [ 121 considered damping in the incremen- 
tal equation of motion, but using the constant aver- 
age acceleration method to derive the recursive 
scheme. The dynamic equilibrium equation with 
damping has been solved by Shantharam et al. [13] 
also, using the central difference scheme, but in a 
nonincremental form. 

When the governing equation of motion, available 
in an incremental form to monitor the state of stress 
between two successive time-steps, is solved using the 
central difference scheme due to its established econ- 

omy in storage and solution efficiency for nonlinear 
problems [4,7,15-11, the task of probing into the 
nonlinear behaviour of systems undergoing transient 
dynamic damped deformations, becomes very much 
simpler. 

To this end, one might consider the well-known 
central difference predictor scheme [6] in the incre- 
mental form, which predicts the incremental acceler- 
ation at time r = t, as 

where [M] is the mass matrix and {Af}” and {AP}~ are 
the incremental external and internal forces, respect- 
ively, at time t = t, . The acceleration at the same time 
is then given as 

{ii}, = {;i},_, + {Ali},. 

Using the central difference operators, the displace- 
ments are given as 

and the incremental displacement vector as 

The incremental strains and stresses are evaluated 
from these displacements. Then the stresses are cor- 
rected according to the yield criterion and then using 
this the internal forces are calculated and are used in 
eqn (1) for the next time-step. 

This available form is very much limited to the 
undamped systems. As this scheme, when incorpor- 
ated with the damping parameter, can be used to 
effectively analyse the damped nonlinear systems, an 
attempt for a modified form, is made in this study. 
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2. MODIFIED CENTRAL DIFFERENCE PREDICTOR 
SCHEME 

The equation of dynamic equilibrium for any node 
i of a structure and any degree of freedom, say 
rotation 0, can be written at t = t, and t = t, _ , as 

(m, )” (4, ), + (CR, ), (ci, ), + @“, )” = (r,, )” (5) 

and 

(m,,),-,(li,,),-,+(c,),-I(h,),-, 

+ ($8, ), - I = (r, )n - I . (6) 

The equilibrium equation at t = t, can be expressed 
in incremental form using eqns (5) and (6) as 

(m, ),(A;i, ), + (coi ), (Ad, ), + (Qp, ), = (A& ), , (W 

where 

and 

(A& ), = (4, ), - (28, ), - I 

(Ad@, )n = (4, A - (A,, )n - , 

(AP, ). = (P, ), - (P,, ), - , 

0) 

(7c) 

(74 

(A& ), = (r,, ), - (f,, ), - I. (W 

Using the central difference scheme, the accelera- 
tion can be given as 

;i,=(&+, - 2d, + d,- ,)/(At)’ (8) 

and using the eqns (7b) and (8) the incremental 
acceleration at t = t, can be given as 

(Ali,, ), = Kd, ), + I - X4, )n + X4, )n - , 

-(do, h - JW)2. (9) 

Similarly the velocity can be expressed in terms of 
displacements as 

h = (d. + , - 4 - , YW ) (10) 

and the incremental velocity at t = t,, can be given 
using eqns (7~) and (10) as 

(Ad*, ), = k&j ). + , - (4, )n 

- b-4, In-, + (4 In-21MAt). (11) 

Rayleigh’s damping assumes the damping constant 
to be proportional to the mass [ 141 and can be 
expressed as 

(c”i ) = a (M”, )V (12) 

where Q is a constant of proportionality and the 
incremental equation of motion as given by eqn (7a) 
can be expressed with the application of eqns (9) (11) 
and (12) as 

(m, )I@,, ), + I - W, h, + W,, 1, - I - (4, 1, - z Il@t J2 

+d(d,)n+, - (4, 1, - (4, 1, - I + (4, ), - 2 l/W 11 

+&p,,)n = W,), (13) 

and on rearranging terms yields displacements at 
t=t,+, as 

(d, ). + I = WW*KAf, )n - (bp, Mm, )I 

+ [3 + 0.5 Ata](d,,), - [3 - 0.5 Atu](d,),_, 

+ [l-O.5 Ata](d,,),_,}/[l + 0.5 Ata] (14) 

and the displacements along all degrees of freedom of 
every node, of any discretized continuum, can be 
evaluated at every time-step, in a similar manner. 

3. STARTING ALGORITHM 

The equation for displacement as given by (14), 
involves at any time-step t = t,, , , information at 
three previous time steps: t,, t, _ , and t,,_ 2. Hence 
special starting algorithms are required for both the 
first and second time-steps. 

3.1. Starting algorithm for first time -step 

Using the initial displacement and velocity at 
t = to, the equation of displacement for the first 
time-step can be arrived at [14]. Acceleration and 
velocity at to can be given as 

(1, )o = Kd, )I - 2(d,, )o + (d,,, ) - I I/W 1’ ( 15) 

and 

(do, )o = Kd,, )I - (d,, )-I l/W). (16) 

Equation (16) can be rearranged as 

(de,)-, =(d,,), -2(AN&),. (17) 

With the substitution of eqns (12), (15) and (16) 
eqn (5) becomes 

olld N(d,, ), - 2(d, )0 + (d,,, )-I Il(At)’ 

+ #d, 1, - (4,)-r l/‘Wt)J + t.~, h = Cr,, Jo (18) 

and by applying eqn (17) and rearranging terms yields 
the displacement for the first time-step as 
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q(r) F-- 
a 

Step pressure 

a 

Perfectly plastic 
material 

Strain hardening 
mrtedrl 

E=3xlO’psi 7 - 0.3 

dy - 50.000 psi p = 0.733 x lo-‘lb scc*fin’ 

q(r) = 0.625 p, p0 = strtic collrpsc load 

Fig. 1. A simply supported beam with a uniformly dis- 
tributed transient dynamic load. 

(4, h = 0.W02K&, lo - (~8, )o>/(m, I+ (4, lo 

+ (At)[l - 0.5 Ata](d, (19) 

3.2. Starting algorithm for second time step 

Equation (14) at time t = t, can be expressed as 

+ [3 + 0.5 Ata]( - [3 - 0.5 Ata]( 

+[I - 0.5 Atal(d,)_,}/[l + 0.5 Ata] (20) 

and after applying eqn (17) and rearranging terms, 
yields the displacement at the second time-step as 

Cd,, 12 = W02KAf, )I - (APP, )I I/&, )I 

+ 4(d,), - [3 - 0.5 Atal(d,h - 2W) 

x [l - 0.5 Ata](&),,}/[l + 0.5 Ata]. (21) 

4. FLOW PATI’ERN OF THE SOLUTION SCHEME 

The displacements at t = t, can be evaluated using 
eqn (19) and the incremental displacements at the 
same time-step can be expressed as 

The incremental internal force vector {Ap}, is 
evaluated using {Ad),. With the known {Af),, the 
displacement vector at the next time-step Id}*, is 
evaluated using eqn (21). With the quantities like 
{Ad},, {Ap}* and {Af}2, displacements at t = t, can 
be calculated from eqn (14). Thereafter the calcu- 
lation of displacements, internal forces from the 
incremental displacements and the external forces 
become cyclic. 

5. NUMERICAL EXPERIMENT 

In order to substantiate the validity of the pro- 
posed solution scheme, through numerical exper- 
iments, a beam is solved on an IBM compatible, 386 
graphic work-station on DOS platform using double 
precision. 

5.1. Example 

A simply supported beam analysed by Liu and 
Lin [18], is considered here. As shown in Fig. 1, the 
beam is subjected to a dynamic step pressure of 
0.625p,, where p,, is the static collapse load of the 
beam. The beam has been discretized using 12 num- 
bers of two-noded linear elements, with a yield stress 
of 50,000 psi. 

Two types of materials are considered here. The 
first one is the perfectly-plastic material with the 
Young’s modulus of 3 x 1O’psi and the second one 
is the strain-hardening material with tangential 
modulus equal to one fourth of the Young’s modulus. 

The damping coefficient, considered here can be 
expressed as [ 141 

0.40 
0.38 
0.36 

3 0.34 
= 0.32 
5 0.30 

z o.28 0.26 
2 0.24 
*z 0.22 

a = 2&0, (23) 

& 0.18 - 
% 0.16 - 
5 0.14 - 
2 0.12 - 

i 
- Proposed solution 

scheme 
- - - 5% of criticrl 

-*- 10% of criticrl 

I I 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Time (set x lo-*) 

Fig. 2. Damped response history of beam, with a perfectly- 
plastic material model. 
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. Liu and Lin 
- Propod solution 

0.40 - scheme 
0.38 - - - - 5% of critical 
0.36 - damping 
0.34 - - .- 10% of critical 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Time (ret x 10e2) 
Fig. 3. Damped response history of beam, with a strain- 

hardening material model. 

where r is the modal damping ratio and w is the 
fundamental frequency. The numerical experiments 
are conducted for both 5 and 10% of the critical 
damping. 

The damped and undamped responses of the beam, 
modelled using the perfectly-plastic and strain-hard- 
ening materials are depicted in Figs 2 and 3, respect- 
ively. 

Through these plots the inherent capability of the 
proposed modified scheme to predict response of the 
beam, undergoing damped nonlinear transient dy- 
namic deformations is highlighted. Though an 
example with simpler boundary conditions and load- 
ing mechanisms is chosen for the numerical study, it 
can be observed that the proposed scheme can handle 
any complex system, wherein the damping forces 
manifest predominantly along with the inertial and 
inelastic forces. 

6. CONCLUSIONS 

A new incremental form of the central difference 
predictor scheme which incorporates damping is pro- 
posed here. This new form requires a starting algor- 
ithm for both the first and second time-steps and can 

be used for evaluating the damped nonlinear dynamic 
response of structures in a straightforward manner. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

REFERENCES 

R. W. H. Wu and E. A. Witmer, Finite element analysis 
of large elastic plastic transient deformations of simple 
structures. AIAA Jnl9, 1719-1724 (1971). 
J. H. Heifitz and C. J. Costantino, Dynamic response of 
nonlinear media at large strains. ASCE, J. Engng Mech. 
98, 1511-1527 (1972). 
J. L. Bockholt and W. Weaver, Jr, Inelastic dynamic 
analysis of tier buildings. Comput. Struct. 4, 627-645 
(1974). 
J. F. McNamara, Solution schemes for nroblems of 
nonlinear structural dynamics. Tram ASME, J. Press. 
Vessel Technol %. 96102 (1974). 
S. W. Key, A finite element procedure for large defor- 
mation dynamic response of axisymmetric solids. Com- 
put. Meth. appl. Mech. Engng 4, 195-218 (1974). 
H. Adeli, J. M. Gere and W. Weaver, Jr, Algorithms for 
nonlinear structural dynamics. ASCE, J. Struct. Div. 
104, 263-280 (1978). 
M. J. Mikkola, M. Tuomala and H. Sinisalo, Compari- 
son of numerical integration methods in the analysis of 
impulsively loaded elasto plastic and viscoplastic struc- 
tures. Comput. Struct. 14, 469478 (1981). 
T. Y. Kam and S. C. Lin, Nonlinear dynamic analysis 
of inelastic steel plane frames. Comput. Struct. 28, 
535-542 (1988). 
T. G. Toridis and K. Khoxeimeh, Inelastic response of 
frames to dynamic loads. ASCE, J. Struct. Div. 97, 
847-863 (1971). 
M. Hartxman, Nonlinear dynamic analysis of axisym- 
metric solids by finite element method. Trans ASME, J. 
Press. Vessel Technot%, 103-l 12 (1974). 
M. R. Khalil, M. D. Olson and D. L. Anderson, 
Nonlinear dynamic analysis of stiffened plates. Comput. 
Struct. 29, 929-941 (1988). 
E. A. Uzgider, Inelastic response of space frames to 
dynamic loads. Comput. Struct. 11, 97-l 12 (1980). 
D. Shantaram, D. R. J. Owen and 0. C. Zienkiewicz, 
Dynamic transient behaviour of two and three dimen- 
sional structures including plasticity, large deformation 
and fluid interaction. Earthq. E&g Struct. Dyn. 4, 
561-578 (1976). 
D. R. J.. Owen and E. Hinton, Finite Elemenrs in 
Plasticity-Theory and Practice. Pineridge Press, 
Swansea (1980). 
H. Adeli, J. M. Gere and W. Weaver, Jr, Algorithms for 
nonlinear structural dynamics. ASCE, J. Struct. Div. 
104, 263-280 (1978). 
R. D. Krieg, Unconditional stability in numerical time 
integration methods. ASME, J. appl. Mech. 40,417421 
(1973). 
J. Mescall and T. Tsui, Influence of damning on the 
dynamic stability of spherical caps under step-pressure 
loadinn. AIAA Jnl9. 12441247 (1971). 
S. C.-Liu and T. ‘H. Lin, Elastic-plastic dynamic 
analysis of structures using known elastic solutions. 
Earthq. Engng Srrucr. Dyn. 7, 147-159 (1979). 


