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Abstract-A Co continuous finite element formulation of a higher order shear deformation theory is 
presented for predicting the linear and geometrically non-linear, in the sense of von Karman, transient 
responses of composite and sandwich laminated shells. The displacement model accounts for the 
non-linear cubic variation of the tangential displacement components through the thickness of the shell 
and the theory requires no shear correction coefficients. In the time domain, the explicit central difference 
integrator is used in conjunction with the special mass matrix diagonalization scheme which conserves the 
total mass of the element and includes effects due to rotary inertia terms. Numerical results for central 
transverse deflection and stresses are presented for composite and sandwich laminated shells with various 
boundary conditions subjected to different types of loads and are compared with the results from other 
sources. Some new results are also included for future reference. 

INTRODUCTION 

At present, due to the increased use of composite 
materials in the aerospace and automotive industries 
because of their superior mechanical properties such 
as high stiffness per unit weight, high strength per 
unit weight and potentially low unit cost, a need has 
arisen for a basic understanding of their response to 
dynamic loading. Because of the high modulus and 
high strength properties that composites have, struc- 
tural composites undergo large deformations before 
they become inelastic. Therefore, an accurate predic- 
tion of transient response is possible only when one 
accounts for the geometric non-linearity. Hence, 
studies involving the assessment of the geometrically 
non-linear transient response of composite and sand- 
wich laminated shells are receiving much attention by 
composite structural engineers. 

Classical lamination theories are based on the 
Love-Kirchhoff hypothesis, in which transverse shear 
deformation effects are neglected, and surveys of such 
theories can be seen in the works of Naghdi [l]. The 
neglect of transverse shear strains in composite lam- 
inates could lead to an underestimation of the deflec- 
tions and stresses and an overestimation of the 
natural frequencies and critical buckling loads be- 
cause of the low transverse shear moduli. In a non- 
linear context Horrigmoe and Bergan [2] presented 
classical variational principles for non-linear prob- 
lems by considering the incremental deformations of 
a continuum. 

t Author to whom correspondence should be addressed. 

To counter the above drawbacks in classical lami- 
nation theories, a first order shear deformation the- 
ory is used in which constant shear strains through 
the thickness are established. Since the actual shear 
strain variation is non-linear over the thickness of a 
shell, shear correction coefficients are used in the 
energy expression. Such theories when applied to 
layered anisotropic shells for bending, stability and 
vibration problems can be found in the works of 
Panda and Natarajan [3], Shivakumar and Krishna 
Murty [4], Rao [5], Hsu et al. [6], Reddy [7]. Reddy 
and Chandrashekhara [8,9] presented a geometric 
non-linear transient response of composite doubly 
curved shells with such a first order shear defor- 
mation theory. 

For sandwich laminates of weak core and compar- 
atively strong facings and highly anisotropic lami- 
nates, the shear deformation effect is much more 
pronounced. Refined theories were established to 
account for these effects. Hildebrand et al. [IO] were 
the first to make significant contributions by dispens- 
ing with all Love’s assumptions and assuming a three 
term Taylor’s series expansion for the displacement 
vector. By including the second order shear defor- 
mation effects Kant [I l] developed a complete gov- 
erning set of equations of a general thick shell theory. 
The theory is based on Hildebrand et al. [IO] and is 
applicable to orthotropic material laminae having 
planes of symmetry coincident with the shell coordi- 
nates. Whitney an Sun [12] developed a refined shell 
theory in which the displacements in the surface of 
the shell are expanded as linear functions of the 
thickness coordinate and the transverse displacement 
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is expanded as a quadratic function of the thickness 
coordinate. Kant 113, 141 presented higher order the- 
ories for general orthotropic as well as laminated 
shells. which are derived by expanding the displace- 
ment vector by the powers of the thickness coordi- 
nate. These theories account for the effects of the 
transverse shear deformation, transverse normal 
stress and transverse normal strain with the implicit 
non-linear distribution of the tangential displacement 
components through the thickness of the shell. Kant 
et al. [ 151 presented a Co finite element formulation of 
a higher order theory, Reddy et al. [16-l S] presented 
a third order shear deformation theory in which the 
surface displacements are expanded up to the cubic 
term in the thickness coordinate, while the transverse 
deflection is assumed to be constant through the 
thickness. The nine undetermined functions are re- 
duced to seven by imposing shear stress free bound- 
ary conditions on the bounding surfaces of the shell. 
With this the displacement based finite element model 
adopted by Reddy gives rise to second order deriva- 
tives of the transverse displacement in the energy 
expression and hence a displacement based finite 
element formulation requires C’ continuous shape 
functions which are difficult to derive, computation- 
ally inefficient and not amenable to the popular and 
widely used isoparametric formulation in the present 
day finite element technology. Recently Kant and 
Kommineni [ 191 presented a displacement based 
higher order shear defor~dtion theory for the linear 
and geometrically non-linear static analysis of lami- 
nated composite and sandwich shells by using Co 
finite elements. Kant and Mallikarjuna [ZO] presented 
the dynamic large deflection response of laminated 
composite plates using higher order shear defor- 
mation theory with seven degrees of freedom per 
node. 

ent responses of composite and sandwich laminated 
shells. In this paper a third order shear deformation 
theory is constructed in which the tangential displace- 
ment components are cubic functions of the thickness 
z coordinate whereas the transverse displacement 
component is assumed to be constant through the 
thickness of the shell. The effect of geometric non-lin- 
earity is included in the formulation by adopting the 
von Karman assumptions. In addition to the higher 
order shear deformation theory. a first order shear 
deformation theory by incorporating first order shear 
deformation effects in Sander’s thin shell theory is 
developed to enable a comparison of the results of the 
present formulation with a parallel formulation and 
also to study the shear deformation effects especially 
in sandwich shells. Several examples drawn from the 
literature are analysed and appropriate comparisons 
are made to show the simplicity, validity and accu- 
racy of the present formulation. 

THEORY AND FORMULATION 

A fibre reinforced composite shell consisting of 
isotropic/orthotropic laminae oriented arbitrarily 
having a total thickness of h with h,, hz, h,, . , /I,,, 
etc., being the thicknesses of individual layers such 
that Ir = k, + hz + h? + ’ . + h, is considered. Sym- 
bols X, y are the curvilinear dimensional coordinates 
defining the mid-surface of the shell and the z-axis is 
oriented in the thickness direction as shown in Fig. I. 

In the present theory displacement components of 
a generic point in the composite shell are assumed to 
be of the form 

Kant [20-301 along with co-workers emphasized 
the C” finite element formulation of the refined higher 
order shear deformation theories for the static and 
dynamic linear analysis of layered generally ortho- 
tropic plates and shells. They have established the 
credibility of such a formulation after doing extensive 
numerical investigations on composite and sandwich 
laminates. They have confirmed that the imposition 
of shear free boundary conditions at the top and 
bottom bounding planes of the laminate gives stiffer 
solutions when compared to exact solutions es- 
pecially in the case of thick laminates [29.30]. Further 
they have also concluded that among the various 
displacement models for fiat laminates, the one 
having nine degrees of freedom per node produces 
results very close to the exact solutions[20-301. As 
regards curved laminates. work is in progress and a 
definite conclusion should emerge after some more 
investigation. 

iI’(S, ?‘, z, 1) = W<,(.U,?‘, t), (1) 

where II,, P, and u’, are the middle surface displace- 
ments of a generic point having displacements II. 1 
and it’ in the .Y, y and z directions respectively. The 
parameters 0, and 0,. are the rotations of the trans- 
verse normal in the sz and _VZ surfaces respectively. 
The parameters u,*. z!,*, 0: and 0: are the higher 
order terms in the Taylor’s series expansion and they 
represent the higher order transverse cross-sectional 
deformation modes. The mid-surface displacement 
components u,. 11,. PI’,, 0,. O,.. u,*. r,T. 0: and 0: are 
the nine degrees of freedom of the present higher 
order displacement model. 

To the authors’ knowledge there is no evidence of A total Lagrangian approach is adopted and the 

any published work on the use of a higher order shear stress and strain descriptions used are those due to 

deformation theory with Co linite elements for pre- Piola-Kirchho~ and Green respectively. The present 

dicting the linear and geometrically non-linear transi- theory includes large displacements in the sense of 
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(1,2,3)- LAMINA REFERENCE AXES 

MID-SURFACE 

(X ,y ,z) - LAMINATE REFERENCE AXES 

Fig. 1, Laminate geometry with positive set of laminajaminate reference axes, displacement components 
and fibre orientation. 

von Karman, which in particular imply that the first 
order derivatives of the tangential displacement com- 
ponents with respect to the x, y and z are small so that 
their particular products can be neglected (see Reddy 
and Chandrashekhara [8,9]). The following are the 
strain displacement relations (see Novozhilov [31]) 

au w I aw 2 
f?=-&+7i;+j ay ( > 

au au aw aw 

au aw yp-+---. 
az ay R, (2) 

To develop the equations of motion of a composite 
and sandwich laminated shell, Hamilton’s variational 
principle is used here. According to Hamilton’s vari- 

ational principle, the first variation of the Lagrangian 
function, L, must vanish, i.e. 

6 I2 
s 

L,dt = 0, (3) 
11 

in which L, = ll - E, where 6 is the variation taken 
during the indicated time interval and the integral 
of L, takes an extreme value which can be shown to 
be a minimum. The parameters E and lT define 
the kinetic and potential energies of the system, 
respectively. 

The potential energy fI of the system can be written 
as 

fr=cJ-w 

where U is internal strain energy, W is the work done 
by the applied loads during the deformation, and the 
vector u represents three displacement components u, 
v and w of a point, the external forces F and T* are 
body force components and surface traction respect- 
ively and S is the portion of the body on which the 
tractions are prescribed. 
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The kinetic energy of the body E can be written as 

E = ; 
s 

i’pti do, (4b) 
I’ 

where p is the mass density of the material and i 
defines the particle velocity vector. Equation (3) is 
then rewritten as 

-jsu’7’*ds -ijVl’pidv)dt =O. (5a) 

Thus, the mathemtical statement of Hamilton’s 
variational principle can be written as 

s 
r2(61Y-6W-SE)dt=0, 

1, 
(5b) 

where 617, 6E and 6 W are the first variations of the 
strain energy, kinetic energy and the work done by 
the external loads respectively. 

The constitutive equations of the Lth lamina in the 
lamina reference axes (1,2,3) can be written as 
follows: 

QI 

02 

712 

713 

723 

G2 = 

C,, = G,,; C, = G,,; 

C,, = G,, with !$= F, 
1 2 

If the principal material axes (I, 2) of a lamina do 
not coincide with the reference axes of the laminated 
shell (x, y), but are rotated through a certain angle 0, 
then the elasticity matrix of the Lth lamina can be 
determined using the following transformation 
rules 

ul.2,3 = -k& 

where 

1 
c,, Cl2 0 0 0 

c2, 0 0 0 

c33 0 0 

Symmetric C, 0 

C55 1 
L 

or symbolically in which 

u f.2.3 = CL6 k2.3, (6b) 

where u{.~,~ = (u,, Q?, t12, 7,3, 723) is the stress com- 
ponent vector, L;,~,~ = (c,,c2,~lz,~13,~21)isthephysi- 
cal strain component vector referred to the lamina 
coordinates (1,2,3) as shown in Fig. 1 and the C,,s 
are the elements of the composite material stiffness 
matrix giving the stress-strain relations of Lth lamina 
in the lamina axes (1,2, 3) and these are defined as 
follows: 

4 c,,= ~ ( > 1 - V,?V2, ; 

(k) 

6’ 

62 

Yl2 

Yl3 

Y23 

(64 

J 

and 

T2= c s L 1 --s c ’ 
(he) 

where c = cos 0, s = sin 0 and T-’ = T”. 
The stress-strain relations of the L th lamina in the 

laminate coordinate axes (x, y, 3) can then be written 

as, 
~,,I,: = (T-’ c gr,,,, (60 
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and in the expanded form as 

in which u:,~.._ = (cl, uJ, T.~~, T,~~, TV._) is the stress vec- 
tor, f.tJ.: = (6, , cJ, yxx, Y.~:, yJ is the strain vector with 
respect to the shell axes and the matrix Q gives the 
stress and strain relations of the L th famina in the 
shell axes and its elements can be written explicitly as 
follows: 

err = C,, ~c~+(~~C,~+~~C~~)~S~~C~~C~~~S~ 

Q,, = c,, ’ (c’ + S4) + (C,, + c,, - 4 * C,,) + s2 ’ cr 

Q,~=(C,,-C,,-2~C,,)~s~C3 

f (C,, - C,, + 2 * C,,) . s3 . c 

Q22 = c, I *S4+(2.C,2+4*C33)+ S2*C2+C22.C4 

Q23 =(C,, - cj2- 2. C,,)*s’-c 

f (C,, - c,, + 2 . C,,) . s . c3 

Q33 = c,, * (c4 + s3 + (Cl1 - 2 ’ Cl2 

+ c,, - 2 . C3,) . s2 * c2 

Q,5 = C, * s2 f C,, I c2. (hi) 

By substituting the expressions for the strain com- 
ponents in eqn (5) while carrying out the explicit 
integration of the through the shell thickness leads to 
the definition of the stress resultant vector d which 
can be written as follows (see Kant and Kommi- 
neni [ 191): 

1247 

(6h) 

in which 

After integration these relations can be written in 
matrix form, which defines the stress resultant and 
mid-surface strain relations of the laminated shell and 
is given by 

‘N 

M= 

_Q 1 
or symbolically 

@a) 

where 
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and the stiffness coefficient matrices Q,,,. II,, Q and 
II,, corresponding to the membrane, the coupling 
between the membrane and bending, the bending and 
shear deformations. respectively are defined as 
follows: 

NL 

‘m= L?, 
Q,,H, Q,,H, 
Q,,H, Q,,H, ’ 1 

In the above relations i, j = 1,2,3 and 1, m = 4, 5 

H,=;(z:,,- z:,, k = 1.2.3,4,5,6.1. 

NL is the number of layers and t = (C:,,, CA, C,:)’ 
represents the mid-surface membrane. bending and 
shear strain components respectively and are defined 

as follows: 

C” FINITE ELEMENT FORMULATION 

The finite element used here is a nine-noded iso- 
parametric quadrilateral element. The laminate dis- 
placement field in the element can be expressed in 
terms of nodal variables. such that: 

d(5, rl) = 1 N,(L v). 4. 
/=I 

(9) 

where NN represents number of nodes in the element, 
N,(,‘, q) defines the interpolation function associated 
with node i in terms of normalized coordinates 5, q 
and d, is generalized mid-surface displacement vector 
at node i, such that 

d: = (u,,. L?,,. II‘,,. o,,, LIZ. Ll,*,, e:, Q* VI 1. (10) 

The generalized vectors of the mid-surface strain 

and its variation C and & respectively. are written 
in terms of nodal displacements a such that, 
a’ = (di, di. d;, . dh,$), displacement gradient O,,, 
and Cartesian derivatives of shape functions (see 
Zienkiewicz [32]) 

NN 
65= 1 IJ;6di=B.6a 

I=, 

(II) 

where B, is the linear strain-displacement matrix and 
B,, the non-linear strain-displacement matrix which 
is linearly dependent upon the nodal displacement 
a B is the total strain-displacement matrix and the 
non-zero elements of the B matrix corresponding to 
the membrane. flexure and shear terms are as follows. 
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Membrane and flexure terms (size of matrix, Since this relation is valid for every virtual dis- 

12 x 9): placement 6a, we have 

B,,, = B,,z = B4.6 = B,., = B,,, = &s = B,,,, MI + P(a, t) = F(t), (16) 

which is the global equation of motion, where &l is 
the global mass matrix, P(a, t) and F(t) are respect- 
ively the global internal and external load vectors 
which are defined as 

Bz.2 = 4, = 4, = 4, = Bss = 4.4 

alv, 
= 40 = 42,s = - ay 

N, aNl, aN, 
B,,3=-+-.- 

R, ax ax 

N, dw, aN, 
B2., = F + - . I 

I ay 01 

B3,,=%.!%+t!!k.%. 
ih ay ay ax 

Shear terms (size of matrix, 8 x 9): 

B,,, = 9 ; 
x 

B,,, = 2 ; B,,, = B2,s = N,; 

B,,, = B4,9 = 3N,; B,,, = Be., = 2N, 

B,,, = B,,, = B,,, = B,,, = -;; 
I 

B,,, = B4,, = B6,5 = B,,9 = - 2. 
2 

P(a, t) = 
s 

B’G dx dy (17a) 
A 

F(t) = I PIJ’q, dx dy. (17b) 
A 

SPECIAL MASS MATRIX DlAGONALIZATlON SCHEME 

The inertia force vector requires the evaluation of 
the mass matrix M. This consistent mass matrix is not 
diagonal and it must therefore be diagonalized in 

(12) some way if it is to be useful in the explicit time 
marching scheme. For the quadratic isoparametric 
element used here, several alternatives were investi- 
gated by Hinton et al. [33]. For the sake of complete- 
ness, the most efficient scheme found by them is 
summarized below for ready reference. 

(i) Only the diagonal coefficients of the consistent 
mass matrix are computed 

M= N’@iNdA, c 

where 

JA 

(13) 

I 

I, 

I, 

The discrete expressions for the variation of strain 
energy, kinetic energy and work done by the external 
loads in eqn (5b) are as follows 

6U= ikd(jji dx dy) 

6E = --ha’ N’rjimdxdy .ii 
> 

0 

4 

4 
14 

14 

(18) 

in which I,, I,, Z3 and I4 are normal inertia, rotary 

(14) These are as follows: 
inertia and higher order inertia terms respectively. 

where a, ii and q. respectively define the nodal 
displacement, acceleration and load vectors. llJ is (I,, 12, I,, Id) = f 

s 
-I +’ (1, z2, z4, z6)pLdz 

defined as the shape function matrix, i.e. 
L=l IL 

(iV,, ilJIr. . TV,,). Substituting eqn (14) in eqn (5b) 
and simplifying the equation we get 

and pL is material density of the Lth layer. 
(ii) The total mass of the element is computed 

s 

(? 
6a’ [&Iii + P(a, t) - F(t)] dt = 0. (15) M,= 

II s 
p dv. (19) 

” 
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(iii) The diagonal coefficients M, associated with a If the values a0 and ci” are the specified initial 
particular translation (but not rotation) degree of displacement and velocity conditions, then a special 
freedom, are summed such that starting algorithm can be established as follows, 

SUM = c M,,. (20) 

(iv) All the diagonal coefficients of the consistent 
mass matrix are scaled in the following manner such 
that the total mass of the element is conserved: 

(iv = (a; - u;‘)/2. At (22e) 

0, -‘=uf-2AtbP (22f) 

uf = up + AttiP + A?( -p” +f O)/2m,. (22g) 

M, 
M; = M,, - 

SUM. 
(21) 

SOLUTION ALGORITHM 

This stepping scheme (22d) for n = 1,2, 3,. , 
along with a starting algorithm (22g), are used to 
carry out in a straightforward manner the time 
history analysis of the non-linear system. 

The numerical solution to the ordinary differential 
equation (16) is obtained using an explicit central 
difference scheme. The advantage of using the central 
difference method should now become apparent. 
Since no internal force vector and mass matrices of 
the complete element assemblage need to be calcu- 
lated, the solution can essentially be carried out on 
the element level and relatively little high speed 
storage is required. Since the mass matrix &I is a 
diagonal matrix, the set of equations (16) are uncou- 
pled to give new displacement values without requir- 
ing the matrix factorization. Further, the usual 
iterative solution procedure for the solution of a 
non-linear system of equations is completely avoided 
since the solution in the time domain is obtained here 
for each degree of freedom independently. Using the 
central difference scheme, systems of very large order 
equations can be solved efficiently. 

Equation (16) can be written in a scalar form as: 

Since there is no estimate on the time step for the 
non-linear analysis available in the literature, in the 
present investigation the initial estimate is calculated 
using the modified form of Tsui and Tong [34] by 
Kant and Mallikarjuna [25] 

At < Ar,,, 

= Ax ( 

p(l -VI)/&? 

(2 + (1 - v)(rr*/12)(1 + l.S(Ax/h)*} > 

I.‘? 

(23) 

in which Ax is the smallest distance between adjacent 
nodes in any quadrilateral element used. E, and Ez 
are the Young’s modulii in the 1 and 2 directions 
respectively (see Fig. 1) and R = l&/E,. The final 
estimate is done after carrying out convergence 
checks in order to save computational costs. 

NUMERICAL RESULTS 

m,ii++,=J;, (224 

where subscript i dentoes the ith degree of freedom 
and the other symbols have their usual meanings. 

In the explicit time marching scheme used here the 
velocities and accelerations are approximated using 
the central difference formulae as: 

G:‘=(a:‘+’ - 2. a:’ + a:‘- ‘j/At’, (22b) 

where n - 1, n and n + 1 denote three successive time 
stations and At is the time step length. Using the 
above approximation, eqn (22a) can be rewritten as: 

m;(a;” - 2 a;’ + a;- ‘)/At’ + p:’ -f :’ = 0 (22~) 

It becomes clear that the values of a; + ’ can be 
determined from the two previous displacement, u:’ 
and a:‘-’ by rewriting eqn (22~) 

.(-p:‘+f:‘)-u:‘-‘+2.u;‘. (22d) 

In the present study a nine node quadrilateral 
isoparametric element is employed. Due to the biaxial 
symmetry of the problems discussed only one quad- 
rant of the laminated shell is analysed with a 2 x 2 
mesh except for angle-ply laminated shells which are 
analysed by considering full laminates with a 4 x 4 
mesh. These discretizations were established by an 
extensive convergence study [19-271. In all the nu- 
merical computations, the selective integration rule is 
employed. A 3 x 3 Gaussian rule is used to compute 
the membrane, the coupling between the membrane 
and bending and bending deformations, while a 2 x 2 
rule is used to evaluate the terms associated with 
transverse shear deformation. The element mass 
matrix is evaluated using a 3 x 3 Gauss-quadrature 
rule. For numerical computations, two programs. 
viz., a first order shear deformation theory (FOSTS) 
and a higher order shear deformation theory 
(HOST9) with five and nine degrees of freedom per 
node respectively are developed. All the compu- 
tations were carried out in single precision on CDC 
Cyber 180/840 computer with sixteen significant dig- 
its word-length at the Indian Institute of Technology. 
Bombay, India. All the stress values are evaluated at 
the Gauss points and these are reported nearest to 
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Table I. Boundary conditions 

1251 

Type x = o/x = a x =a/2 y = O/y = b y =b/2 

v. = 0 u,’ = 0 IA =o u*=o 
et=0 f&o 

u =o u*=o 
s e,=o e:=o eI=o ep=o v,=o o,+=o 

e,.=o e;=o 
W”, = 0 w. = 0 

u =o u*=o 
o”=o v~=o u =o u*=o 

u,=o u,t=o v”=o &o v,=o v,*=o 
C oy=o sot=0 

e,=o e!=o 
e,=o e:=o ey=o e*=o 

e,=o ei=o 
e,=o e:=o 

I*‘, = 0 w, = 0 

their maximum value locations. A shear correction 
coefficient of 5/6 is used in the first order shear 
deformation theory (FOST). For historical reasons, 
the present results are compared with the available 
results which are based on material properties which 
do not satisfy the symmetry condition (see, e.g., 
[8, 181, that is v,,/E, # v~~/E,). 

In order to test the accuracy and efficiency of the 
developed algorithm, and to investigate the effects of 
transverse shear deformations, the following material 
property sets were used in obtaining the numerical 
results. 

Material set 1: The material properties are taken 
from [18]: E, = 19.2 x 106psi; E2 = 1.56 x 106psi; 
G,2 = G,, = 0.82 x lo6 psi; G23 = 0.523 x lo6 psi; p = 
0.00012 lb s2/in4; v12 = v2, = 0.24. 

Material set 2: The material properties are taken 
from [8]: E, = 25 E,, G,2 = G,, = OSE,; G,, = 0.2E2; 
v,~ = v2, = 0.25; E, = IO6 N/cm’; p = 1 N s2/cm4; 
a=b=lOOcm; h=lcm; R,=R,=lOOOcm and 
q = 1 N/cm2. 

Material set 3: The material properties are taken 
from [8]: E, = 7.5 x lo6 psi; E2 = 2 x lo6 psi; 
G12 = GZ3 = GX, = 1.25 x lo6 psi; v,~ = v2, = 0.25; 
p = 1 lb s2/in4; I = 20 in; h = 1 in; R = 20 in. 

Material set 4. The material properties are taken 
from [8, 351: Geometry R, = R, = 100, a = b = 20. 

Material properties: face sheet properties the same 
as material set 1. Thickness of each face sheet = 0. lh. 
Core properties: Thickness of core = 0.8/z. 

G,, = 5.17 x lo4 psi, G,, = 1.344 x 1O’psi; 

p = 0.1242 x 10m5 lb s2/in4. 

Material set 5: The material properties are taken 
from [29,35]: a = b = 320 in; h = 32 in; R = 960 in. 
Isotropic facings: thickness of each facing = O.lh. 

E = 0.6895 x 10’ psi; v = 0.33; 

p = 2.821 x lo-’ lb s2/in4. 

Thickness of core = 0.8/r; p = 0.1242 x lo-’ lb s2/in4. 

Core 1: G,,= 5.17 x 104psi; G,, = 1.344 x 1O’psi 

Core 2: G23 = 5.17 x 103psi; Gi3 = 1.344 x 1O’psi 

Core 3: G,, = 5.17 x lo* psi; G,, = 1.344 x lo3 psi. 

The finite element displacement formulation devel- 
oped in this paper is based entirely on assumed 
displacement functions and thus only displacement 
boundary conditions can be enforced. The boundary 
conditions corresponding to the present higher order 
formulation are specified in Table 1, for a simple 
support (S) and a clamped (C) boundaries. 

The corresponding boundary conditions for the 
first order shear deformation theory is simply ob- 
tained by omitting the higher order starred (*) dis- 
placement quantities. For example there are nine 
displacement quantities required to be specified at 
x = 0, a for a clamped (C) types of boundary con- 
dition in this higher order formulation (HOST), 
whereas in the first order formulation (FOST) the 
corresponding boundary conditions should be only 
five. The simple support (S) boundary condition has 
been especially chosen in order to compare our results 
with those of other authors. The edge conditions, 
which have been derived in a variationally consistent 
manner in the present higher order theory may not 
appear so (except in the case of fully clamped edge 
specified by C), because, in any case, the natural 
boundary conditions can not be prescribed in the 
displacement based finite element method. 

The following results are grouped into two cat- 
egories, viz., linear analysis and non-linear analysis. 

Linear analysis 

I. An unsymmetric cross-ply laminate. A simply 
supported cross-ply (O”/900) spherical shell with 
a = b = 20 in, h = 2 in, R = Sa and the material 
properties as per material set 1 subjected to a sinu- 
soidally distributed load of maximum intensity 
q0 = 2000 psi and in the time domain, both sinusoidal 
and triangular pulses of duration t,, = 0.003 set, i.e., 

F(t)= sin y 
0 

o<t<t,: sinusoidal pulse 
0 

F(t) = 0 t > t, (244 

F(t) = 1 -I 
( > 

0 < t < t,: triangular pulse 
0 

F(t) = 0 t > t, (24b) 
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0.8 

2 3 
Time, txf03 set 

Fig. 2(a). Displacement vs time for a simply supported cross-ply (W/90”) spherical shell subjected to a 
sinusoidal transverse load (q. = 2000 psi, I, = 0.003 set, At = 2.5 psec). 

T&e, tx103 set 

Fig. 2(b). Stress vs time for a simply supported cross-ply (O”j90”) spherical shell subjected to a sinusoidal 
transverse load (q. = 2000 psi, t, = 0.003 see, AI = 2.5 psec). 

are considered. The non-dimensional quantity used 
for representing the stress is 

The present higher order results for central dis- 
placement and stress variations with respect to time 
are compared with closed-form two dimensional sol- 
utions which are based on a higher order shear 
deformation theory and is presented by Reddy and 
Khdeir [18]. The results are plotted in Figs 2(a) and 
2(b). The present results match exactly the closed- 
form solutions of a third order theory given by Reddy 
and Khdeir [18]. 

2. Symmetric cross-ply laminate. A simply sup- 
ported cross-ply (0°/90”/0”) spherical shell with the 
geometry, material properties, loading and non- 
dimensional quantities the same as used in the pre- 
vious problem is considered. The present higher order 
results for the variation of central displacement and 
stress with respect to time are compared with the 
analytical higher order solutions given by Reddy and 
Khdeir [18] and are plotted in Figs 3(a) and (b). 

From these results, the following observations are 
made: 

. The present results match exactly the closed- 
form two dimensional solutions based on a 
higher order shear defo~at~on theory for both 
symmetric and unsymmetric laminated shells. 
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The response due to the triangular pulse has a modulus of elasticity 1.2 x IO4 psi, Poisson’s ratio 0.2 
larger amplitude than that due to the sinusoidal and density lO-6 lb ?/in4 is analysed using a 2 x 2 
pulse. mesh of nine node elements in the half width of the 
The symmetric cross-ply laminate is stiffer than beam. The load is assumed to be a step load (i.e., 
the corresponding unsymmetric laminate. applied at time t = 0 and kept indefinitely) of inten- 

sity 2.85 lb/in’. The present results for the variation 
The foregoing evaluations established the validity of the tip displacement with respect to time are 

of the present Co finite element higher order formu- compared with Bathe et al. [36], who used a fully 
lation in linear analysis. non-linear model derived from three dimensional 

elasticity theory. The results are presented in Fig. 4. 

Non -linear analysis 
The difference in results at peak amplitude is partly 
due to the fact that the load is treated as conservative 

1. Cantilever beam under uniform load. A canti- in the present analysis whereas it is treated as non- 
lever beam of length IO in, width I in. thickness 1 in, conservative by Bathe et al. [36]. 

Fig. 

Fig. 

0.50 

0.36 

.E 

r” 0.22 

4J 
[I 

i 0.08 
_?! 
:: .- 
n 

-0.06 

(a) 

3(a). Displacement vs time for a simply supported cross-ply (W/90’/0’) spherical shell subjected to 
a sinusoidal transverse load (q, = 2000 psi, I, = 0.003 sec. At = 2.5 psec). 

-Sol,, a, ,,~,~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,I,,,,,/,,, 
0 1 2 3 4 

Time, txl0’ set 
5 

3(b). Stress vs time for a simply supported cross-ply (0”/90’/0’) spherical shell subjected to a 
sinusoidal transverse load (qO = 2000 psi, I, = 0.003 sec. AI = 2.5 psec). 
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4 6 8 10 12 
Time, txl0’ set 

Fig. 4. Displacement vs time for a cantilever beam subjected to a uniform transverse load 
(4, = 2.85 lb/in*, At = 0.675 psec). 

2. An unsymmetric cross-ply spherical shell. A 
simply supported cross-ply (0”/907 spherical shell 
geometry, material properties and loading as per 
material set 2 subjected to a uniform external press- 
ure load is considered. The present results are com- 
pared with Reddy and Chandrashekhara [8] and are 
plotted in Fig. 5. The non-dimensional quantity used 
for representing the displacement is defined as 

(26) 

It is observed that as the intensity of the load 
increases the period of vibration as well as the peak 
amplitude increase. 

R/a=lO,a/h=lOO 

3. A cylindrical shelf. A clamped cross-ply (0’/90”) 
cylindrical shell with geometry and material proper- 
ties as per material set 3 subjected to an internal 
uniform step pulse (i.e., applied at time t = 0 and kept 
indefinitely) of intensity q0 = 5000 psi is considered. 
The present results for the displacement are com- 
pared with Reddy and Chandrashekhara [8] and are 
plotted in Fig. 6. The present results match exactly 
those of Reddy and Chandrashekhara [8]. This shows 
the correctness and reliability of the present formu- 
lation for cylindrical shells. 

4. An angle-ply spherical shell. A simply sup- 
ported angle-ply (P/-P/0o) for 6 = 30”, 45”, 60”, 
75” with R/a = 5, a/h = 10 and the material proper- 
ties as per material set 1 subjected to a triangular time 

Fig. 

Time, t set 

5. Displacement vs time for a simply supported cross-ply (0”/9W) spherical shell subjected to a 
uniform transverse load (qa = 1 N/cm*, At = 0.25 x IO-) set). 
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.r 
r” 0.6 

Fig. 6. Displacement vs time for a clamped cross-ply (0”/90”) cylindrical shell subjected to an internal 
pressure (qO = 5000 psi, At = 100 /.sx). 

varying pulse (i.e., in the time domain the variation 
is triangular as per eqn (24b) with a duration of 
t, = 0.003 set) and a sinusoidally distributed load of 
maximum intensity 10,000 psi is considered. The vari- 
ation of the central displacement with respect to 
time is presented in Fig. 7 for different lamination 
schemes. Even though the period of vibration does 
not change much, the peak amplitude decreases as 0 
increases to 45” and by further increasing 0 the peak 
amplitude is increased. It is also observed that for 
6 = 30” and 0 = 60” the results match each other 
exactly. The non-dimensional quantitiy used for rep- 
resenting the displacement here is 

8,= 5 . 0 h 
(27) 

5. A symmetric cross-ply spherical shell. A simply 
supported cross-ply (oO/90”/O”) spherical shell with 
material properties as per material set 1, a/h = 10 and 
for different R/a ratios 5, 10 and infinity, subjected to 
a triangular time varying pulse (i.e., in the time 
domain the variation is triangular as per eqn (24b) 
with a duration of t, = 0.003 set), sinusoidal trans- 
verse load of maximum intensity 10,000 psi is con- 
sidered. The effect of the shallowness of the shell 
on the central deflection of the spherical shell is 
investigated and the results are presented in Fig. 8. It 
is clear that a plate is relatively stiffer compared to a 
shell in the non-linear context. The non-dimensional 
quantity adopted for the displacement is as per 
eqn (27). 

R/o=S,o/h=lO 
Triangular pulse 

_ e=30° 
______ 8=45O 

. . . ..e=60° 

- 0=‘5e_ 
f, 

Time, txl0’ set 

Fig. 7. Displacement vs time for a simply supported angle-ply (P’/P’/P’) spherical shell subjected to a 
sinusoidal transverse load (q,, = 10,000 psi, 1, = 0.003 set, Ar = 2.5 psec). 
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c if 
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i 
-0.5 I/, I,,,,,, I, I,, , ,/I,,, I,,, 

0 1 2’ 
Time, tx103 set 
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a/h= 10 -. 

Fig. 8. Displacement vs time for a simply supported cross-ply (W/90”/0”) spherical shell subjected to a 
sinusoidal transverse load (qO = 10,000 psi, f0 = 0.003 set, AI = 2.5 psec). 

6. A sandwich spherical shell with orthotropic fact- 
ings. A simply supported three layer sandwich 
spherical shell with geometry and material properties 
as per material set 4, subjected to a sinusoidal time 
varying (i.e., in the time domain the variation is 
sinusoidal as per eqn (24a) with a duration of 
t, = 0.002 set), sinusoidal transverse load of maxi- 
mum intensity 4, = 64.1026 is considered. The effect 
of shear deformation on the central displacement of 
the spherical shell is investigated and the results for 
different a/h ratios are presented in Fig. 9. It is 
observed that for a/h = 100 the predictions with both 
higher order shear deformation theory and first order 
shear deformation theory are exactly the same, 

1.6 r; 
-I 
; 
7 

1.2 j 

1 
i 

whereas for a/h = 10 the first order shear defor- 
mation theory underpredicts the displacements. This 
may be due to the predominant shear deformation 
effects in the case of thick sandwich shells. Hence this 
establishes the usefulness of the present higher order 
shear deformation theory in the predictions where 
shear deformation effects predominate. The non-di- 
mensional quantities used are defined as follows: 

R/a=5 
Stnusoidal pulse 
FOSTS,a/h= 100 
HOSTS,a/h=lOO 
FOSTtj,o/h= 10 
HOSTS,a/h= 10 

(28) 

Fig. 9. Displacement vs time for a simply supported sandwich spherical shell subjected to a sinusoidal 
transverse load (4, = 64.1026, I, = 0.002 sec. At = 0.5 hsec). 
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1.1 

Time, txl O3 set 

Fig. IO(a). Displacement vs time for a simply supported sandwich spherical she11 with different core 
properties subjected to a uniform transverse load (qO = 1000 psi, At = 25 psec). 

2.7 

2.0 

--z 1.3 

: 
9 
v) 0.6 R/a=3,a/h=lO 

Uniform pulse 

f - n F ST5,COREl 
. . . OSTS.COREl 
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0 2 4 6 8 VO 12 14 

Time, tx 1 O3 set 

IO(b). Stress vs time for a simply supported sandwich spherical she11 with different core properties 
subjected to a uniform transverse load (qO = 1000 psi, A( = 25 psec). 

1257 

I. A sandwich spherical shell with isotropic fac- 
ings. A simply supported sandwich spherical shell 
with geometry and material properties as per material 
set 5 subjected to an uniform pulse load of intensity 
q0 = 1000 psi is considered. This problem is con- 
sidered to investigate the effect of core properties on 
the central displacement and stresses and the results 
are presented in Figs 10(a) and 10(b). The non-dimen- 
sional quantities adopted are as per eqn (28). From 
the plots it is observed that when the core is progres- 
sively made weaker, the difference between first order 
shear deformation theory and higher order shear 
deformation theory predictions for displacement and 
stresses increases rapidly. It can be seen that not only 
the amplitude but also the period is affected. In 

general, the effect is to soften the shell, thereby 
increasing the period of vibration. It is also observed 
that there is no variation in the predictions of first 
order shear deformation theory for different core 
properties. Thus the first order shear deformation 
theory is inadequate for sandwich shells for which the 
present higher order shear deformation theory can be 
used effectively. 

CONCLUSIONS 

The numerical results of the linear and geometri- 
cally non-linear transient analyses of isotropic, or- 
thotropic and laminated composite and sandwich 
shells are presented. The simple Co isoparametric 
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formulation of an assumed higher order displa~ment 
model employed here is stable and accurate in pre- 
dicting the linear and geometrically non-linear transi- 
ent responses of laminated composite and sandwich 
shells. In contrast to first order shear deformation 
theory, the present theory does not require the usual 
shear correction factors generally associated with first 
order shear deformation theory. The present finite 
element results in the linear and geometrically non- 
linear analyses agree very well with the available 
closed-form two-dimensional solutions developed 
based on another higher order theory and other finite 
element solutions in the open literature. 

It is observed that the effect of shear deformation 
in thick sandwich shells with a weak core and strong 
facings as well as laminated shells with large ratios of 
the tangential elastic modulus to the transverse shear 
modulus is considerable. It is believed that the refined 
shear deformation theory presented here is essential 
for predicting accurate responses especially for sand- 
wich shells. The present results of the linear and geo- 
metrically non-linear analyses of sandwich lamintes 
should serve as a reference for future investigations. 
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