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Abstract 

An unified approach is presented for linear and geometrically non-linear analyses of composite and sandwich shells with a 
refined theory and Co finite elements by using the dynamic relaxation technique. A finite element idealization with a nine noded 
quadrilateral isoparametric element belonging to the Lagrangian family is used in space discretization. An explicit time stepping 
scheme is employed for time integration of the resulting discrete ordinary differential equations with special forms of diagonal 
fictitious mass and/or damping matrices. The accuracy of the formulation is then established by comparing the present 
pseudo-transient (PT) analysis results with the available 2D/3D analytical and finite element solutions. The usefulness and 
effectiveness of this approach is established by comparing computational time required by this and Newton-Raphson’s (NR) 
approaches. 

1. Introduction 

Structural elements made up of fibre reinforced composite materials are being extensively used in 
high and low technology areas in recent years. Their industrial applications are multiplying rapidly 
because of their superior mechanical properties. Because of high modulus and high strength properties 
that composites have, structural composites undergo large deformations before they become inelastic. 
Therefore, an accurate prediction of displacements and stresses are possible only when one accounts the 
geometric non-linearity. The partial differential equations describing the large deflection behavior of 
anisotropic composite shells of arbitrary geometry are not amenable to classical analytical methods. The 
finite element method has proved to be a very powerful tool for analyzing structural problems, 
involving complex geometries, loadings, boundaries and non-linearities. 

In this paper a unified approach for the static, both linear and geometrically 
analyses of laminated composite and sandwich shells is presented which employs a 
Co finite elements. 

non-linear, elastic 
refined theory and 

2. Theory 

The laminate considered here is composed of a finite number of orthotropic layers, with principal 
material axes of elasticity oriented arbitrarily with respect to the laminate axes. The x, y coordinates of 
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the laminate are taken at the mid-surface of the shell (see Fig. 1) and the displacement model is 
assumed as, 

4x7 Y, z, 0 = u&7 y, f) + ze,(x, y, t) + z2t#x, y, t) + r'e;(x, y, t) 

4x3 Y, 2, t> = q)(x, y, t> + zqx, y, f) + zZuG(x, y, t) + z3qx, y, t) (1) 

4x, Y, z, t) = w&, y, t> 

where t represents time, the terms U, u and w are the displacement components of a general point 
(x, y, z) in the laminate domain in the X, y and z directions, respectively. The parameters u,, and uO are 
the tangential displacement components and wO is the transverse displacement component of a point 
(x, y) on the middle surface. The functions 0, and $, are rotations of the normals to the middle surface 
about y and x axes, respectively. The parameters u*,, u:, 0: and 0; are the higher-order terms in the 
Taylor’s series expansion and they represent higher-order transverse cross-sectional deformation modes 
which are also defined at mid-surface. 

In the present investigation, large displacements in the sense of von Karman assumptions, which in 
particular imply that the first-order derivatives of tangential displacement components with respect to 
X, y and z are small, so that their particular products can be neglected are considered. The following 
are the strain-displacement relations 

TYPICAL LAMINA 

(I, 2,s) - LAMINA REFERENCE AXES 

(x,y ,I) - LAMIATE REFERENCE AMES 

Fig. 1. Laminated shell geometry with positive set of laminailaminate reference axes, displacement components and fibre 

orientation. 
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au w 1 aw 2 

‘Y=F+K+Z ay (-1 

The stress-strain relations for a typical layer L with reference to the laminate axes (x, Y, Z) after the 
usual transformation of stresses/strains between the lamina and laminate coordinate system are 

a=Qe (3a) 

in which u = (a,, uy, TV,,, T,, , T,,)’ is stress vector and E = (E,, Ed, yxy , x,, Y,,)’ is strain 
vector with respect to laminate axes, the superscript ‘t’ indicates the transpose of matrix/vector and the 
elements of Q matrix are defined as follows 

0 
’ 

i, j = 1,2,3 

= [ Q,, 0 Qlm 1 ’ 1, m = 4,5 

in which 

Q,, = C,, .C4+(2.c12+4.c33).S2’C2+c22’S4 

Qr2 = Cl2 . (c” + s4) + (C,, + C,, - 4. C,,) . s2 . c2 

Q,,=(C,,-C,,-2’C,,)‘s.c3+(C,,-C,,+2’C,,)’s3’C 

Q22 = C,, .,s4 + (2.C,, + 4C,,)*s2*c2 + C,,.c” 

Q23 = tc,, - ‘12 - 2 ’ ‘33) *S3’c+(c12-c22+2C33)*S~c3 

Q33 = C,, . (c” + s”) + (C,, - 2. C,, + C,, - 2. C,,) *s2 . c2 

Q44 = C44 . c2 + C,, * s* 

Q45=(C,,-C,,).c*s 

Q,, = C,, . s2 + C,, . c* 

(3b) 

(3c) 

The laminate constitutive relations involving membrane forces, bending moments and shear forces 
are defined as 

(44 

Upon integration, these expressions are rewritten in a matrix form which defines the stress-resultant 
and mid-surface strain relationship of a composite shell [l] and is given by 
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ti=DE (4b) 

N 

[1[ 

Drn DC 
M = 0: D, 

Q 00 
(44 

where N’= [N,, NY, 

[Q,, Q,, Q:, Q;, 
defined as follows 

Nap, N,*, N;, Nzy]; M’= [M,, My, MIy, M,*, My*, M,*,l and Q’= 
s x7 s,, s:, S;] and the stiffness coefficient matrices D,, D,, D,, D, are 

I (44 

In the above relations i, j = 1,2,3 and I, m = 4,5 and Hk = (z”,,, - zE)lk, k = 1,2,3,4,5,6, ‘7 and NL 
is the number of layers and E = (EL, Eb, ES)’ represents the mid-surface membrane, bending and 
shear strain components, respectively and are defined as follows 

6, = 

and 

au0 wo 1 aw, : 
Jg+R+- - (1 1 2 ax 
a% wo I aw, 2 
-+R,+T ay ay c-1 
au, au, aw, aw, 
Z+F+ ax ‘5 

au,* 

ay 
au,* 

ax 
* 

au*, !F$+- 
ay 

Eb = 

ae x 
ax 

ae, 
ay 

a0, ae, 
ax+ay 

ae,* 

ax 
ae: 

Es = 

awe uo z +7-R 

aw, v,’ 
‘y + ay -R, 

30: u: 
-R 

1 

v: 
38; -x 

2 

2U,* -2 
1 

2V,* -$ 
2 

o* 
_x 

RI 

_“: 

R2 

(4f) 

2 =(Ek, E;, EI) (+I?) 

3. Finite element formulation 

The finite element used here is a nine noded quadrilateral element belonging to the Lagrangian 
family. The laminate displacement field in the element can be expressed in terms of nodal variables as 

~(6~n)=~iN.(5,n)*d. (5) 

where NN is a number of nodes per element, Ni( 5, n) contains interpolation functions associated with 
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node i in terms of local coordinates 5,~ and d, is nodal displacement vector such that d: = (uOi, uOi, wgi, 
OX,, f3,, , uo*,, u$, 8 ,*,, O,*,). The strain-displacement relations can be written as follows [2] 

6iF = (B,, + B,,) . Sa 

where B,, is the strain matrix giving linear strains, B,, is linearly dependent 
displacement vector a, such that a’ = (di, di, . . . , d’,,). The non-zero coefficients of 
are defined as follows 

Membrane and flexure terms (size of matrix, 12 X 9): 

dN; 
B,,, = 4, = B,,, = B,,, = B,,, = 4, = 40.8 = BW = ax 

4, = 4, = 4, = 4, = B,,, = B,,, = B,,., = 42.8 =$ 

(64 

(6b) 

(64 

upon the nodal 
the Bi sub-matrix 

B 
N. dw, aNi 

=L+- 
Ni aw, aNi aw, t!tN, , awe . ahr, 

1.3 R 
1 8X 

--jp B,,, =R+---. 
dY dY ’ 

B 3,3 = - * - 
1 ax ay I ay ax 

Shear terms (size of matrix, 8 X 9): 

dN; 
B,,, =yg; 

dNi 
43 = ay ; B,,, = 4, = N, ; 

B,,, = B,,, = 3N, ; B, b = B, ., = 2Ni 

B,,, = B,,, = B,,, = B,,, = - + ; B,,, = B,,, = Be,, = B,,, 
1 

The discrete static equilibrium equations can be written as 

W, t) =f 
and the discrete dynamic equations of motion as 

P(u, t) + Cci + Mii = f 

N 
=- 2 

4 

(8b) 
The static problem represented by the discrete equation (8a) can be solved in a variety of ways. This 

generally requires a direct or a factorized solution of simultaneous equations. An alternate solution 
procedure includes the transformation of Eq. (Sa) into a dynamic equation of motion represented by 
Eq. (8b) by inclusion of fictitious mass and/or damping matrices and carrying out the dynamic analysis 
until the steady state is reached. In the above equation, M is the mass matrix, C is the damping matrix, 
P(a, t) is the vector of internal resisting forces, f is the vector of applied forces, a is the vector of nodal 
displacements and a dot denotes differentiation with respect to the time. The matrices/vectors in Eq. 
(Bb) are defined as 

(a) Internal force vector P: 

P(a, t) = 
I 

B’c? dA 
A 

where 6 is a stress-resultant vector. 

(9) 

(b) Mass matrix M: 
In the pseudo-transient analysis the real mass is very seldom used. In the present investigation the 
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diagonal terms of the linear stiffness matrix are taken as diagonal coefficients of diagonal fictitious mass 
matrix. 

(c) Damping matrix C: 
In the present investigation the damping matrix is taken as 

C=a;M (loa) 

where (Y, is the critical damping factor, such that (Y, = 2 * w in which w is the dominant frequency of the 
system. An eigenvalue analysis of the system for evaluating o is generally avoided. In fact it would be 
rather expensive and contrary to the main philosophy of pseudo-transient methods in which the aims 
are easy implementation and small computer core storage. In the present context the damping effect is 
included by considering the kinetic damping. In this the variation of the total kinetic energy during 
some non-productive steps is used for estimating the period of vibration of the structure, i.e. the time 
employed by the structure to reach the maximum total kinetic energy is estimated through the variation 
of the total kinetic energy and is assumed as one fourth of the period of vibration and consequently, the 
critical damping factor (Y, is given by 

cu,=2.w=4T 
T ( 1Ob) 

The same damping factor is applied till the structure attains a steady-state. 
An alternate procedure, called an adaptive damping, in which the damping factor is constantly 

updated on the basis of the information gained during the current time step is also considered here. It is 
thus possible to follow the behaviour of the structure during the integration in time much closely than 
the kinetic damping. It consists of using the Raleigh’s quotient 

[ 1 aSa” 112 

A, = 
aLMa, 

(11) 

as an estimate of lowest eigenvalue of the structure at the current time step. 
Since the mass matrix M and damping matrix C are diagonal matrices, the set of equations (8b) are 

uncoupled and give displacement values at a time stage without requiring matrix factorization or any 
sophisticated solution techniques. Eqs. (8b) can be written in a scalar form as [3] 

mitii + cia, + pi = f; (12) 

where subscript ‘i’ denotes the ith degree of freedom and the other symbols have usual meanings. 
In the explicit time marching scheme used here the velocities and accelerations are approximated 

using the central difference formulae as 

ci? = (al” -a~~‘)/2*At (13a) 

&? = (a?+’ - 2.a: +a;-‘)/At2 ( 13b) 

where n - 1, n, n + 1 denote three successive time stations. Using the above approximation, Eq. (12) 
can be rewritten as 

m, . (a:” -2~a~+a~~‘)lAt2+cj~(a~“--a~~‘)/2At+p~-f~=0 (14) 

It becomes clear that the values of a;+’ can be determined from the two previous displacements, a: 
and a?-’ by rewriting Eq. (14) as 

If the values a0 and b” are specified as initial conditions, a special starting algorithm can be written by 
noting that 

a: = (al - a,11)/2.At (=b) 
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and a_’ can be eliminated from Eq. (15a). 
The algorithm defined by Eqs. (15a) and (15b) is very simple and easy to implement, but as is well 

known, it is conditionally stable. This means that the time step length At must not exceed a given 
critical value for the scheme to be stable. The critical time step At,, can be shown to be equal to 1.0 and 
0.5 for thin (a/h = 100) and moderately thick (a/h = 10) laminates respectively regardless of spatial 
finite element mesh. 

4. Numerical examples and discussion 

The validity and suitability of the present unified approach for composite and sandwich shells can be 
investigated by considering and evaluating a set of benchmark problems. Two computer programs are 
developed: one is based on higher-order shear deformation theory (PTHOST) and the other one on 
first-order shear deformation theory (PTFOST). The bi-quadratic nine-noded Lagrangian isoparametric 
element is employed in the numerical evaluations. The selective integration scheme namely 3 X 3 Gauss 
quadrature rule is used to integrate the membrane, coupling between membrane and bending and 
bending energy terms and a 2 x 2 Gauss quadrature rule is used to integrate shear energy terms. Zero 
initial conditions are assumed in all the examples of pseudo-transient analysis. All the computations 
were carried out in single precision on CDC Cyber 180/840 computer at Indian Institute of Technology, 
Bombay. Due to bi-axial symmetry of the problems discussed only one quadrant of shell was analyzed 
with a 2 x 2 uniform mesh except angle-ply shells where the full shell with a 4 x 4 uniform mesh is 
adopted. A convergence study was first undertaken in the beginning with a view to assess the type and 
nature of discretization required for reliable converged results. It was seen that with nine-node 
Lagrangian quadrilateral elements, a 2 x 2 mesh (4 elements) in a quarter laminate and a 4 x 4 mesh 
(16 elements) in a full laminate were sufficient for getting converged solution for displacements and 
lamina tangential stresses for all geometrical configurations, boundary and loading conditions consid- 
ered in this paper. In the present investigation unless otherwise specified, the following material 
properties are used. 

E, = 25E, ; Cl2 = G,, = 0.5E, ; G,, = 0.2E, ; v,? = vz3 = v13 = 0.25 

EXAMPLE 1: Linear analysis. To the authors’ knowledge, there exists no available 3D elasticity 
solutions in non-linear context. To show the superiority of present higher order theory over first order 
shear deformation theory, a problem which had 3D elasticity solution in the linear context was analyzed 

[41. 
A symmetric 3-ply cylindrical shell of infinite length with radius of 10 in, arc length of 10.472 in and 

layers of equal thick subjected to a sinusoidal transverse load of q,, = q. sin(T.r, /s) is considered [4,5]. 
The boundaries are free along circumferential direction and simply supported along longitudinal 
direction. The material T-direction coincides with the 8 direction in outer layers while the material 
L-direction is parallel to the 8 direction in the central layer. A 1 x 10 (X x &directions) discretization 
for one quarter of the shell gives converged results. The transverse displacement Go and the 
circumferential stresses are taken at the center of shell. The results are presented in Table 1. The 
following non-dimensional quantities are used to present the results 

%=(3x10)-,,; &+J.(,) (16) 

Dennis and Plazotto [5] have adopted a higher-order displacement model, which satisfies the shear 
free boundary condition on the bounding surfaces of shell. From the results of Table 1, it is clear that 
present higher-order shear deformation theory predictions are very close to 3D elasticity results in 
comparison with another higher-order shear deformation theory and first-order shear deformation 
theory. The higher-order shear deformation theory presented by Dennis and Plazotto [5] gives stiffer 
solutions. This may be due to the imposition of shear free conditions on the bounding surfaces. The 
classical shell theory (CST) predictions are very poor especially in thick zones. 
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Table 1 

Transverse displacement and extreme tibre circumferential stresses at the middle of an infinite long cylindrical cross-ply 
(0”/90“/0”) shell subjected to a sinusoidal transverse load 

R/h Variable Exact3D[4] HSDT [5] CST [5] PTFOST PTHOST 
elasticity 

4 WC1 0.4570 0.382 0.078 0.036 0.4087 
fftltl 1.7720 1.406 0.824 0.824 1.3636 
flllHt 1.3670 1.117 0.732 0.721 1.2980 

10 WU 0.1140 0.128 0.078 0.123 0.1350 
o.Q, 0.9950 0.889 0.796 0.792 0.8910 

oa, 0.8970 0.829 0.759 0.751 0.8710 

50 W0 0.0810 0.079 0.077 0.075 0.0797 

all, 0.7980 0.789 0.792 0.792 0.7912 
on, 0.7820 0.774 0.774 0.761 0.7714 

100 w0 0.0787 0.078 0.078 0.071 0.0761 
oeh 0.7860 0.787 0.779 0.791 0.7941 
a”, 0.7810 0.770 0.776 0.751 0.7631 

To show the validity further the present results are compared with the corresponding closed-form 
solutions presented by Reddy and Liu [6]. A simply supported cross-ply (00/907 spherical shell 
subjected to a uniform/sinusoidal transverse load is considered. The results are compared with Reddy 
and Liu [6] and are presented in Table 2. The non-dimensional quantity for representing displacement 
is as follows, 

(17) 

From the above results it is clear that all the theories predict the same results in the case of 
geometrically thin shells, but as the thickness increases the classical thin shell theory (CLT) and 
first-order shear deformation theory (PTFOST) underpredict displacements. Whereas present PTHOST 

Table 2 

Transverse displacement in a simply supported cross-ply (O”190”) spherical shell subjected to a sinusoidal/uniform transverse 
loads 

Rla Theory Sinusoidal transverse load Uniform transverse load 

a/h = 100 a/h = 10 a/h = 100 a/h = 10 

CFS Present CFS Present CFS Present CFS Present 

[61 161 bl PI 

5 FOST 1.1948 1.1913 11.429 11.4300 1.7535 1.7525 19.944 17.9668 

HOST 1.1937 1.1913 11.166 11.1846 1.7519 1.7526 17.566 17.7003 

10 FOST 3.5760 3.5674 12.123 12.1299 5.5428 5.5369 19.065 19.0920 
HOST 3.5733 3.5673 11.896 11.8925 5.5388 5.5369 18.744 18.8933 

20 FOST 7.1270 7.1195 12.309 12.3106 11.2730 11.2757 19.365 19.3872 

HOST 7.1236 7.1189 12.094 12.1449 11.2680 11.2749 19.064 19.0912 

50 FOST 9.8717 9.8731 12.362 12.3684 15.7140 15.7361 19.452 19.4638 

HOST 9.8692 9.8713 12.150 12.2271 15.7110 15.7372 19.155 19.1753 

100 FOST 10.4460 10.4500 12.370 12.3709 16.6450 16.6737 19.464 19.4763 
HOST 10.4440 10.4493 12.158 12.2301 16.6420 16.6597 19.168 19.1874 

Plate FOST 10.6530 10.6533 12.373 12.3704 16.9800 17.0015 19.469 19.5004 
HOST 10.6510 10.6539 12.161 12.2301 16.9770 17.0016 19.172 19.1914 
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predicts the displacement and stresses very close to the 3D elasticity results. This indicates that as the 
shear deformation effect increases, the present simple C” higher-order finite element theory is the best 
alternate to the classical thin shell theory and first-order shear deformation theory. 

EXAMPLE 2: Isotropic cylindrical shell. A clamped isotropic cylindrical shell with a = b = 508 mm, 
h = 3.175 mm, R = 2540 mm, E = 3.103 KN/mm2 and v = 0.3 subjected to a uniform transverse load is 
considered. The present results are compared with Dhatt [7] and Reddy and Chandrashekhara [8] and 
are presented in Figs. 2(a) and (b). The present results match very well with solutions given by others. 
The limitation of this comparison is that the shell considered is geometrically thin with negligible shear 
deformation effects. However, this comparison has certainly proved the validity of the present 
formulation in the non-linear context. 

EXAMPLE 3: Sandwich spherical shell. A clamped angle-ply sandwich (0”/45”/90”/COREl90”/45”/ 
30”/0”) spherical shell of R/a = 10 subjected to a uniform transverse load is considered. The geometry 
and material properties are as follows 

a=b=lOOcm 

For face sheets, the assumed ply data is based on Hercules ASI/3501-6/graphite/epoxy prepreg system 

E, = 13.08 x lo6 N/cm2, E, = E, = 1.06 x lo6 N/cm2 

G,, = G,, = 0.6 x lo6 N/cm2 , GZ3 = 0.39 x 10h N/cm2 , 

52 = 53 = 0.28 , vz3 = 0.34 

Thickness of each top stiff layer = 0.025h 
Thickness of each bottom stiff layer = 0.08125h 
Core material is of U.S. commercial aluminum honeycomb (114 inch cell size, 0.003 inch foil) 

G,, = 1.772 x lo4 N/cm2 , G,, = 5.206 x 10 4 N/cm 2 

E, = 3.013 x lo5 N/cm* 

Thickness of core = 0.6 h 

a 

7 

6 

“E 

<” 
z 
x4 

b 

0.0 0.5 1.0 1.5 2.0 2.5 
Load, q,x10-3 N/mm2 

(4 (b) 
Fig. 2. (a) Displacement vs. load curves for a clamped cylindrical isotropic shell subjected to a uniform transverse load; (b) Stress 
VS. load curves for a clamped cylindrical isotropic shell subjected to a uniform transverse load. 
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3.5 7 
R/o=10 

-0 0 0 0 0 PTFOST,a/h= 10 
___-A PTHOST s.-lr- 3.0 -- 

-AA A 4 4 PTFOST,a/h= 100 
I ______ PTHOST 

.d--- 
__F_ 

2.5 - 
,,*K 

,’ ,’ 
,Q 

250- .a 
R/o=10 ,,*_ 

-0 0 0 0 0 PTFOST,a/h= 10 ,/I_ 
d 

_ PTHOST ,’ 
A 

2oo a 0 A A ‘, PTFOST,o/h = 100 ,,*’ 
. . PTHOST ,’ 

0.0 :L I I, I I1 / I I I, I / / I I, I, 1, I I I I I, I I I I, I, I I, 
0 200 400, 600 800 0 200 400, 600 800 

Load, qo Load, q, 

w @I 

Fig. 3. (a) Displacement vs. load curves for a clamped angle-ply sandwich (0”145”/90”icore190”/45”/30”10”) spherical shell 

subjected to a uniform transverse load; (b) Stress vs. load curves for an angle-ply sandwich (0”/45”190”icore190”/45”130”10”) 

spherical shell subjected to a uniform transverse load. 

The non-dimensional quantities are defined as follows 

(18) 

The results for displacement and extreme fibre stresses are presented in Figs. 3(a) and (b) for 
different side to thickness ratios. It is observed that for a/h = 100, the results predicted by first-order 
shear deformation (PTFOST) and higher-order shear deformation theory (PTHOST) are almost same, 
whereas for a/h = 10, the results predicted by PTHOST and PTFOST differ considerably. This is due to 
predominant shear deformation leading to warping of transverse sections. In earlier examples it was 
proved that as shear deformation effect increases, the results predicted by PTHOST are more reliable. 

EXAMPLE 4: Time history of displacement for an angle-ply shell. A simply supported angle-ply 
(45”/ -45”) spherical shell with a/h = 10 and 100 subjected to a sinusoidal transverse load of intensity 
4,) = 900 is considered. In the case of thick shell, damping is included by considering adaptive damping 
in which the damping factor is constantly updated on the basis of information gained in the current time 
step. The time history of transverse displacement is plotted in Fig. 4(a). For thin shell, damping effects 
are included by considering kinetic damping and the corresponding time history is shown in Fig. 4(b). 
Steady-state values of 1.87858 and 3.60734 are, respectively, obtained as against the corresponding 
static Newton-Raphson (NR) approach results of 1.85362 and 3.60734 for thick and thin shells given in 

[91. 
After doing rigorous numerical computations with different damping factors for thin and thick shells, 

it is observed that system reaches steady state quickly with kinetic damping and adaptive damping 
respectively. 

EXAMPLE 5: Comparison of solution algorithms. A simply supported angle-ply (45”/ -45”) spherical 
shell with a/h = 10 and 100 subjected to a sinusoidal transverse load is considered. The non- 
dimensionalization of load is as per relations (18). The spot analysis technique (i.e. the total load is 
imposed in one increment) is adopted. Furthermore, the pseudo-transient (PT) analysis is performed 
using fictitious mass matrix with a time step small enough to preserve the stability at larger loads. 
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0.0 

R,‘o=lO.o/h=lO 

__.. PTHOST 
- HOST,NR[9] 

Time, i 

(b) 

Fig. 4. (a) Time history of displacement for a simply supported angle-ply (45”/-45”) spherical shell subjected to a sinusoidal 

transverse load with adaptive damping (Thick shell); (b) Time history of displacement for a simply supported angle-ply 

(415~1-45”) spherical shell subjected to a sinusoidal transverse load (Thin laminate, a/h = 100) with kinetic damping. 

The results are presented in terms of CPU time (in seconds) required on CDC Cyber 1801840 for the 
solution to converge within a tolerance of 1 percent residual forces. 

The sensitivity of this method to varying degrees of non-linearities is studied by taking different 
intensities of loads producing a maximum non-linear deflection at the center of laminate in the range of 
h to 3h. The results are plotted in Figs 5(a) and (b). The behaviour of the present pseudo-transient 
analysis for thick and thin shells is different. The performance of PT method for thin shells under large 
loads is greatly improved whereas for thick shells the over-all performance is generally improved under 
all magnitudes of loads. From Figs. 5(a) and (b) it is clear that the additional computational time 
required with higher-order theory over first-order theory is far less in PT method in comparison with 
Newton-Raphson (NR) method. It is due to the fact that only internal force vector needs to be 
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500 
Load, $ 

Fig. 5. (a) Comparison of computational time: A simply supported angle-ply (45”/ -4.5”) spherical shell subjected to a sinusoidal 

transverse load with adaptive damping (Thick shell); (b) Comparison of computational time: A simply supported angle-ply 

(45”/-45”) spherical shell subjected to a sinusoidal transverse load with kinetic damping (Thin shell). 

computed in PT method whereas the Newton-Raphson method needs not only computation of internal 
force vector but also factorization of static equilibrium equations. It is thus clearly seen that the PT 
method is computationally efficient especially in the case of thick shells. Furthermore, there is not much 
difference in computational time in PT method for different intensities of load while in Newton- 
Raphson method, the computational time requirement increases as load increases. 

4. Conclusions 

The pseudo-transient analysis methodology based on finite element space discretization is an 
adaptation of the dynamic relaxation methodology based on finite difference space discretization 
originally developed in 1965 for solution of both linear and non-linear problems in an unified manner. 
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A comparison of this method with the standard Newton-Raphson method for solution of the non-linear 
equations of a problem under consideration is not available in literature. An effort in this direction is 
made here in the context of large deflection elasto-static problems of general fibre reinforced composite 
shells. 

The numerical examples presented in Section 3 show a good correlation. This unified approach is 
seen to be working equally well for both linear and geometrically non-linear problems of isotropic/ 
orthotropic and anisotropic material properties with any extent of non-linearity. It is important to note 
that the computer code requires very small core memory as compared to static programs. It is further 
noted that this method enables solution of very large linear and non-linear finite element problems on 
small computers. Another important merit of the present unified approach is its easy implementation. 

It is observed that the effect of shear deformation in thick sandwich shells with weak core and strong 
facings as well as laminated shells with large ratios of the tangential elastic modulus to the transverse 
shear modulus is considerable. It is believed that the refined shear deformation theory presented herein 
is essential for predicting accurate responses especially for thick composite and sandwich shells. 
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