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Analytical solution to the natural frequency analysis of composite and 
sandwich beams based on a higher order refined theory is presented. This 
theory incorporates cubic axial, transverse shear and quadratic transverse 
normal strain components in the basic formulation - thus modelling the 
warping of cross section accurately and eliminating the need for a shear 
correction coefficient. Also, it considers each layer of the lamina to be 
orthotropic and in a two dimensional state of plane stress. The equations of 
equilibrium are derived using Hamilton’s principle. Numerical experiments 
are carried out and from the results of thick and thin sections, conclusions 
are drawn. 0 1998 Elsevier Science Ltd. All rights reserved 

INTRODUCTION 

The emergence of composites has had an 
impact in almost all industries. Bio-medical 
engineering field uses composites for artificial 
limb implants, nuclear industry for radiation 
monitoring and protection equipment, trans- 
portation industry for hi-tech cycles and cars, 
space industry for Boron-Epoq based shuttles 
and sports industry for racquets, vaulting pole, 
etc. The application of composites has increased 
owing to the many advantages they offer: high 
strength/stiffness for lower weight, superior 
fatigue response characteristics, facility to vary 
fibre orientation, material and stacking pattern. 
At the same time, the fabricated material poses 
new problems, such as failure due to delamina- 
tion and pronounced transverse shear effects 
due to the high ratio of in-plane modulus to 
transverse shear modulus. Such difficulties can 
be analysed to predict the behaviour of compo- 
site laminates accurately, only by theories which 
consider shear deformation and other second- 
ary effects in their formulation. 

The widely used classical beam theory of 
Euler-Bernoulli is non-shear deformable and 

hence is useful only for thin sections. Exact 
solutions for this theory for static [l], free vibra- 
tion and forced vibration problems [2] are well 
known. 

The first attempt to incorporate shear defor- 
mation was made by Timoshenko [3,4] in which 
a constant transverse shear strain was assumed 
across the cross section, resulting in the require- 
ment for a problem dependent shear correction 
factor. Shear correction factors have been eval- 
uated for various cross sections in the past 
[5-71. 

Many works incorporating transverse shear 
deformation have been reported ever since. 
Mindlin & Goodman [8] proposed an analytical 
solution to the free vibration problem of Timo- 
shenko beams with time dependent boundary 
conditions and it was extended later to forced 
vibrations of Timoshenko beams by Herrmann 
[9]. The vibration problem of sandwich beams 
with flexible cores, where shear deformation 
effects of the core are predominant was 
analysed by Mead & Sivakumuran [lo] using 
the Stodola method. A refined first order theory 
was reported by Cowper [ll] and Teoh & 
Huang [12] proposed an analytical solution to 
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the vibration problem of fibre reinforced beams 
which considers both shear deformation and 
rotatory inertia and derives the equation of 
motion based on Timoshenko theory using 
Hamilton’s principle. Myklestad’s method was 
employed by Abarcar & Cunniff [13] to analyse 
the vibration problem of a cantilever by taking 
shear deformation and rotatory inertia into 
account. Chandrashekhara & Bangera [14] esti- 
mated natural frequencies of composite beam 
with a mass at the free end using Hamilton’s 
principle and incorporating rotatory inertia and 
shear deformation effects. Quite a number of 
anisoparametric [15-191 and isoparametric [20] 
Timoshenko finite elements are also available. 

A second order beam theory by Stephen & 
Levinson [21] considers shear curvature, trans- 
verse direct stresses and rotatory inertia and 
formulates differential equations of motion, 
similar in form to Timoshenko equations, with 
two coefficients - the first dependent on cross- 
sectional warping and the second on transverse 
direct stresses. 

A third order theory proposed by Phan & 
Reddy [22] assumes in-plane displacements U, v 
as cubic functions of thickness coordinate of the 
composite plate resulting in parabolic transverse 
shear strain distribution and strain free condi- 
tions on the upper and lower surfaces of the 
plate without the need to apply a shear cor- 
rection coefficient. Equations of motion are 
derived using Hamilton’s principle. The same 
theory was later applied to beam formulations 
by Heyliger & Reddy [23]. As an extension to 
this formulation, Soldatos & Elishakoff [24] 
proposed a theory for orthotropic straight 
beams considering both transverse shear and 
transverse normal strains. While the parabolic 
distribution of transverse shear strains through 
thickness ensured zero shear conditions at the 
top and bottom of the beam, Hamilton’s prin- 
ciple yielded the governing equation of 
equilibrium and associated boundary conditions. 

A fourth order theory by Levinson [25] allows 
the cross section to rotate relative to the neutral 
surface as well as warp into a non-planar sur- 
face by taking the axial displacement as the sum 
of linear variation, across the thickness, of 
cross-sectional rotation and cubic variation of a 
warping function. This theory, formulated for 
beams with narrow rectangular cross sections is 
self-contained and does not require a shear 
coefficient derived from factors extrinsic to the 
theory. An improvement over this theory was 

reported by Rychter [26] by incorporating two- 
dimensional theory of elasticity to model 2D 
displacement pattern. 

A consistent higher order theory was pub- 
lished by Bickford [27] based on Levinson’s 
theory and Hamilton’s principle. Another 
higher order theory with C’ continuity and with- 
out transverse normal strain was proposed by 
Reddy [28]. 

In addition, exact three dimensional solutions 
for rectangular laminates with simply supported 
edges [29,30], for simply supported orthotropic 
rectangular plates and laminates [31] and 
analytical three dimensional solution for multi 
layered anisotropic plate [32] are also available. 

A closer study of these theories reveals the 
following aspects. The Euler-Bernoulli theory 
is applicable only for sections with high aspect 
ratios. The first order shear deformable theory 
requires a problem dependent shear correction 
factor. Moreover, modelling of both cross sec- 
tional warping and transverse normal strain 
effects are not feasible with this theory. Also, as 
it yields results which vary considerably com- 
pared with the elasticity solution for built-up 
beams [33] and fails to predict correct deflec- 
tions and stresses for thick and moderately thick 
sandwich and composite laminates [34], its 
application to a wider range of problems is very 
much restricted. 

The second order theory [21] is also problem 
dependent as it needs two cross-sectional shape 
based coefficients - one based on the warping 
of cross-section and another on transverse 
direct stresses. The third order theory [23] 
retains the disadvantage of C’ continuity. As 
the fourth order theory [25] has been formu- 
lated only for beams with narrow rectangular 
cross sections, its direct application to generic 
beam cross sections becomes infeasible. The 
higher order theory [28] is also C’ continuity 
based. 

As the available shear deformable flexural 
theories are plagued with cited shortcomings, 
the need arises for a theoretical model free 
from shear correction factors, capable of model- 
ling the warping of cross sections, of predicting 
the performance of deeper fibre reinforced 
laminates with better accuracy and finally of 
facilitating easier formulation and coding. 

The higher order theory with cubic axial 
strain, quadratic transverse shear and linear 
transverse normal strains by Kant & Gupta [33] 
could model the complete flexural behaviour of 
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deeper beams, without any recourse to problem 
dependent factors and by employing isopara- 
metric elements could retain the ease and 
elegance of formulation. Subsequently, this 
theory was applied to composite and sandwich 
deep beam vibrations [35], statics [36] and 
transient dynamics [37] and its performance was 
found to be superior in all these cases. 

While earlier flexural theories are presented 
with analytical as well as finite element solu- 
tions, higher order theories have so far been 
formulated with only Co finite elements and the 
analytical solution for the same has not been 
proposed yet. The objective of this paper is to 
exactly meet that requirement. 

THEORETICAL FORMULATIONS 

The axial and transverse displacements in an X- 
z plane using Taylor’s series expansion [38] can 
be expressed as 

z&,z,f) = u,,(x,t) + zO,(x,t) + z*uq,(x,t) + 20’“,(XJ> 

(1) 

wkz,t) = w,,(x,t) + zO,W + z*w:,w> 

+ z’O~(x,t> (2) 

where LI,, and w,, are axial and transverse dis- 
placements defined at the neutral axis of the 
beam, Q, is the rotation of the cross section and 
u;,,e:, Q,, w:, and 0: are higher order terms 
arising out of Taylor’s series expansion. 

The strain displacement relationships are 
given by 

c, = t’,,, + zK_, + z*&, + z”K* .\ 

C, = c,,, + zK, + z*F:,, 

y,; = Cp + z$ + z24* + z3$* 

where 

(3) 

(4) 

(5) 

Considering each lamina to be orthotropic 
and in a 2D state of plane stress, the stress- 
strain relationship of a lamina can be given as 

o=CE - (6) 

where 

c = ((T,(T;z_,,)’ 

E = (C,C&)’ 

and 

(6a) 

(6b) 

where 

c, I =E,R1-Y1’2zy*,) (64 

Cl2 = c2, =)‘12E241-1’,2Y*,) (64 

C22=E241 -Y,21;21) (69 

where E, and E, are Young’s moduli along the 
x and z directions, y,* is Poisson’s ratio and G is 
the shear modulus. 

Using Hamilton’s principle, the equation of 
motion can be expressed as 

l 

‘2 
&T-U) dt+ 

‘I s 

f2 
CSW,, dt = 0 

f! (7) 

where T is the kinetic energy of the system, U is 
the internal strain energy and IV,,, is the work 
done by the non-conservative forces. 

The kinetic energy is given by 

T = ; jp(,uJ* + ,wt,,*> dv (8) 

where u,, and w,, denote the first derivative of u 
and w with respect to time (u and w are given 
by Eqns (1) and (2), respectively). 

On expansion, for symmetric laminates, it 
becomes 

T = + ] [(P, uo.r -I- P&,,,)u,,., 
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The strain energy of the system can be writ- 
ten as 

u = ; j&J dv (10) 

where Q and t: are as given by Eqns (6a) and 
(6b) and it can be expanded as 

+ j (c;,,N; + K,M, + c;,,N;) dx 

+I<~Q.,+~s+~*QT,+~*S*) dx (11) 

where the non-vanishing terms for the symmet- 
ric laminate are given as 

N., = s.,,,H, + ET,,,H, + c,,,H*, + E;<,H~ (lla) 

M, = K,H, + K$H, + K;H$ (lib) 

NT. = c,,,H, + ET,-,,H~ + r,,,Hs + E;,,H:~ (llc) 

M*, = K.,H, + KqH, + K,H’I; uw 

Q., = @ii, + 4*& w> 

s=$H,+$*fi, Wf) 

QT, = 46 + $*a, (W 
S” = Ij& + $P+I, (W 
N; = r:,,,H~ + c’“,,,Hs + s;,,k, + c;,,Z& (lli) 

M; = K.,Hs + K’F,H’i; + K7Ej3 (110 

N; = s,,,H ‘i; + c!~,,H ‘I; + c;,,& + c:jZ, (ilk) 

and 

(11’) 
NL 

H’F,= Lg, (C,,),[K-h’;:-,Ynl, n= 1332~ 

m-0 

wn> 

ii,,= I?, G,[(h”,-iz_,)ln], n= 1,3,5,7 (110) 

The external work done by the edge stresses 
is given as 

(12) 

where the bars indicate the edge quantities. 
This work done, on edge x = constant, is 
expressed after suitable substitutions as 

w,, = b[N,u,, + M,Q, + NQA:, + ii@,e:, + &WC, 

+ So; + @;w:, + s*0*1 (13) 

where the stress resultants with bar are exactly 
same as those of Eqn (11) but are generated by 
edge strains. 

By taking the variation of kinetic energy, 
strain energy and the external work done and 
by invoking Eqn (7), the following equilibrium 
equations with consistent boundary conditions 
are obtained: 

= WA,,, - 12, k> + (Hs@t,,, - 3&3:) 

- fi I w,,_, + W-G - &>w:,,, (15) 

P3%,,,, + P.&~,,, 

= H+L..~ + (H&,..x -4&C) 

+(H~--2H,)B,,,+(3H~-2jj,)0~,, (16) 

PA,, + 07(?LJ 

= WA.,, - 3&Q,) + (&@!r,,.r -9fisPJ 

- 3&c,x + (2H!, - 3&)w:,,, (17) 

P I wo,,, + Prcw:,,,, 

= D I L + 3&@L + h%,x + JjPL (18) 

P3L + Ps@+k., 

= - H *I u,,,, - (HJI; -2&E,, 

-(ii,il,-H,O;,,.,)-(3H,O”-HsB*I.,~) (19) 

P~W0.J + Psw:~,,~ 

= - (2H’i; -&)0x._, - (2HS - 3&)@!,., 

+ &WC ,,,.I - (4fbc - &e,.,x) (20) 

P&J + PA%, 

= - ~H?+L, + (‘& - 3H:)u:,,., 

+ (&&,.r - 31;7&) + (me.,, - 9&% 

(21) 

along with the following boundary conditions, 

N, = N_,, M, = if,, N$ = ii’$, M$ = if$ (22) 

Q,=& S=s, Q:=&, S”=s” (23) 

where u,,, u,,,, and u,,,~ refer to single and 
double differentiation of u, with respect to x 
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and time, respectively, and similarly for all 
other variables. 

SOLUTION TO EQUATIONS OF MOTION 

The boundary conditions of a simply supported 
beam, which is considered in this study, can be 
defined as 

u,(OJ) = u,(0) = 0 (24a) 

M,(O,t) = M,(L,t) = 0 (24b) 

u$(O,t) = zcyL,t) = 0 (244 

M*,(O,t) = w$!+t) = 0 cw 

w,,(W) = w,(Lt) = 0 (23 

S(O,t) = S(L,t) = 0 (29 

wT,(O,t> = wyL,t) = 0 G%) 

s*ic(o,t> = S”(U) = 0 Pw 

The solution to the displacement variables 
satisfying these boundary conditions can be 
expressed in the following form: 

u,,(x,t) = CA, sin(nnxll) sin(w,t) (25a) 

e,(x,t> = CB, cos(mcxll) sin(o,,t) (25b) 

u?,(x,t> = CC,, sin(n7cxll) sin(w,,t) (25c) 

PJx,t) = CD,, cos(n~xll) sin(w,,t) (25d) 

w,,(x,t) = CE,, sin(n7cxll) sin(co,t) (25e) 

Q,(x,t) = CF,, cos(n7cxll) sin(w,,t) (25f) 

~?:)(x,t) = ZG,, sin(nnxll) sin(o,t) (25g) 

F(x,t) = CZ,, cos(n7rxll) sin(o,t) (25h) 

where w,, is the natural frequency of the system, 
A, to 1, are unknown variables and n varies 
from 1 to infinity in all these equations. 

When these solutions (Eqs. (25a)-(25h)) are 
substituted in the equations of equilibrium 
(Eqs. (14)-(21)), they assume a new form as 

(HI @x/L)2 - v I co&&, + (H&n/L)* - p3&)C,, 

+ HY;(ndL)F, + 3H’“,(nnlL)Z, = 0 (26) 

(ii, + H,WW2 -p&B, + (H,(~Tc/L)~ 

+ 3fi, - p.pi)D,, + fi, (nnlL)E,, 

+ (ii, - 2HT,)(nx/L)G, = 0 (27) 

(H,(nrlL)* - p+o~)A, + (H,(mc/L)* +4ii, 

- p+$)C, + (Hs - 2fi,)(ndL)F, 

+ (3H5 - 2fi,)(nzlL)I, = 0 (28) 

(H,(~Tc/L)* + 3fi, - pscoi)B, + (H,(ndL)2 

+ 9& - p,co,2)D, + 3Z?&uc~L)E,, 

+ (3fi, - 2H~)(ndL)G,, = 0 (29) 

Ij,(n~/L)B,,+3H,(n?llL)D,,+(H,(n~lL)* 

-p,c~~)E,+(H,(n71/L)2--P3(~~)G,,=0 (30) 

H~(ndL)A,, + (H? - 2Z&)(ndL)C,, 

+ (k, + fi,(n7d~)2 - p$op,, 

+ (3Ej, + FZs(n7rlL)2 - psc$)l,, = 0 (31) 

(fi, -2H:J)(ndL)B,, + (3H, - 2H5)(rm/L)D,, 

+ (H,(nnlL)2 - p&)E,, + (4Ej, + H.&m/L)* 

-/v&G,, = 0 (32) 

3HFJndL)A,,-(2fZ,--3H~)(nnlL)C,, 

+ (3H, + H,(ndL)* - pp;2I)F,, 

+ (Ski, + H,(nnlL)2 - p,m$Z,, = 0 (33) 

In order to obtain an unique non-trivial solu- 
tion for the unknowns A, to I,,, the determinant 
of coefficients of these variables has to be set to 
zero. By solving this determinant, using the 
standard eigen value routines [39], the natural 
frequencies (o*-eigen values) and the corre- 
sponding mode shapes (eigen vectors) can be 
obtained. 

NUMERICAL EXPERIMENTS 

Numerical experiments were carried out to vali- 
date this solution procedure on a 586 platform. 
All the details about the material data used 
here are given in Table 1. 

Thin beam sections 

First, a few problems were chosen for which 
solutions are available in the literature to facili- 
tate comparison. A sandwich beam by Ahmed 
[40], Khatua & Cheung [41] and a composite 
beam of Chandrashekhara & Bangera [14] were 
reanalysed using the Higher Order Beam 
Theory (HOBT) (Eqns (1) and (2)) and results 
are presented in Tables 2-4. The composite 
beam frequencies are non-dimensionalised 
using the following relationship. 

0 = u*L2[pl(E_,*d2)]“2 (34) 

where d is the depth of the cross section. 
It can be observed that the higher order 

theory computes higher frequencies than those 
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Table 1. Material properties data 

NO. Description Ref. 

DATA- 1 

DATA-2 

DATA-3 

DATA-4 

DATA-5 

DATA-6 

L = 36 in (914.4 mm) 
h = 1 in (25.4 mm) 
d = 0.536 in (13.614 mm) 
Face properties 
t, (outer/inner) = 0.018 in (0.4572 mm) 
Et = 10’ lb/in2 (68.97 kN/mm’) 
p, = 167.5 lb/f? (2.6831 E3 N-sec2/m4) 
Core properties 
t, = 0.5 in (12.7 mm) 
G, = 12000 lb/in2 (82-764 N/mm*) 
p, = 2.05 Ib/ft” (32.8381 N-sec2/m4) 
1’ = 0.3 

1401 

No. of layers of c/s = eight 
L = 20 in (508 mm) 
h = 1 in (25.4 mm) 
d = 0.86 in (21.844 mm) 
Face properties 

[411 

t, (hot/mid/top) = 0.02 in (0.508 mm) 
E, = 10’ lb/in (68.97 kN/mm2) 
p, = 1.0 lb sec2/in4 (1.0691E7 N-sec2/m4) 
Core properties 
t, (hot/top) = 0.4 in (10.16 mm) 
G, = 5000 lb/in2 (34.485 N/mm2) 
pC = 0.25 lb sec2/in4 (2.6726E6 N-secz/m4) 
1’ = 0.3 
No. of layers of c/s = five 
L=l?Im,b=lm,d=lm 
E, = 144.8 GPa 
E, = 9.65 GPa 
G,2 = 4.14 GPa 
p = 1389.23 N-sec2/m4 

]141 

- 0.3 
ii.-of layers of c/s = eight 
Material: AS4/3501_6/Graphite/Epoxy 
Lamination scheme: O/90/90/0 
L = 762 mm, b = 25.4 mm, d = 152.4 mm 
E, = 0.525E6 N/mm2 

[42] 

E, = 0.21 E5 N/mm2 
G,rZ = 0.105E5 N/mm2 
p = 800 N-sec2/m4 
I’ = 0.3 
No. of layers of c/s = six 
Lamination scheme: O/O/90/90/0/0 
d=3m [I41 
Rest are same as DATA-3 
L = 762 mm, b = 25.4 mm, d = 152.4 mm 
Face properties ]431 
Material: Graphite/Epoxy 
tr = 15.24 mm 
E, = @ 12E6 N/mm2 
Ef2 = 0.7984 N/mm2 
G,, = 0.55E4 N/mm2 
/jl. = 1.58 kN-sec2/m4 
1’ = 0.3 
Core properties 
Material: US commercial aluminium, 

honeycomb 0.25 in cell size, 
0.007 in foil 

t, = 121.92 mm 
G, = 140.7 N/mm’ 
pC = 34.15 N-sec2/m4 
t& = 8 
No. of layers of c/s = six 
Lamination scheme: 0/90/tore/90/0 

]441 

of First Order Beam Theory (FOBT), except 
for a few fundamental modes. With the higher 
order modelling having more degrees of free- 
dom, thus making the beam more flexible, its 
frequencies are naturally, to be lower than 
those of the comparatively stiffer Timoshenko 
theory. This apparent conflict can be resolved 
by considering the following displacement 
model from Eqns (1) and (2): 

u(x,z,t) = u,,(u) + zO,(x,t) + z2u;,(x,t> (35) 

wkz,t) = w,,(-v> (36) 

Let this be designated as HOBT4, with four 
degrees of freedom. Its frequencies are given in 
Tables 2 and 5. This particular configuration of 
higher order model is specifically chosen here 
as it would have identical degrees of freedom to 
FOBT, with ~7, being ineffective for symmetric 
laminates. Also, the results of a five degrees of 
freedom model [35] HOBTS (with u,, w,, QX, 
u:,, 137~) are presented for various cases. 

It can be seen that HOBT frequencies for all 
modes are consistently lower than those of 
HOBT4 and HOBTS. This clearly confirms that 
with the addition of more degrees of freedom 
the beam indeed becomes flexible and predicts 
lower frequencies. As both HOBT4 and FOBT 
possess identical degrees of freedom, the only 
factor that could reduce its frequencies com- 
pared with HOBT4 is the assumption of 
constant shear strain across the depth and the 
usage of shear correction factor. 

Thick beam sections 

The deep composite beam of DATA-4 is 
analysed and from the results of Table 5, the 
flexible nature of HOBT is confirmed with its 
lower frequencies for all modes compared to 
HOBT4 and HOBTS. In deep beams also, the 
frequencies of Timoshenko theory are lower 
compared with HOBT4, in spite of having same 
degrees of freedom, due to the shear correction 
factor. A similar pattern can be observed for 
the composite beam of DATA-5 for an aspect 
ratio of five in Table 6. 

The HOBT4 results are presented here for 
only one thin and one thick section, as the 
observations drawn hold good for all other 
experiments and also are established in a more 
detailed finite element analysis [35] on the 
term-by-term contribution of the higher order 
model to the frequencies of beams with dif- 
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Table 2. Comparison of natural frequencies (in Hz) of a thin sandwich beam (DATA-l) 

t1 FOBT HOBT4 HOBTS (Ref. 35) HOBT Ref. [40] 

59.508 59.715 57.041 57.040 56.028 
225.204 227.75 1 218.361 218.361 - 

466.961 477.624 460.754 459.958 457.120 
754.554 780.178 758.692 754.554 - 

1065.383 1112.334 1097.055 1079.866 1090.260 
1386.399 1459,133 1457.064 14206 17 _ 

1710.916 1811.183 1849.380 1766.620 1809.800 
2034.000 2164.507 2275.916 2115.169 - 

Table 3. Comparison of natural frequencies of a slender 
sandwich beam (DATA-2) 

n FOBT HOBTS HOBT Ref. [41] 
(Ref. 35) 

1 10-74 10.72 lo-72 10.9117 

i 48.80 29.67 31.04 52.15 31.02 52.10 32.2084 54.6588 
4 67.49 72.93 72.75 76.7496 
5 85.89 93-85 93.04 98.4750 
6 104-10 114-40 113.10 119.9644 
87 122-20 140.20 158.90 136.00 152.70 133.00 162.8256 141.3274 

9 158.20 182.90 172.30 184.0243 

Table 4. Comparison of non-dimensional natural frequen- 
cies of a thin composite beam (DATA-3) 

n FOBT HOBT 

1 2.512 2.516 
2 8.589 8.669 
3 16.045 16.320 
4 23.795 24.371 

Table 5. Comparison of non-dimensional natural frequen- 
cies of a deep composite beam (DATA-4) 

n FOBT HOBT4 HOBTS HOBT 
(Ref. 35) 

: 3.803 1.639 4.115 1.736 3.923 1.656 3.910 1.657 

3 5.895 6.416 6.191 6.138 
4 7.953 8.675 8.470 8.323 
5 9.998 10.916 10,803 10.440 
6 12.033 13.145 13.117 12.469 

87 16.088 14.065 15.370 17.595 18.151 15.561 14.385 16.161 
9 18.122 19.806 20.889 17.771 

Table 6. Comparison of non-dimensional natural frequen- 
cies of a thick composite beam (DATA-5) 

n FOBT HOBT 

1 1.794 1.820 
2 4.396 4.528 
3 6.92 1 7.201 
4 9.395 9.814 
5 11.841 12.341 
6 14.273 14.684 

; 
16.697 16.638 
19.121 17.152 

ferent materials and aspect ratios. The results 
of the sandwich beam of DATA-6, presented in 
Table 7, are non-dimensionalised using the fol- 
lowing expression 

C> = w*L2[p&.,*d2)]“2 (37) 

Here, the reduction of frequencies by the 
refined theory is quite significant - of the 
order of more than 50% of Timoshenko’s 
theory frequencies - for first three modes. 

CONCLUSIONS 

A closed form solution of higher order refined 
theory is presented for the vibration analysis of 
composite and sandwich beams. Using Hamil- 
ton’s principle, equations of dynamic 
equilibrium are derived and with standard 

Table 7. Comparison of non-dimensional natural frequen- 
cies of a deep sandwich beam (DATA-6) 

n FOBT HOBTS 
(Ref. 35) 

HOBT 

1 2.229 1.293 1.293 
2 5.515 2.787 2.744 
3 8.699 4.315 4.073 
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eigenvalue routines, natural frequencies are 
estimated. Axial, transverse shear and normal 
strains are obtained using cubic, cubic and 
quadratic variation respectively across the thick- 
ness to enable the formulation, model the cross 
sectional warping exactly, without any shear cor- 
rection factors. 

It can be observed from the numerical experi- 
ments that the higher order model is quite 
flexible resulting in lower frequencies and on 
the other hand frequencies of first order theory 
are influenced by its shear correction factor. In 
the case of thick sandwiches, higher order 
model predicts very low frequencies. It is worth- 
while to observe that the order of difference of 
predictions between the refined theory and first 
order theory for thick sandwiches is more than 
50% while for thick composites and thin sec- 
tions this difference becomes marginal. 

Moreover, it emerges from this study that this 
solution scheme aptly fills the gap in higher 
order literature for an analytical solution and 
also is quite adequate to evaluate the funda- 
mental flexural frequencies of sandwich and 
composite laminates. 
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