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A Higher Order Finite Element
Model for the Vibration Analysis
of Laminated Beams

S. R. Marur'® and T. Kant?

A higher order displacement model based on a cubic axial
strain, cubic transverse shear strain and quadratic transverse
normal strain across the thickness of the beam, to model exactly
the warping of the cross section is proposed which maintains
zero stress at the top and bottom of the beam with out the aid
of any shear correction factor. Numerical experiments carried
out clearly bring out the efficacy of this model over the first
order theory for laminated beams.

1 Introduction

The necessity of a flexural theory—which is not dependent
on any shear correction factor, is capable of modelling trans-
verse shear and normal strain effects and also the warping of
cross section and finally is accurate enough for deeper sandwich
and composite laminates with the ease of coding—becomes
much more in the wake of requirement for the analysis of fiber
reinforced structures.

The higher order theory by Kant and Gupta (1988) could
meet all these demands with C° elements for isotropic beams.
This theory was later applied to vibration studies of sandwich
and composite beams by Marur and Kant (1996), considering
each layer of cross section to be isotropic in its plane in onc
dimensional state of stress with out transverse normal strain
effects. Later, an analytical solution to higher order beam dy-
namics with transverse normal strain was proposed by Kant et
al. (1997). A finite element solution with both transverse shear
and normal strains which assumes each layer to be orthotropic
and in a state of two-dimensional plane stress is presented here
for the laminated beam vibration analysis.

2 Higher Order Formulation

The Higher Order Beam Theory (HOBT) based on Taylor’s
series expansion in a x-z plane can be expressed as,
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u(x,z, 1) = u,(x, t) + z0,(x, t)

+ 2fuf(x, ) + 2%0F(x, 1) (1)
wi(x, z,t) = wo(x, t) + 20.(x, 1)

+ ZwE(x, ) + 2205 (x, 1) (2)

where u, and w, are axial and transverse displacements defined
at the neutral axis of the beam, 6, is the face rotation and u}X,
A% ,0., wkand ¥ are higher order terms arising out of Taylor’s
series.

Total energy of an undamped free system is expressed by,

L =%fu’pu'dv —%fe'crdv 3)
where

€= [ex €z yxz]‘v o= [Ux [2p sz]‘ (30)

The field-variablés can be expressed interms of nodal degreeé
of freedom as, )

u = de (4)
where
u=[u wl (4a)
d=Tu, w, 0, uf 6F 6, wi 6¥]' (4b)
and
1 0 z 2227220 0 O
Zy= 4
—"[01000zz2z3} )
The strains are given by,
€ = Upy + 20, + ZPud. + 220%, (5)
€ =0, +zQ2w¥) + 2°(3 %) (6)

Yz = (Wou + 0,) + zQ2u¥ + 8,..)
+ 722(30% + w¥.) + 0% (1)

or expressed in matrix form as,

€, = Zhe* (8)
€, = Zie* (9)
Y = Ziatn (10)

where
e* =[u,, 0 0, u¥ 6% 6, 2wi 360F] (10a)
€= [0 Wox O 2u} 30F 0., wi. 6%1 (10b)
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Z.={l 0 z 2> z2 0 O OY (10¢)
Z=[0 00 0 0 1 z 22 (10d)
Zo=10 1 1 z 22 z 22 2’1 (10e)

Each layer of the cross section is assumed to be orthotropic
and in a two dimensional state of plane stress and is given by,

o= Ce (11)
where C is given in ref. by Kant et al. (1997).
The internal strain energy can be evaluated as,
v=2[[ o+ ctoct virwdar a2

Substituting values from Egs. (8—11), Eq. (12) can be ex-
pressed as,

v=? [(eprer + cubcas (13)
where,
| D* = f Z.CnZidz + f Z.CnZ:dz
+ f Z.CnZ\dz + fZ,CnZ;dz (13a)
and |
D. = f 2.GZ ' dz (135)
The kinetic energy can be expressed as,
T = 1/2fd’@d’dx (14)
where
a=b3 [ zipzidz ' (14a)

=1 Y i

where p, is the mass density of a particular layer. )

The displacements within an element can be expressed in-
terms of its nodal displacements in isoparametric formulations
as,

Table 1 Comparison of nondimensional natural frequencies of a thick
symmetric sandwich beam

n FOBT HOBT4 HOBTS HOBT
a. Axial Frequencies
Axial Mode #
ny 11.035 (4) 11.005(4) 11.005(8) 5.989(10)
b. Bending Freguencies
Bending Mode #
58 2.229(1) 2.330(1) 1.293(1) 1.293(1)
2 5.563(2) 5.976(2) 2.787(2) 2.787(2)
3 8.824 (3) 9.568(3) 4.315(3) 4.311(3)
4 12.016(6) 13.083(6) 5.924 (5) 5.920(9)
S 15.174(7) 16.555(7) 7.645(6) 7.632(13)
6 18.314(9) 20.005(9) 9.491(7) 9.465(15)
c. Shear Freguencies
Shear Mode #
1 11.250(5) 12.321(5) 4.853 (4) 4.853 (4)
2 16.525(8) 17.312(8) 12.317(10) 12.309(20)
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Table-2 Comparison of nondimensional natural frequencies of a deep
unsymmetric composite beam

n FOBT HOBT4 HOBTS HOBT
a. Axial Frequencies
Axial Mode #
1 10.951(6) 10.954(6) 10.686(6) 10.682(6)
2 21.884 (14) 21.738(13) 21.079(13) 21.079(13)
b. Bendina Frequencies
Bending Mode #
1 1.434(1) 1.484(1) 1.418(1) 1.417(1)
2 3.598(2) 3.807(2) 3.532(2) 3.532(2)
3 5.750(3) 6.153(3) 5.675(3) 5.674(3)
4 7.849(4) 8.449(4) 7.788(4) 7.785(4)
5 9.928(5) ) 10.736(5) 9.953(5) 9.945(5)
[ 11.995(8) 13.009(8) 12.157(8) 12.147(8)
¢: Shear Frequencies
Shear Mode #
1 11.181(7) 12.248(7) 221209 (¢2) 11.111(7)
T2 15.883 (10) 16.483(10) 15.663(10) 15.663(10)
d = Na, (15)

where a, is a vector containing nodal displacement vectors of
an element with n nodes and N is the shape function matrix.

The strain with in an element can be written as,
e* = B*a, (16a)

€x = Bya, (16b)

where B* and B,, are strain displacement matrices correspond-
ing to combined axial bending and transverse normal strains
and transverse shear strain components respectively.

The non-zero elements of B* corresponding to a particular
node i can be given as,

By = B33 = By = Bss = N,
Bes = N;; By = 2N;; Bgg = 3N, (17)

and the non-zero elements of B,. corresponding to a particular
node i can be expressed as,

By, = Bes = By = Bgg = Nixs
B33 = N,, B44 = 2Nn BSS = 3Nl (18)
With Egs. (15) and (16), the total energy can be written as,

L=}a: [ NNz, - §aitb [ B*'D*Bdx

+b f B..D.B.dx]a. (19)

Applying Hamilton’s principle on L, we get the governing
equation of motion as,

Md + Kd = 0 (20)

where

M= f]_\_l’@]_\_’dx, (20a)
K=b f B*'D*B*dx + b f@;Z_D_ngxzdx (20b)
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By solving Eq. (20), using standard eigen value solvers, the
natural frequencies and corresponding eigen vectors are directly
obtained. :

3 Numerical Experiments

In Tables 1 and 2, values in paranthesis against each frequency
correspond to the actual mode of beam vibration. HOBT frequen-

cies are compared with those of First Order Beam Theory of
Timoshenko (FOBT) and two other models from Egs. (1) and

(2) — HOBT4 (u,, W,, 0y, u¥) and HOBTS (u,, w,, 6., uk,
6% ). Material data, frequency normalization factors and boundary
conditions are as shown in the work of Kant et al. (1997).

It can be observed that the flexural and shear frequencies of
each model are successively getting reduced with HOBT yield-
ing lowest values. This is due to the softening effect of higher
order terms making the beam more flexible.

Going by the same logic, HOBT4 predictions must be lower
than those of FOBT, but on the contrary their results are higher
in magnitude. This apparent contradiction can be resolved
(Marur and Kant, 1996) by a comparison of results of HOBT3
(u,, W,, 8, with out shear correction factor) with HOBT4. It was
observed that HOBT4 and HOBT3 were equal for symmetric
laminates, as u¥ would be passive for such cases and HOBT4
was lower than HOBT3 for unsymmetric laminates, confirming
the reduction by u¥. Thus in both these cases, the reason for
lower predictions of FOBT compared to HOBT4 was then
traced to its shear correction factor.

In the case of axial frequencies also, HOBT predictions are low—
significantly for sandwiches and marginally for composites—com-
pared to FOBT due to the influence of higher order terms.

4 Conclusions

It can be summarized that the proposed HOBT is quite effec-
tive, particularly for thick sandwiches, that its predictions are
almost half of those by FOBT and for composites too, it is
efficient, albeit marginally and thus positions itself as an effec-
tive tool for laminated beam analysis.
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A Contribution to the Moving Mass
Problem

A. V. Pesterev' and L. A. Bergman?

Introduction

The problem of the dynamic response of a distributed param-
eter elastic system due to a moving mass arises in many engi-
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neering applications. In a recently published paper, Lee (1996)
presents a new method for solving this problem. The authors
believe that Lee is the first to take into account the effect of
separation between the moving mass and beam, which can occur
for large speeds of the moving mass. In this case, solution of
the problem reduces to the subsequent solution of two related
problems. In the first, the conventional moving mass problem
is solved until the moment when the interaction force equals
zero, which implies the onset of separation between the mass
and beam. In the second, during separation, the equations gov-
erning free vibration of the beam and motion of the mass due
to gravity are solved separately until the moving mass recontacts
the structure.

The purpose of this Tech Brief is to suggest some improve-
ments to the method described in Lee (1996). The first (and
main) suggestion is concerned with the method for solving the
conventional moving mass problem. Lee expands the solution
to the problem in terms of eigenfunctions of the beam and
derives a system of second-order ordinary differential equations
(ODE’s) governing the time-dependent coefficients of the
expansion. This system is obtained in a form unresolved with
respect to higher derivatives; that is, their coefficients are time-
dependent functions. Moreover, the question of existence of the
inverse of the matrix of coefficients is not discussed in the
paper.

We will establish that this matrix of coefficients can be in-
verted analytically, resulting in a system of ODE’s in standard
form that is resolved with respect to higher derivatives. At the
same time, the invertibility of the matrix for all values of time
will be proved. We will also demonstrate that, while the method
described in Lee (1996) gives the solution for the case of con-
stant mass speed, it can readily be extended to the case of
varying mass speed. Finally, it will be shown that the equation
of free beam vibration (during separation) can be presented in
terms of the solution of the moving mass problem solved in the
time interval immediately preceding the separation.

Reduction of the System of Differential Equations

The system under consideration consists of an Euler-Ber-
noulli beam of length / and a concentrated mass M moving
along the beam at a constant speed v. We will use the same
notation as in Lee (1996). Let w, and ¢,,(x) be natural frequen-
cies and corresponding eigenfunctions of the beam. For simplic-
ity, let ¢,(x) be normalized to unitary mass

!
fo sl b = f, ()

where 6,,, is the Kronecker delta and m(x) is the mass of the
beam per unit length. As shown in Lee (1996), the transverse
beam response w(x, ¢) can be represented in terms of the ¢, (x)
as

N
wi(x, 1) = 2, b, (x)q.(1). (2)

n=|

The generalized coordinates g,(r) satisfy the system of ODE’s
[Egs. (10) in Lee, 1996, taking Eq. (1) into account]

G+ w2 = M, (0){g = X (Ll — 20 Y $L(L) G

- 02Y pn(Qqn), n=1,..., N, (3)
or in matrix form [Egs. (12) in Lee, 1996]
[MI{q} + [Cl{q} + [K]{q} = {P}, (4)

where £ = ur is the current position of the moving mass in time.

Clearly, matrix [M] depends on time, and the application of
conventional procedures for numerical integration requires the
inversion of the matrix at each time step, but the fact that this
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