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Abstract

A review is made on the di�erent methods used for the estimation of transverse/interlaminar stresses in laminated composite

plates and shells. Both analytical and numerical methods are considered. In numerical methods while the emphasis is given on ®nite

element methods, other methods like the ®nite di�erence method is also brie¯y discussed. Aspects considered are: e�ects of variation

in geometric and material parameters, transverse shear and normal deformation, interface stress continuity and the interfacial

bonding on the accuracy of prediction of transverse/interlaminar stresses. Finally some general conclusions are presented along with

future directions of research on the analysis of multilayered composite plates and shells for free-edge e�ects. Ó 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

It is a well established fact that at free-edges in
composite laminates, interlaminar stresses arise due to a
mismatch in elastic properties between plies. Thus in this
region near the free edge known as boundary layer, it
has been shown that the stress state is three-dimensional
in nature and not predictable accurately by classical
lamination theory (CLT) [1,2]. Over the past 25 yrs,
numerous investigators have used a variety of methods
to attempt to calculate these stresses at straight free-
edges. These include analytical and numerical methods.
Review of literature with many citations up to the year
1989 can be found in [3±5]. A complete review of various
shear deformation theories for the analysis of multilay-
ered composite plates and shells is available in the re-
view articles by Noor and Burton [6,7]. Later Reddy and
Robbins [8] presented a review of various equivalent-
single-layer and layerwise laminated plate theories and
their ®nite element models. The purpose of the survey
herein is to provide a brief but concise review of the
current state-of-the-art in various methods of evaluation
of interlaminar stresses in composite laminates.

The present paper deals with developments in the
following sequence: analytical methods, numerical
methods which include ®nite di�erence method, two-
dimensional ®nite element method, three-dimensional
®nite element method, two-dimensional (2D) to three-
dimensional (3D) global-local method.

It is felt that the present survey paper will be of in-
terest to researchers and engineers already involved in
the analysis and design of composite structures.

2. Analytical methods

In order to evaluate the 3D stress-®eld and the nature
of stress concentration that occurs in composite lami-
nates that have edge boundaries, a 3D elasticity
boundary value problem must be solved. Unfortunately
exact solutions to this problem are, as yet, unavailable.
Thus numerous investigators have presented a variety of
approximate methods to calculate the transverse/inter-
laminar stresses at straight free-edges.

The ®rst approximate solution of ®nite-width com-
posite laminates was proposed by Puppo and Evensen
[9] based on a laminate model containing anisotropic
laminae and isotropic shear layers with interlaminar
normal stress being neglected throughout the laminate.
Other approximate methods were also attempted to
examine the problem such as extension of the
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higher-order plate theory [10] by Pagano [11], the
perturbation method by Hsu and Herakovich [12], a
boundary layer theory by Tang [13] and Tang and Levy
[14], and approximate elasticity solutions by Pipes and
Pagano [15]. Later, based on assumed in-plane stresses
and the use of Reissner's variational principle, Pagano
[16,17] developed an approximate theory. Even though
there is no stress singularities involved in the formula-
tion, the approach has certain features signi®cantly im-
portant in objectively determining detailed laminate
stress ®elds. In most methods the laminate is assumed to
be su�ciently long. Hence, due to principle of Saint±
Venant, the in¯uence of the loading point on other
remote regions is negligible. The validity of this principle
was also assumed by Wang and Choi [18±21]. They used
the Lekhnitskii's [22] stress potential and the theory of
anisotropic elasticity and were able to determine the
order of stress singularities at the laminate free-edges.
The eigenfunction method developed by them involves
the solution of a complicated and tedious eigenvalue
problem and requires the use of a collocation technique
at every ply interface in order to satisfy traction conti-
nuity. This limits the application of this technique to
relatively thin laminate.

Stein [23] developed a 2D theory wherein the dis-
placements are expressed by trigonometric series. In
addition to the usual algebraic through-the-thickness
terms assumed for the displacements, trigonometric
through-the-thickness terms are added to give more
accurate results. Later Stein and Jegley [24] using this
theory studied the e�ects of transverse shear on cylin-
drical bending of laminated composite plates and
proved that this theory predicts the stresses more accu-
rately than other theories. A simple technique to analyse
symmetric laminates under tension or compression
based on assumed stress distributions using the principle
of minimum complimentary energy and the force bal-
ance method was presented by Kassapogolou and
Lagace [25,26]. Later Kassapogolou [27] generalised this
approach for general unsymmetric laminates under
combined in-plane and out-of-plane (moment and
shear) loads. The formulation, although accurate for
plates that are homogeneously anisotropic, does not
adequately model the mismatches in Poisson's ratios
and the coe�cients of mutual in¯uence that exist be-
tween di�erent plies in the through thickness direction.

An accurate theory for interlaminar stress analysis
should consider the transverse shear e�ect and conti-
nuity requirements for both displacements and interla-
minar stresses on the composite interface. It is also
advantageous if the formulation is variationally consis-
tent so that it can also be used for ®nite element for-
mulation. In view of the importance of satisfying the
above conditions and obtaining the interlaminar shear
stress directly from the constitutive equations, Lu and
Liu [28] developed an Interlaminar Shear Stress Conti-

nuity Theory (ISSCT). Using this theory they were able
to determine the interlaminar shear stress directly from
the constitutive equations. However, due to the ne-
glecting deformation in the thickness direction, they
could not calculate the interlaminar normal stress di-
rectly from the constitutive equations. In addition, a
small discrepancy between their results and Pagano's
elasticity solution [29] in the interlaminar shear stress for
composite laminates with small aspect ratios has also
been reported. Touratier [30] proposed a theory in
which the shear stress is represented by a certain sinu-
soidal function. Numerical results are presented for the
bending of sandwich plates and compared with the re-
sults obtained from other theories to show that this
theory was more accurate than both ®rst-order shear
deformation and some higher-order shear deformation
theories. In conventional analysis for laminated com-
posite materials the composite interface is always as-
sumed to be rigidly bonded. However due to the low
shear modulus and poor bonding, the composite inter-
face can be non-rigid. Based on this understanding, Lu
and Liu [31] in a continuation of the ISSCT, later de-
veloped the so-called Interlayer Shear Slip Theory
(ISST) based on a multilayer approach to investigate
interfacial bonding on the behavior of composite lami-
nates. They used Hermite cubic shape functions as the
interpolation function for composite layer assembly in
the thickness direction and obtained closed-form solu-
tion for the cases of cylindrical bending of cross-ply
laminates with non-rigid interfaces. From the results it
was concluded that at some special locations, namely
singular points, the transverse shear stress or in-plane
normal stress remains insensitive to the condition of
interfacial bonding. Later using the ISST, Lee and Liu
[32] derived closed-form solution for the complete
analysis of interlaminar stresses for both thin and thick
composite laminates subjected to sinusoidal distributed
loading. From the results it was shown that this theory
could exactly satisfy the continuity of both interlaminar
shear stress and interlaminar normal stress at the com-
posite interface and also the interlaminar stresses could
be determined directly from the constitutive equations.

Rohwer [33] presented a comparative study of vari-
ous higher-order shear deformation theories for the
bending analysis of multilayer composite plates. The
advantages and disadvantages of the various theories
were highlighted with the analysis carried out on a
rectangular plate with varying slenderness ratio, layer
number and thicknesses, edge ratios and material
property relations. Using a double Fourier series ap-
proach Kabir [34,35] presented the results of the varia-
tions of transverse displacements and moments for
various parametric e�ects for antisymmetric angle-ply
�45�=ÿ 45�� and symmetric angle-ply �45�=ÿ 45��s
laminated plate with simply supported boundary con-
ditions at all edges. Later Kabir [36] using the same
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analytical approach and Kirchho�'s theory analysed a
simply supported laminated plate with arbitrary lami-
nations �0�=45�� and compared the results with the
available ®rst-order shear deformation based ®nite ele-
ment solutions. Ko and Lin [37] used boundary layer
theory in conjunction with the method proposed by
Kassapogolou and Lagace [25,26] to analyse the 3D
stress distribution around a circular hole in symmetric
laminate subjected to far-®eld in-plane stresses. All the
boundary conditions for each ply and the interface
traction continuity were exactly satis®ed. The laminate
was subdivided into interior region and boundary layer
region and each stress component is determined by su-
perposition of the interior stress and boundary layer
stress. The Lekhnitskii's [22] theory of 2D anisotropic
elasticity in conjunction with CLT [1,2] was used for the
interior region and the stress function approach with
principle of minimum complimentary energy in the vi-
cinity of free-edge around the hole namely the boundary
layer region. Later Ko and Lin [38] extended the same
approach to analyse complete state of stress around a
circular hole in symmetric cross-ply laminates under
bending/torsion.

Wang and Li [39] used 3D anisotropic elasticity and
the method of separation of variables to derive the
equilibrium equations with unknown displacements for
each cylindrical lamina of a multilayered shell subjected
to axisymmetrically distributed mechanical and thermal
load with various end boundary conditions. Then
making the displacements and stress expressions satisfy
the boundary conditions at the interfaces of the plies,
they were able to determine the interlaminar stresses
exactly.

Wu and Kuo [40] proposed a local higher-order
lamination theory to evaluate the interlaminar stresses.
They derived the equilibrium equation by introducing
the displacement continuity constraints at the interface
between layers into the potential energy functional of
the laminates by Lagrange multiplier method and de-
®ning the Lagrange multipliers as the interlaminar
stresses �sxz; syz; rz� at the interface between the layers.
They used the Fourier series expansion method to ana-
lyse the problem. Since they introduced the interlaminar
stresses as the primary variables, they could avoid the
tedious integration operation in the equilibrium equa-
tions method as well as the discontinuities in interlami-
nar stresses at the interface in constitutive equations
method.

Becker [41] made use of warp deformation mode in
the form of a cos-function for v displacement and sine-
function deformation mode for w displacement and
developed a new closed-form higher-order laminated
plate theory.

Using the approach similar to that of Kassapoglou
and Lagace (see, for example, Refs. [25,26]), an analyt-
ical method was presented by Mortan and Webber

[42] to determine the free-edge stresses due to thermal
e�ects.

To study the interlaminar stresses in cylindrical shells
under static and dynamic transverse loads and to de-
termine the dynamic magni®cation factors (DMF), (i.e.
the ratio of the maximum dynamic response to the
corresponding static response) Bhaskar and Varadan
[43] used the combination of Navier's approach and a
Laplace transform technique to solve the dynamic
equations of equilibrium. The analysis has been carried
out within the purview of a Mindlin type ®rst-order
shear deformation theory (FSDT). From the results they
observed that the DMF for the de¯ection and the in-
plane stress remain close to 2.0, and for the interlaminar
stresses can reach higher values depending on the ge-
ometry of the shell and the localised nature of loading.

An approximate method based on equilibrated stress
representations and using the principle of minimum
complimentary energy to investigate the interlaminar
stresses near straight free-edges of beam-type composite
laminate structures under out-of-plane shear/bending
was developed by Kim and Atluri [44]. The analysis is
di�erent from the previous assumed stress method in that
it includes longitudinal degrees-of-freedom (dof) in the
stress distribution. The unknowns in the resulting stress
expressions are obtained by solving an eigenvalue prob-
lem whose coe�cients are not constants but depend on the
shear loading location. The stress equilibrium, compat-
ability and all of the boundary conditions are satis®ed.

Interlaminar stresses arise in order to satisfy equi-
librium at locations with in-plane stress gradients. One
such case of stress gradients arises when there is a ma-
terial discontinuity within a structure. To evaluate the
interlaminar stresses at material discontinuities Bhat
and Lagace [45] proposed an analytical method.The
laminate under investigation was subdivided into two
regions with di�erent layups joined together. They ex-
pressed the stress in each region in terms of eigenfunc-
tions which satisfy equilibrium and used the principle of
minimum complimentary energy to obtain the di�eren-
tial equations of the problem and thus solve the eigen-
functions in each region. An approximate analytical
method based on the variational principle of compli-
mentary virtual work and using Lekhnitskii's stress
functions in each layer was proposed by Yin [46] for
free-edge stresses due to thermal and mechanical loads.
The method, though not rigorous and accurate, was
applicable to free-edge problems involving non-linear
and inelastic material behavior.

Connolly [47] obtained simpli®ed equations for de-
termination of interlaminar normal stress based on the
simpli®cation of the more general solution provided by
Kassapoglou [27]. The equation takes into account the
in¯uence of material properties and geometry on the
maximum values of normal interlaminar stresses at layer
interfaces.
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For most designs of composite laminates, symmetric
layup about the midplane are often desirable in order to
avoid coupling e�ects between bending and extension.
However some practical applications require unsym-
metric laminates to achieve speci®c design requirements.
In order to study the in¯uence of bending-extension
coupling on the interlaminar stress distribution in un-
symmetric laminates Lin et al. [48] extended the method
proposed by Kassapoglou and Lagace [25] and showed
that the stress variations for each ply in unsymmetric
laminates are more complex than those assumed by
Kassapoglou and Lagace.

He [49] proposed a re®ned shear deformation lami-
nated shell theory with discrete layer modeling based on
the assumption that the transverse shear strain across
any two di�erent layers are linearly dependent on each
other. The theory contains only ®ve dependent variables
as in FSDT [50] for laminated shells but the set of
governing equations is of the twelfth-order, i.e. two or-
ders higher than FSDT. The restriction on the applica-
tion of this theory is that the thickness of the shell must
be small compared to the principal radii of curvature.
Thus, the analytical solutions can be obtained for only a
few cases. Later He and Zhang [51] using the above
theory obtained closed-form solutions for the bending
analysis of rectangular simply supported antisymmetric
angle-ply laminated plates subjected to sinusoidal
transverse loads. From the results it was shown that this
theory could give better estimates of stresses and dis-
placements as compared to FSDT and CLT.

Ramalingeswara and Ganesan [52] made a compar-
ative study of the interlaminar stresses in shells of rev-
olution using FSDT, higher-order shear deformation
theory with thickness stretch (HSDT7) and a higher-
order shear deformation theory with higher-order in-
plane displacement terms (HSDT9). The interlaminar
stresses were evaluated using equilibrium equations.
Cross-ply parabolic and hyperbolic caps subjected to
uniform external pressure and a simply supported cy-
lindrical shell subjected to an internal sinusoidal pres-
sure were considered in their study. Later using the
above three models, Ramalingeswara and Ganesan [53]
compared the results of interlaminar stresses in a cross-
ply spherical shell subjected to uniform transverse
pressure. Recently a comparison of the analytical solu-
tions of a few laminated plate theories for the analysis of
multilayer composite plates were presented by Idlbi et al.
[54] Carvelli and Savoia, [55] Bose and Reddy [56].

3. Numerical methods

The approximate analytical methods discussed in
Section 2 are often inadequate for evaluation of local
stress concentrations, and the procedure becomes ex-
tremely tedious when a multilayer laminate is involved.

A common feature of all analytical methods is that they
can only be used for the simplistic geometric cases, since
for thick realistic structural laminates, the solution to
the full 3D problem is extremely complex. Thus a variety
of numerical methods, e.g., ®nite di�erence and ®nite
element, have been developed to calculate these inter-
laminar stresses at straight free edges. These methods
not only provide the option of placing a re®ned mesh
near regions of possible stress concentration but can
also be used with ease for the accurate analysis of lam-
inated composite structures having complicated geom-
etry and/or loading.

3.1. Finite di�erence method

The ®rst theoretical attempt to solve the free-edge
problems of anisotropic elasticity in conjunction with a
numerical method to solve the governing partial di�er-
ential equation was given by Pipes and Pagano [57].
They employed the ®nite di�erence method for their
solution. This method of solution has been well estab-
lished as a technique for obtaining numerical solutions
for elliptical partial di�erential equations [58]. A four
layer ®nite-width composite laminate under uniform
axial strain was studied. In their investigation the ®rst
hint for possible stress singularities at the free-edge was
given. Moreover since they used a relatively coarse mesh
in the ®nite di�erence method, the exact nature of the
stress singularities at the free edges could not be ascer-
tained. Following the approach used by Pipes and
Pagano [57] the interlaminar stress distribution in a four
layer composite laminate in bending was studied by
Salamon [59]. He predicted that the magnitudes of the
interlaminar normal and shear stresses, although in
general relatively small, rise sharply near the free-edges.
This distinguishing feature was observed over a
boundary region of the order of one laminate thickness
inward from the free-edge. Later Atlus et al. [60] pre-
sented a 3D ®nite di�erence solution for the free edge
e�ects in angle-ply laminates. It was shown that the 3D
®nite di�erence method gave improved results as com-
pared to 2D analytical or numerical methods used ear-
lier. They were able to conclude that the peeling stress
rzz and the longitudinal stress rxx have a dominant e�ect
on interlaminar failure characteristics.

3.2. 2D ®nite element method

A considerable body of literature exists on the mod-
eling and analysis of laminated composite plates and
shells using a 2D ®nite element. Reddy [61] gave a
complete review of the literature on ®nite element
modeling of laminated composite plates. But in his pa-
per only investigations up to the year 1985 were in-
cluded. Later Kapania [62] presented a review of
literature up to the year 1989 on the analysis of lami-
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nated shells. For this reason and in view of the recent
diverse advances in ®nite element analyses of laminated
composite plates and shells, it is timely to consider the
subject again and represent it in detail. A review of the
recent literature on the 2D ®nite element modeling of
laminated composite plates and shells is given in this
section.

Engblom et al. [63] developed a shear deformable
isoparametric plate and shell element which includes the
shear e�ects by allowing mid surface displacements to be
independent of the rotations. The formulation is based
on eight-noded quadrilateral geometries with four cor-
ner nodes and four midside nodes located at the mid
surface of the element with six dof per node. The dis-
placement ®eld is expressed in the following form:

u�x; y; z� � u0�x; y� � z�nzhx�x; y� ÿ nyhz�x; y��;
v�x; y; z� � v0�x; y� � z�nzhy�x; y� � nxhz�x; y��;
w�x; y; z� � w0�x; y� ÿ z�nxhx�x; y� � nyhy�x; y��

�1�

in which u0; v0; w0, respectively represents the midplane
displacements and hx; hy ; hz are the surface rotations. A
bi-quadratic interpolation (shape) function is utilised to
specify location of nodal points and to specify dis-
placement variations. They used Guass quadrature to
perform the integration within each layer and the
transverse stresses are calculated using equilibrium
equations.

An eight-noded quadrilateral plate element with ®ve
dof at each of the midside and corner nodes was for-
mulated by Hamdallah and Engblom [64]. The plate
element developed includes shear e�ects. For the pur-
pose of analysing 3D structures they introduced a sixth
dof to represent rotations normal to the plane of the
element. The displacement ®eld of the element can be
written as:

u�x; y; z� � u0�x; y� � zhx�x; y�;
v�x; y; z� � v0�x; y� � zhy�x; y�;
w�x; y; z� � w0�x; y�;

�2�

where the total displacements are represented by u, v
and w whereas the mid surface displacements are given
by u0; v0 and w0. The rotations about y and x axes are
represented by hx and hy , respectively. They used the
equilibrium equations for calculating the transverse
stresses.

Manjunatha and Kant [65] formulated C0 ®nite ele-
ments based on a set of higher-order theories which take
into account the e�ect of non-linear variations of in-
plane displacements, transverse shear deformation,
transverse normal strain thus eliminating the need for
shear correction coe�cients. Sixteen and nine noded
Lagrangian isoparametric elements are used for com-
parison. The various re®ned higher-order theories used
in their study are summarized below separately for

symmetric and unsymmetric laminates in the increasing
order of their dof.

Symmetric laminates:
1. Higher-order shear deformation theory (HOST 5A),

5 dof/node

u�x; y; z� � zhx�x; y� � z3h�x�x; y�;
v�x; y; z� � zhy�x; y� � z3h�y�x; y�;
w�x; y; z� � w0�x; y�:

�3�

2. Higher-order shear deformation theory (HOST 6A),
6 dof/node

u�x; y; z� � zhx�x; y� � z3h�x�x; y�;
v�x; y; z� � zhy�x; y� � z3h�y�x; y�;
w�x; y; z� � w0�x; y� � z2w�0�x; y�:

�4�

Unsymmetric laminates:
1. Higher-order shear deformation theory (HOST 7A),

7 dof/node

u�x; y; z� � u0�x; y� � zhx�x; y� � z3h�x�x; y�;
v�x; y; z� � v0�x; y� � zhy�x; y� � z3h�y�x; y�;
w�x; y; z� � w0�x; y�:

�5�

2. Higher-order shear deformation theory (HOST 9), 9
dof/node

u�x; y; z� � u0�x; y� � zhx�x; y� � z2u�0�x; y� � z3h�x�x; y�;
v�x; y; z� � v0�x; y� � zhy�x; y� � z2v�0�x; y� � z3h�y�x; y�;
w�x; y; z� � w0�x; y�:

�6�

3. Higher-order shear deformation theory (HOST 11),
11 dof/node

u�x; y; z� � u0�x; y� � zhx�x; y� � z2u�0�x; y� � z3h�x�x; y�;
v�x; y; z� � v0�x; y� � zhy�x; y� � z2v�0�x; y� � z3h�y�x; y�;
u�x; y; z� � u0�x; y� � zhx�x; y� � z2u�0�x; y�:

�7�

4. Higher-order shear deformation theory (HOST 12),
12 dof/node

u�x; y; z� � u0�x; y� � zhx�x; y� � z2u�0�x; y� � z3h�x�x; y�;
v�x; y; z� � v0�x; y� � zhy�x; y� � z2v�0�x; y� � z3h�y�x; y�;
w�x; y; z� � w0�x; y� � zhz�x; y� � z2w�0�x; y� � z3h�z �x; y�;

�8�
where u, v and w are the displacements of a general point
(x, y, z) in the laminate in the x, y and z directions,
respectively. The parameters u0; v0; w0, hx; hy and hz

are the appropriate 2D terms in the Taylor series and are
de®ned in x±y plane at z � 0. The parameters
u�0; v

�
0;w

�
0; h

�
y and h�z are higher-order terms in the Tay-
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lor's series expansion that are di�cult to interpret in
physical terms, except that they represent higher-order
transverse cross-sectional deformation modes. Later
Kant and Manjunatha [66] used the same formulation to
study the transverse stresses in multilayer laminates but
di�erent methods to integrate the equilibrium equations.
They used the exact surface ®tting method, direct inte-
gration method and forward and central direct ®nite
di�erence methods. Their study shows that the exact
surface ®tting method gave an accurate estimate of the
transverse stresses compared to other methods. Kant
and Menon [67] extending the same C0 based ®nite el-
ement formulation presented a higher-order displace-
ment model for the analysis of symmetric and
unsymmetric laminated composite sandwich cylindrical
shells. Two shell theories, namely the geometrically thin
shell theory with the shell thickness to radius is less than
unity and a geometrically thick shell theory with the
square of the ratio of the shell thickness to radius is less
than unity, were developed. Results are compared with
available results in the literature to show the accuracy of
the above model. Using the same formulation Kant and
Menon [68] analysed a symmetric and asymmetric
laminated cylindrical shell for interlaminar stresses. A
®nite di�erence scheme maintaining the continuity of
interlaminar stresses across the shell thickness was de-
veloped and used. From the results it was concluded
that the geometrically thick shell theory gives more ac-
curate and reliable solutions than those of shell theory
for both thin and moderately thick shells.

An interlaminar stress mixed ®nite element method
based on the local higher-order lamination theory was
presented by Wu and Kuo [69] to analyse thick sym-
metric laminated composite plates. In their theory, the
displacement continuity at the interface between layers
are introduced in to the potential energy functional of
the considered laminates using Lagrange multipliers and
these Lagrange multipliers are de®ned to be the inter-
laminar stresses �sxy ; syz and rz� at the interface between
layers. The modi®ed potential energy functional is given
by

pmp �
XNL

i�1

Z Z
A

Z hi=2

ÿhi=2

1

2
rxex

� � ryey � rzez � sxycxy

� sxzcxz � syzcyz

�
i
dz dAÿ

Z Z
A

Txu�
� � Tyv�

� Tzw�
�

dA�
XNLÿ1

i�1

Z Z
A
�kx�i�fx�i
�

� �ky�i�fy�i � �kz�i�fz�i
�

dA; �9�
where Tx; Ty and Tz are the tractions applied at upper
surfaces. u�; v� and w� are the displacement compo-
nents at upper surface. �kx�i�ky�i and �kz�i are de®ned as
the tractions �sxz; syz and rz, respectively) at the inter-
face between ith and �i� 1�th layers. A nine-noded

quadrilateral C0 isoparametric element is used in their
formulation. The nodal unknowns assumed are the three
displacements, three rotations and ®ve higher-order
functions as the dof in the mid surface of each layer and
three interlaminar stress function as the dof at the in-
terface between the layers. The local displacement ®elds
are expressed by:

ui�x; y; z� � u0�x; y� � zi�hx�x; y�� � z2
i �wx�x; y�� � z3

i �/x�x; y��;
vi�x; y; z� � v0�x; y� � zi�hy�x; y�� � z2

i �wy�x; y�� � z3
i �/y�x; y��;

wi�x; y; z� � w0�x; y� � zi�hz�x; y�� � z2
i �wz�x; y��;

�10�
where u0; v0; and w0 are three mid-surface displacement
functions, hx; hy and hz are three rotation function and
wx, wy , wz, /x and /y are the other higher-order functions.
zi is measured from the middle surface of the ith layer.
The main advantage of this formulation is that since in-
terlaminar stresses are treated as the primary parameters,
the interlaminar stresses at the interface between the
layers can be uniquely and accurately determined. Later
Wu and Yen [70] extended the same formulation to an-
alyse unsymmetrically laminated composite plates.

Di Sciuva [71] developed a four noded quadrilateral
plate element with 10 dof/node using improved zig-zag
model proposed by him earlier [72]. The displacement
®eld allows a non-linear variation of the in-plane dis-
placements through the laminate thickness and ful®ls a
priori geometric and transverse stress continuity condi-
tion at interfaces, and the static condition of zero
transverse shear stresses on the top and bottom surfaces
for symmetric laminates. The plate model used is based
on the following representation of the displacement ®eld
across the plate thickness.

u � u0 ÿ zw0
;x � f �z�gx �

XNÿ1

k�1

/k�zÿ zk�Yk;

v � v0 ÿ z w0
;y � f �z�gy �

XNÿ1

k�1

wk�zÿ zk�Yk;

w � w0;

�11�

where

f �z� � z dF

�
ÿ dT

4

3h2
z2

�
:

u0; v0;w0; gx; gy ;/k;wk are unknown functions of the x
and y; zk are the coordinates of the N ) 1 interfaces; Yk is
the Heaviside unit function; it takes a value of 0 for z <
zk and the value 1 for z P zk. The rotation ���a stands for
partial derivative o���=oa, dF and dT are tracers which
identify the contribution brought by the various plate
models.

A computational model based on FSDT was pre-
sented by Noor et al. [73] for accurate determination of
transverse shear stresses and their sensitivity coe�cients
in ¯at multilayered composite panels subjected to me-
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chanical and thermal loads. The sensitivity coe�cients
measure the sensitivity of the transverse shear stresses to
variation in di�erent lamination and material parame-
ters of the panel. The panel discretization is done by
using either a three-®eld mixed ®nite element based on a
2D ®rst-order shear deformation plate theory or a two-
®eld degenerate solid element with each of the dis-
placement components having a linear variation
through the thickness of the laminate. They evaluated
the transverse shear stresses in two phases. The ®rst-
phase consists of using a superconvergent recovery
technique for evaluating the in-plane stresses in di�erent
layers. In the second-phase transverse shear stresses are
evaluated through piecewise integration of the 3D
equilibrium equation in the thickness direction. The
same procedure is used for evaluating the sensitivity
coe�cients of the transverse shear stresses. They have
presented extensive numerical results for multilayered
cross-ply panels and made comparison with those of 3D
®nite element models and an exact solution of the 3D
thermo-elasticity equation of the panel.

A three-noded axisymmetric shell element in curvi-
linear coordinates with 10 dof was proposed by
Touratier and Faye [74] to analyse the edge e�ects in
axisymmetric shells. The formulation does not take in to
account the transverse normal strain. The element pro-
posed is of C1 continuity for the transverse displace-
ments and C0 continuity for the membrane displacement
and the membrane-shear rotation. The displacement
®eld assumed is of the form

U
b
1�n1; n2; f; t� �

Lb

ab
ub�n1; n2; t� ÿ

f
ab

w; b�n1; n2; t�

� c
p

sin
pn
e

c0
b�n1; n2; t�;

U
a
f�n1; n2; f; t� � w�n1; n2; t�;

�12�

where

w; b�n1; n2; t� � ow
onb

; b � 1 or 2:

t is the time, e the thickness of the shell, U
a
1;U

a
2;U

a
n the

appropriate displacement components in curvilinear
coordinates at an arbitrary points (n1; n2; f) and in the
direction of n1; n2; f, �u1; u2;w� are the displacements of a
point on the middle surface, �c1

0 and �c2
0 are the transverse

shear strains at f � 0. The formulation fully avoids
transverse shear locking and membrane locking is
avoided by using the assumed covariant strain method
[75]. Bose and Reddy [76] presented ®nite element
models of various shear deformation theories for the
analysis of composite plates and compared transverse
displacements and through the thickness distributions of
in-plane and transverse stresses. A new method which
reduces the order of di�erentiation by one as compared
to the standard equilibrium approach was presented by

Rolfes et al. [77]. The method requires only quadratic
shape functions for evaluating the required derivatives
at the element level and also the computational e�ort is
low since it requires only C0continuity shape functions
in the ®nite element code. The accuracy of this method is
established by comparing the results of symmetric cross-
ply and antisymmetric angle-ply laminates with exact
3D elasticity solution.

3.3. 3D ®nite element method

There have been several studies in the literature using
three-dimensional ®nite elements to estimate interlami-
nar stresses in the critical regions of laminates. Usually
the analysis results in a large sparse system of equations,
which requires a vast amount of computer storage space
and thus makes 3D ®nite element modeling impracti-
cable and possibly formidable. In view of the above fact
only a few publications are available in this category. In
this section only the developments that have taken place
over the past ®ve years are presented. For earlier work
the reader may consult Refs. [78±82].

Kim and Hong [83] used a 16 noded curved iso-
parametric element without a midside node in the
thickness direction and 48 dof. They used the sub-
structure technique and analysed a laminate with and
without hole. The e�ect of laminate thickness and
stacking sequence on the interlaminar stress near the
free edges in the case of a solid laminate and near the
hole boundary in the case of a laminate with a hole were
studied.

Wanthal and Yang [84] developed three ®nite ele-
ments for the analysis of thick laminates where the e�ect
of transverse shear deformation was very severe. The
®rst layer quadrilateral element (LQ1) is of 16 nodes
with 40 dof with zero transverse normal strain and
constant transverse shear strain. The second layer
quadrilateral element (LQ2) is of 16 nodes with 48 dof
and allows for a constant transverse normal strain and
one of the two terms in the expression for transverse
shear strain is allowed to vary linearly through the
thickness. The third layer quadrilateral element (LQ3) is
of 24 nodes with 64 dof and improves upon the LQ2
element by allowing both terms in the transverse shear
displacement expression to vary linearly through the
layer thickness. Later Yang and He [85] used the LQ3
element for the analysis of free-edge stresses in cross-ply
and angle-ply laminate. They used the preconditioned
conjugate method to solve the system of linear equa-
tions.

Wei and Zhao [86] used a eight-noded linear element
to analyse the stresses of the symmetric cross-ply and
angle-ply laminate loaded with uniform axial strain. A
quasi 3D ®nite element analysis with an initial iteration
stress method was used by Wu [87] for the elasto-plastic
analysis of metal matrix angle-ply composite for their
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thermo-mechanical free-edge e�ects. The Hill yield cri-
terion for anisotropic materials is used in the analysis.

Icardi and Bertetto [88] studied the stress singularity
at the free edge using a 20 noded quadratic interpola-
tion, isoparametric brick element and a 15 noded qua-
dratic interpolation singular wedge element generated
from the 20 noded brick element. The nodal parameters
assumed for both elements are the three displacement
components u, v, w in the x, y, z directions. A predictor±
corrector procedure is used to ful®l the stress contact
and traction free condition. The e�ect of material
properties and layer orientations, the slope of inclined
edges and corner angles were studied.

Chen et al. [89] used ®nite element least-square ex-
trapolation and smoothing technique to evaluate the
interfacial stress distributions in composite laminates. A
quasi 3D technique and complete 3D analysis were both
used to investigate the stress distribution in a graphite-
epoxy laminate. Linear and quadratic least-square ®ts
using two-point and three-point Gaussian integration in
eight noded parabolic quadrilaterals and 20 noded solid
isoparametric elements were used. From the results ob-
tained for symmetric laminate, it was concluded that the
use of above technique o�ers better estimates of stress
distributions and interfacial stresses in composite lami-
nates.

In order to overcome the di�culties encountered by
the fully 3D model Lessard et al. [90] developed the
`Slice Model' thereby reducing the number of elements
required by the fully 3D model, while at the same time
retaining the use of 20 noded quadratic brick element. A
cross-ply laminate subjected to uniaxial tensile strain
was used in the analysis. Through the analysis, it was
shown that the slice model minimizes the number of
elements far from the anticipated singularity and allows
for a very ®ne mesh area near the critical high stress
gradient regions of a composite laminate. It was also
demonstrated that the computer run time also reduced
drastically. Soutis et al. [91] presented the results of in-
terlaminar stress distributions around a circular hole in
symmetric composite laminates under in-plane tensile
loading using 3D ®nite element analysis and compared
the results with those estimated by Ko and Lin [37]
analytical approach. From the results it was shown that
the ®nite element analysis results are considerably higher
than those predicted by Ko and Lin analysis.

3.4. 2D±3D global/local ®nite element method

The initial approach adopted to analyse composite
laminates of ®nite size subjected to external loads was of
a 2D ®nite element method. Though the 2D elements can
yield accurate results at locations away from the traction
free-edges and discontinuities, it cannot predict accu-
rately the complex stress state near any geometric or
material discontinuities or near a traction free-edge [92].

As limitations of the 2D technique became known and
more powerful computers became available, 3D ®nite
elements became increasingly used [78,92]. For many
applications however a full 3D analysis can be a waste of
resources. In view of the above facts many investigators
attempted global/local ®nite element analysis [93±97]
that perform separate analyses on the global and local
region. Thomson and Gri�n [98] extended the same
approach and proposed a 2D±3D global/local ®nite ele-
ment analysis. They subdivided the entire laminate into
local and global regions, the local region being the trac-
tion free-edges, and the area around geometric or mate-
rial discontinuities and the global region is location far
away from local region. They used a simpli®ed 2D ®nite
element analysis on a global region and a more detailed
3D ®nite element analysis on a local region. Later they
extended this approach to study the stress state around a
hole in a cross-ply and general symmetric laminated plate
with a central hole [99]. They were able to demonstrate
that the global/local analysis technique yields a reason-
ably economical solution by achieving considerable
savings in computer time and storage as compared to a
complete 3D ®nite element method.

4. Future directions of research

The occurence of interlaminar stresses at the geo-
metric boundaries such as free-edges, cut-outs, notches,
and holes of structural components madeup of com-
posite laminate is an important phenomenon since high
a concentration of these stresses may result in delam-
ination cracks at these locations which reduce the
strength and sti�ness and thus limit structural life.
Therefore there is a need to undertake the following
studies and extensions:
1. A detailed study of the e�ects of anisotropy and dis-

continuities in the plate/shell topology on the signi®-
cance of transverse shear and transverse normal
strains and the extent of edge zone or boundary layer.

2. A comparative study not only to validate the accura-
cy but also to highlight the advantages and draw-
backs of many existing computational models based
on various laminate theories (equivalent single layer
theories, discrete layerwise theories, complete layer-
wise theories) and to understand the physical phe-
nomenon associated with the transverse/
interlaminar stresses on the plate/shell behavior un-
der complex geometry, loading and boundary condi-
tions.

5. Conclusion

A review is made of recent developments in di�erent
methods used for the estimation of transverse/interla-
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minar stresses in multilayered plates and shells. The
literature devoted to analytical and numerical methods
is reviewed. Discussion focuses on the accuracy of var-
ious analytical and numerical models. The e�ects of
variations in geometric and material parameters, trans-
verse shear and normal deformation, aspects of interface
stress continuity and interfacial bonding on the accuracy
of prediction of transverse/interlaminar stresses in lam-
inated composite plates and shells are also discussed.

On the basis of current literature survey, the follow-
ing general conclusions seem to be justi®ed.
1. The CLT and ®rst-order shear deformation theory

(FOST) generally provide an acceptable compromise
between accuracy and economy in predicting the
global responses of thin and relatively thin composite
laminates. But these theories fail to give accurate re-
sults for the through-the-thickness stress response in
regions of discontinuity such as cut-outs, holes, and
boundaries. Moreover these theories require shear
correction coe�cients to rectify unrealistic variations
of the shear strain/stress through the thickness.

2. 3D theories, in which each layer is treated as a homo-
geneous anisotropic material, predicts the 3D stress
state at the boundaries more accurately than CLT
and FOST, but their storage requirements due to
the large number of variables and computer costs
make them impracticable.

3. Because of the complexities, analytical solutions for
the prediction of transverse/interlaminar stresses exist
for composite laminates with simple geometry, load-
ing and boundary conditions. Therefore more empha-
sis has been placed on the use of numerical methods
when the composite laminate problem involves com-
plicated geometry, loading and boundary conditions.
Among the various numerical techniques available,
it is seen that the ®nite element method is not only sim-
ple but straight forward for e�cient programming and
also versatile enough to cover all types of problems
relevant to practical situations. Using this technique
it has been possible to incorporate the e�ect of mois-
ture and temperature on the interlaminar stresses.

4. Laminate analyses using displacement theories are
preferred to stress based theories which are seldom
used in practice because of the di�culty in developing
reliable ®nite element methods.

5. In the ®nite element method C0 continuity elements
are preferred to C1 continuity elements as the latter
complicates development of conforming elements
and inhibits their use with other commonly used ®nite
elements.

6. For many applications a full 3D ®nite element analy-
sis is not cost e�ective as it needs large computer core
storage and running times in comparison with 2D ®-
nite element analysis. Thus, a 2D±3D global/local ®-
nite element method can drastically improve the
e�ciency of computerised analysis and provide siz-

able savings by circumventing the need to perform ex-
pensive analyses near critical regions.

7. In the evaluation of transverse/interlaminar stresses,
the stresses are most commonly obtained using post
processing technique by integrating the equilibrium
equations of 3D elasticity rather than using the con-
stitutive relations as the latter method leads to dis-
continuities of stresses at the interface of two
adjacent layers of a laminate and thus violates the
equilibrium equations.
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