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Abstract

The paper considers the elastic buckling of skew ®bre-reinforced composite and sandwich plates subjected to thermal loads. To

the best of the authors' knowledge, there is no paper in the open literature on this subject and the present paper attempts to ®ll this

gap. Two shear deformable ®nite element models, one based on ®rst-order shear deformation theory and the other based on higher-

order shear deformation theory, are employed to obtain thermal buckling solutions. Extensive numerical results are presented for

both thin and thick laminated composite plates with various skew angles, lamination parameters and boundary conditions. A few

results for skew sandwiches are obtained for various geometric parameters and skew angles. Results presented, not available so far,

could be useful to designers and researchers who may use them as benchmark values to validate their numerical techniques and

software for similar problems. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fibre-reinforced composite materials due to their
high speci®c strength and sti�ness are becoming in-
creasingly used in many engineering applications, espe-
cially in the aerospace and ship building industries. It is
well known that skew or oblique plates made of these
materials are important structural components of ship
hulls and swept wings of aeroplanes. Buckling is one of
the primary modes of failure of these elements when
they are subjected to membrane stresses caused by either
thermal loads or mechanical loads or a combination of
these loads. Thus the buckling strength of skew com-
posite laminates is one of the factors governing their
design and its accurate determination is of interest to
designers.

Considerable research [1±4] has been published in-
vestigating the buckling response of skew composite
laminates. In these investigations, numerical methods
such as the ®nite element method, the Rayleigh±Ritz
method, etc. are used as exact solutions cannot be ob-
tained due to the use of a non-orthogonal coordinate
system in the derivation of the governing di�erential
equations. Reddy and Palaninathan [1] have employed a

triangular ®nite element based on classical laminated
plate theory. Jaunky et al. [2] and Wang [3] have used the
Rayleigh±Ritz method incorporating ®rst-order shear
deformation e�ects. Very recently, Babu and Kant [4]
have presented two C0 shear deformable ®nite element
formulations for the buckling analysis of skew laminated
composite and sandwich panels. A 16-node bi-cubic
Lagrange element is used in the formulations. In all
these investigations, skew laminates subjected to only
mechanical loads are considered. Surprisingly, in the
case of skew composite laminated and sandwich plates
subjected to thermal loads, there are virtually no papers
in the open literature; although there are a few studies
[5±7] on thermal buckling of isotropic skew plates.

The objective of this work is to ®ll this gap by pre-
senting a study of the thermal buckling of skew lami-
nated composite and sandwich plates. The two shear
deformable ®nite element models presented by the au-
thors [4] previously for mechanical buckling analyses are
employed here for thermal buckling analyses. One of
these models is based on Reissner±Mindlin ®rst-order
theory and the other is based on a higher-order theory
developed by Kant and his fellow researchers [8±10].
The accuracy of the models is veri®ed against the liter-
ature values for isotropic skew plates. New results are
presented for skew laminated composite and sandwich
plates using the standard material properties available in
the literature.
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2. Theoretical formulation

The two shear deformation theories considered for
investigation in the present work are based on the as-
sumption of the displacement ®elds in the following
form:

(a) First-order shear deformation theory (FSDT), 5
degrees of freedom/node

u�x; y; z� � u0�x; y� � zhy�x; y�;
v�x; y; z� � v0�x; y� ÿ zhx�x; y�;
w�x; y; z� � w0�x; y�:

�1�

(b) Higher-order shear deformation theory (HSDT),
9 degrees of freedom/node

u�x; y; z� � u0�x; y� � zhy�x; y� � z2u�0�x; y� � z3h�y�x; y�;
v�x; y; z� � v0�x; y� ÿ zhx�x; y� � z2v�0�x; y� ÿ z3h�x�x; y�;
w�x; y; z� � w0�x; y�;

�2�
where u, v and w de®ne the displacements of any generic
point (x, y, z) in the plate space, u0, v0 and w0 denote the
displacements (Fig. 1) of a point �x; y� on the middle
plane, hx and hy are the rotations of normal to middle-
plane about x- and y-axes, respectively. The parameters
u�0, v�0, h�x and h�y are higher-order terms in the Taylor
series expansion and are also de®ned at the mid-surface.

Neglecting the transverse stress �rz� and strain �ez�,
the Duhamel±Neumann form of Hooke's law for the Lth

lamina in the laminate co-ordinates �x; y; z� is written as

rx

ry

sxy
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sxz

8>>>><>>>>:
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or in short form

r � Q�eÿ et� �4�
in which

r � rx ry sxy syz sxz

� 	T
;

e � ex ey cxy cyz cxz

� 	T
;

et � ax ay axy 0
� 	T

DT

�5�

are respectively the stress, the total strain and the ther-
mal strain vectors. The Qij's are the plane stress reduced
sti�ness coe�cients. The transformation of the stresses/
strains between the lamina and laminate co-ordinate
systems follows the usual stress tensor transformation
rule. DT is temperature rise. The ax, ay and axy terms are
de®ned as follows:

ax � a1 cos2h� a2 sin2h;

ay � a1 sin2h� a2 cos2h;

axy � 2�a1 ÿ a2� sinh cosh;

�6�

where a1 and a2 are the thermal expansion coe�cients of
the lamina along the longitudinal and transverse direc-
tions of the ®bres, respectively. It will be noted that the
theoretical formulation given in the rest of the paper is
based on HSDT and the formulation corresponding to
FSDT can be obtained from that of HSDT by trun-
cating the terms corresponding to the higher-order dis-
placement degrees of freedom.

Substituting Eq. (2) into Green's strain tensor [11],
with ez � 0, the generalized strain vector components
are obtained as:

ex � e0
x � zv0

x � z2 e�x � z3v�x � z4e��x � z5v��x � z6e���x ;

ey � e0
y � zv0

y � z2e�y � z3v�y � z4e��y � z5v��y � z6e���y ;

cxy � e0
xy � zv0

xy � z2e�xy � z3v�xy � z4e��xy � z5v��xy � z6e���xy ;

cyz � /0
y � zw0

y � z2/�y � z3w�y � z4/��y � z5w��y ;

cxz � /0
x � zw0

x � z2/�x � z3w�x � z4/��x � z5w��x :

�7�
Note that the ®ve generalized strain components are

expressed in terms of 33 mid-surface strain components
denoted by the vector, �e. Each of the components of the
strain vector, �e has both linear ��e0� as well as non-linear
parts ��eL� which are expressed in terms of mid-plane
displacement components (see Appendix A).

In the absence of external loads, the total potential
energy of the laminate for the thermal buckling problem
is expressed as

P � 1

2

Z
v
fe0 ÿ etgTrdv�

Z
v

eT
L rdv; �8�

where e0 and eL are respectively the linear and non-linear
parts of the generalized strain vector, e. The second
expression in the above equation is the work done by
initial (or prebuckling) stresses. Substituting for e0, eL

and r in Eq. (8) and performing an explicit integration
through the laminate thickness, the potential energy of
the laminate is rewritten asFig. 1. The geometry of skew laminate.
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The components of stress resultant and stress couple
vectors in Eq. (10) are de®ned as follows:
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where

i; j � 1; 2; 3 and Hi � �z
i
L�1 ÿ zi

L�
i

After integration, the stress resultants in Eqs. (11)±
(13) are written in matrix form as

�r � D�eÿ �rt; �15�
where

D �
DM DC 0
DT

C DB 0
0 0 DS

24 35 �16�

in which DM, DB, DC and DS are the membrane, ¯exural,
membrane±¯exural coupling and shear rigidity matrices,
respectively. The components of the rigidity matrix are
given in Appendix A.

Following the standard procedure of the ®nite ele-
ment formulation and the transformation of the sti�ness
matrices and the load vector from global axes xÿ y to
local axes x1 ÿ y1 (Fig. 1) as explained in Ref. [4], the
equilibrium and stability conditions are obtained as

K0
�d � R; �17�

�K0 � kKg�d�d � 0; �18�
where K0, Kg and R are the linear sti�ness matrix, the
geometric sti�ness matrix and the thermal load vector,
respectively. �d is the nodal displacement vector of the
plate.

2.1. Thermal buckling analysis

The calculation of the critical buckling temperature
consists of two stages. For a speci®ed rise in temperature
�DT �, a linear static analysis (17) is carried out to de-
termine the thermal stress resultants. These stress re-
sultants are then used to compute the geometric sti�ness
matrix which is subsequently used in Eq. (18) to deter-
mine the smallest eigenvalue, k and the associated mode
shape, d�d. The critical temperature, Tcr of the plate is
calculated using

Tcr � k DT : �19�

3. Numerical results and discussion

Computer programs have been developed, based on
the foregoing ®nite element models, to solve a number of
thermal buckling examples of skew composite laminated
and sandwich plates. The programs can handle panels
subjected to non-uniform temperature rise over the
surface and through the thickness. However, in all the
examples considered here, the temperature rise is as-
sumed to be uniform. In general a 6� 6 skew mesh of
16-node elements has been used in the computations
except for the convergence study presented on isotropic
plate. The selective integration scheme, namely 4� 4
Gauss±Legendre for the membrane, ¯exure, membrane±
¯exure and 3� 3 for the shear energy contributions was
used for thin plates �side to thickness ratio �a=h� > 20�
and a full �4� 4� integration scheme is used for thick
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laminates. All of the laminates considered were assumed
to have an aspect ratio of a=b � 1, though the general
case a 6� b may also be studied without any di�culty. In
all of the FSDT model computations, a shear correction
factor of 5=6 was used.

Due to the lack of comparative results for skew
composite laminated plates, the accuracy of the present
formulations was evaluated only with respect to results
for isotropic plates. Subsequently, some new results are
presented for laminated composite and sandwich skew
plates.

3.1. Isotropic skew plates

Critical buckling temperature values of clamped iso-
tropic skew plates are given by Prabhu and Durvasula
[7]. They used classical plate theory in conjunction with
the Ritz method. To obtain the classical plate theory
solution, a thin plate with a=h � 1000 is analysed here.
The critical temperature values are evaluated in non-
dimensional form, expressed as k�T � Eab2hTcr=p2D
where Tcr is the critical temperature, a the thermal ex-
pansion coe�cient, E the Young's Modulus and
D � Eh3=12�1ÿ m2�. Poisson's ratio, m is 0.3. The results
obtained with full integration (FI) and selective inte-
gration (SI) schemes are given in Table 1 for four skew
angles, W � 0°; 15°; 30° and 45°. For W � 45°, the re-

sults obtained with successive re®ned meshes are also
presented. The results of the present models obtained
with the SI scheme are almost identical with the results
given in [7] and the di�erence between the two integra-
tion schemes is negligible. Thus, the results demonstrate
that the 16-node element is less susceptible to shear
locking even in a distorted mesh. It is noted that the
element exhibits monotonic convergence and a 6 ´ 6
skew mesh is considered adequate for further analysis.

3.2. Composite skew laminates

Cross-ply and angle-ply laminates are considered.
The lamination schemes used are: (i) symmetric cross-
ply (0°/90°/90°/0°) and (ii) anti-symmetric angle-ply (45°/
)45°/. . .) with the number of layers, NL � 4 and 10.
Both thin and thick skew laminates with four di�erent
edge conditions are analysed. The edge conditions con-
sidered are: (i) all edges simply supported (SSSS), (ii)
straight edges clamped and skewed edges simply sup-
ported (CSCS), (iii) straight edges simply supported and
skewed edges clamped (SCSC) and (iv) all edges
clamped (CCCC). The simply supported (SS2) and
clamped boundary conditions used here are given in
Ref. [4]. The skew angle, W is varied from 0° to 45°. The
material characteristics [12] of individual lamina used
here are:

Table 1

Critical temperature parameter, k�T for clamped isotropic skew plates

W Mesh Ref. [7] HSDT FSDT

FI SI FI SI

0° 6� 6 3.71 3.714 3.710 3.714 3.710

15° 6� 6 3.95 3.952 3.946 3.952 3.946

30° 6� 6 4.80 4.815 4.795 4.815 4.795

45° 3� 3 ) 7.799 6.938 7.799 6.938

4� 4 ) 7.294 6.927 7.293 6.927

5� 5 ) 7.105 6.922 7.105 6.922

6� 6 6.92 7.015 6.919 7.014 6.919

Table 2

Critical temperature parameter �kT 102� of symmetric cross-ply ��0°=90°�S� skew laminate with various edge conditions �a=h � 100� �6� 6 mesh�
W Theory Edge conditions

SSSS CSCS SCSC CCCC

0° HSDT 0.0996 0.1440 0.2530 0.3348

FSDT 0.0997 0.1441 0.2532 0.3352

15° HSDT 0.1017 0.1514 0.2606 0.3441

FSDT 0.1018 0.1515 0.2608 0.3444

30° HSDT 0.1116 0.1794 0.2916 0.3572

FSDT 0.1118 0.1797 0.2919 0.3576

45° HSDT 0.1427 0.2507 0.3295 0.4169

FSDT 0.1432 0.2516 0.3298 0.4174
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Table 3

Critical temperature parameter �kT 102� of anti-symmetric angle-ply (45°/)45°/. . .) skew laminates with various edge conditions

�a=h � 100� �6� 6 mesh�
NL W Theory Edge conditions

SSSS CSCS SCSC CCCC

4 0° HSDT 0.1468 0.2322 0.2322 0.3036

FSDT 0.1469 0.2324 0.2324 0.3040

15° HSDT 0.1492 0.2374 0.2517 0.3248

FSDT 0.1494 0.2377 0.2520 0.3252

30° HSDT 0.1649 0.2652 0.3174 0.3980

FSDT 0.1651 0.2657 0.3178 0.3986

45° HSDT 0.2171 0.3534 0.4629 0.5680

FSDT 0.2174 0.3541 0.4637 0.5691

10 0° HSDT 0.1675 0.2637 0.2637 0.3441

FSDT 0.1675 0.2637 0.2637 0.3442

15° HSDT 0.1696 0.2689 0.2860 0.3683

FSDT 0.1696 0.2690 0.2861 0.3684

30° HSDT 0.1850 0.2980 0.3609 0.4514

FSDT 0.1851 0.2981 0.3610 0.4515

45° HSDT 0.2406 0.3938 0.5266 0.6441

FSDT 0.2407 0.3940 0.5268 0.6443

Table 4

Critical temperature parameter �kT � of symmetric cross-ply ��0°=90°�S� skew laminate with various edge conditions �a=h � 10� �6� 6 mesh�
W Theory Edge conditions

SSSS CSCS SCSC CCCC

0° HSDT 0.0757 0.1044 0.1305 0.1601

FSDT 0.0770 0.1069 0.1344 0.1655

15° HSDT 0.0767 0.1074 0.1340 0.1618

FSDT 0.0784 0.1108 0.1383 0.1674

30° HSDT 0.0821 0.1189 0.1447 0.1690

FSDT 0.0849 0.1243 0.1491 0.1753

45° HSDT 0.0985 0.1462 0.1523 0.1893

FSDT 0.1031 0.1533 0.1577 0.1982

Table 5

Critical temperature parameter �kT � of anti-symmetric angle-ply (45°/)45°/. . .) skew laminates with various edge conditions �a=h � 10� �6� 6 mesh�
NL W Theory Edge conditions

SSSS CSCS SCSC CCCC

4 0° HSDT 0.1061 0.1360 0.1360 0.1609

FSDT 0.1099 0.1422 0.1422 0.1688

15° HSDT 0.1056 0.1364 0.1427 0.1678

FSDT 0.1098 0.1427 0.1496 0.1764

30° HSDT 0.1116 0.1451 0.1625 0.1886

FSDT 0.1162 0.1518 0.1716 0.1995

45° HSDT 0.1341 0.1721 0.1950 0.2249

FSDT 0.1399 0.1805 0.2078 0.2399

10 0° HSDT 0.1208 0.1534 0.1534 0.1809

FSDT 0.1215 0.1544 0.1544 0.1820

15° HSDT 0.1201 0.1537 0.1611 0.1887

FSDT 0.1209 0.1546 0.1621 0.1899

30° HSDT 0.1256 0.1621 0.1835 0.2121

FSDT 0.1265 0.1630 0.1847 0.2135

45° HSDT 0.1497 0.1909 0.2199 0.2526

FSDT 0.1506 0.1918 0.2211 0.2542
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E1=E2 � 15;E3 � E2; G12=E2 � G13=E2 � 0:5000;

G23=E2 � 0:3356; m12 � m13 � 0:3; m23 � 0:49;

a1=a0 � 0:015; a2=a0 � a3=a0 � 1:0;

where a0 is a normalisation factor for the coe�cient of
thermal expansion.

Tables 2 and 3 show the critical temperature pa-
rameter, kT � a0Tcr for symmetric cross-ply (0°/90°/90°/
0°) and anti-symmetric angle-ply �45°=ÿ 45°= . . .� thin
�a=h � 100� skew laminates, respectively. As expected,
the results of the ®rst-order and higher-order theories
show good agreement for all the edge conditions and for
all the skew angles considered.

Tables 4 and 5 show the critical temperature param-
eter for thick �a=h � 10� symmetric cross-ply (0°/90°/
90°/0°) and anti-symmetric angle-ply �45°=ÿ 45°= . . .�
laminates, respectively. It is clear that for both cross-
and angle-ply laminates, the ®rst-order theory over-es-
timates the critical temperature and the di�erence be-
tween the two theories increases with increasing skew
angle. The maximum di�erence between the two theories
occurs with CCCC laminates when W � 45°. The dif-
ference is about 4.7% in the cross-ply laminate and in

the angle-ply laminate with NL � 4, the di�erence is
about 6.7%. However, for the ten layered angle-ply
laminate, the results of both theories are nearly the same
with a maximum di�erence of about 1%. In general, the
critical temperature of both the thin and thick laminates
increases with skew angle. But the increase is more
pronounced in thin laminates.

Figs. 2(a) and (b) show the e�ect of width-to-thick-
ness ratio on the critical temperature of four-layered
anti-symmetric angle-ply (45°/)45°/45°/)45°) skew
laminate for SSSS and CCCC support conditions, re-
spectively. The results obtained with HSDT analysis are
used here. The critical temperature parameter decreases,
i.e., the e�ect of transverse shear deformation increases,
with increase in laminate thickness. The e�ect of trans-
verse shear deformation is seen to increase with increase
in the skew angle for both simply supported and
clamped laminates, but the increase is more signi®cant
in clamped skew laminates. The e�ect of skew angle on
critical temperature decreases with increase in thickness
and for thick laminates with a=h � 5, the skew angle has
negligible in¯uence on critical temperature.

3.3. Skew sandwiches

Symmetric skew sandwich panels with cross-ply
composite face sheets and a honeycomb core are con-
sidered here. The stacking sequence of the panel is [(0°/
90°)5/core/(90°/0°)5]. The material characteristics [13] of
the face sheets and core are:

Face sheets

E1=E2 � 19;E3 � E2; G12=E2 � 0:520;

G23=E2 � 0:338; m12 � m13 � 0:32; m23 � 0:49;

a1=a0 � 0:001; a2=a0 � a3=a0 � 1:0:

Core

E1=Ef
2 � 3:2� 10ÿ5; E2=Ef

2 � 2:9� 10ÿ5; E3=Ef
2 � 0:4;

G12=Ef
2 � 2:4� 10ÿ3; G13=Ef

2 � 7:9� 10ÿ2;

G23=Ef
2 � 6:6� 10ÿ2; m12 � 0:99;

m13 � m23 � 3� 10ÿ5; a1 � a2 � a3 � 1:36a0;

where, Ef
2 refers to the face sheets. Numerical results

are presented in Table 6 for simply supported (SSSS)
panels with W � 0°; 15°; 30° and 45°. Two parameters,
a=h and hf=h are varied, where hf is thickness of each
of the face sheets. For the validation of the present
models, 3-D elasticity solution results [13,14] are also
given for panels with W � 0°. It may be noted that the
HSDT results match well with the 3-D elasticity so-
lution for all values of hf=h, whereas FSDT over-es-
timates the buckling temperature by a signi®cant
margin at higher values of hf=h. In the case of skew
panels, for all values of W and a=h ratios considered,
the FSDT and HSDT results are almost identical for

Fig. 2. E�ect of thickness ratio on the critical temperature of anti-

symmetric angle-ply �45°=ÿ 45°=45°=ÿ 45°� skew laminates (a) SSSS

and (b) CCCC �6� 6 mesh�.
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panels with very thin face sheets (hf=h � 0:025�.
However, with increasing face sheet thickness, FSDT
clearly over-estimates the critical temperature. The
di�erence between FSDT and HSDT increases with
skew angle. For moderately thick panels �a=h � 20�
with hf=h � 0:15, the di�erence increases from about
7.4% to 18.1% as W increases from 0° to 45°. For a
panel with a=h � 10 and hf=h � 0:15, the di�erence
increases from about 22.3% to 41.2% as the skew
angle increases from 0° to 45°.

4. Conclusions

Two C0 isoparametric ®nite element formulations are
used for thermal buckling analysis of skew ®bre-rein-
forced laminated composite plates and composite
sandwich plates. The accuracy of the present formula-
tions is demonstrated for isotropic plates. New results
are presented for laminated anisotropic and sandwich
plates with various skew geometries.

The sensitivity of the critical buckling temperature to
variations in skew angle, width-to-thickness ratio and
boundary conditions is studied. In general the critical
temperature values increase with increase in skew angle
and the increase is more pronounced in thin laminates
than in thick laminates. Through-thickness shear de-
formation is very large in thick laminates, and this ef-
fect increases with increase in the skew angle. The
results show that the di�erences in predictions of FSDT
and HSDT are small for composite laminates. How-
ever, for sandwich panels, in comparison to HSDT,

FSDT over-estimates the critical temperature by a
signi®cant margin and the margin increases as the skew
angle increases. The results presented here for both thin
and thick laminates are the ®rst of their kind and it is
believed that they may serve as benchmark values for
other designers and researchers to test the validity of
their numerical techniques and software for similar
kinds of problems.

Appendix A

The mid-surface strain vector, �e is expressed in terms
of linear ( �e0) and non-linear components ��eL� as

�e � �e0 � �eL; �A:1�
where
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The components of linear strain vector �e0 are:

Table 6

Critical temperature parameter �kT � for simply supported (SSSS) symmetric skew sandwich plates with composite cross-ply face sheets �6� 6 mesh�
a=h W Theory hf=h

0.025 0.050 0.075 0.100 0.150

20 0° 3-D Elas

[13,14]

0.0929 0.0855 0.0791 0.0726 0.0623

HSDT 0.0930 0.0860 0.0794 0.0735 0.0639

FSDT 0.0928 0.0868 0.0815 0.0768 0.0686

15° HSDT 0.1022 0.0939 0.0863 0.0795 0.0688

FSDT 0.1020 0.0950 0.0890 0.0837 0.0747

30° HSDT 0.1357 0.1225 0.1108 0.1010 0.0860

FSDT 0.1353 0.1245 0.1158 0.1085 0.0964

45° HSDT 0.2119 0.1855 0.1638 0.1464 0.1218

FSDT 0.2111 0.1903 0.1750 0.1629 0.1439

10 0° 3-D Elas 0.3220 0.2737 0.2358 0.2072 0.1632

HSDT 0.3231 0.2764 0.2397 0.2113 0.1732

FSDT 0.3211 0.2843 0.2592 0.2402 0.2119

15° HSDT 0.3485 0.2941 0.2528 0.2216 0.1805

FSDT 0.3462 0.3039 0.2757 0.2549 0.2245

30° HSDT 0.4384 0.3555 0.2975 0.2560 0.2046

FSDT 0.4349 0.3716 0.3326 0.3053 0.2674

45° HSDT 0.6252 0.4757 0.3816 0.3191 0.2478

FSDT 0.6187 0.5064 0.4438 0.4029 0.3499
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The rigidity matrices in Eq. (16) are
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where i; j � 1; 2; 3 and l;m � 4; 5
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