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ABSTRACT

The scope of the segmentation method is extended to the solution of orthotropic
rectangular piates, simply supported on two opposite edges and with any other bound-
ary conditions on the remaining two edges. Governing first-order ordinary differential
equations are derived for each of three theories, Kirchhoff, Reissner-Mindlin, and a
higher-order theory. A wide range of problems of plates are solved, and the solutions
ohtained are compared with three-dimensional (3-D) elasticity solutions wherever avail-
able. New results of orthotropic piates with different boundary conditions are presented.
It is shown that for geometrically thin plates, sclutions from all three plate theories
converge to the ciassical Kirchhoff solution, while for thick plates, solutions from only
the higher-order theory are found to be close to the 3-D eiasticity solution.

The present work is next in a series of articles dealing with the siatic analysis of thin/thick
plates by the segmentation method [1-4]. In the earlier articles, the problem of bending
of thin/thick isotropic plaics, simply supported on two opposite edges and with any other
boundary conditions on the remaining two edges, was attempted using;the segmentation
1nethod. The formulations were based on Kirchhoff [2], Reissncr-Mindlin'{3], 2and higher-
order [4] theories. In these articles, isotropic homogeneous material was considered in the
formulation, requiring only twe material constants (E and ). In the prescrit woik the earlier
formulations are extended to tackle the problem of geometrically thin/thick orthotropic
plates. The number of required material constants in the constitutive relations increases to
4,6, and 9 for the Kirchhoff, Reissner-Mindlin, and higher-order plate theories, respectively.
Complete formulations suitable for the segmentation method are presented for each of these
theories, which in final form are a set of first-order ordinary differential equations with
constant coefficients. The set of ordinary differential equations thus obtained is integrated
numerically by the segmentation method, from one edge of the plate to the other. Both
the force and displacement boundary conditions are satisfied at all the edges. The solution
technique employed is found to be numerically very efficient and accurate for the class of
problems considered here. Results obtained here are compared with three-dimensional (3-D)
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elasticity analytical solutions wherever available. Excellent agreement of results obtained
in the present work is seen with the 3-D elasticity analytical solution. It is also seen that
as the span/depth ratio increases, results from all the theories converge to the classical thin
orthotropic plate solution.

THEORETICAL FORMULATION

Governing equations of three theories, Kirchhoff, Reissner-Mindlin, and higher-order,
which define boundary-value problems are summarized in Appendixes A, B, and C, respec-
o tively. Numerical integration of such boundary-value problems by the segmentation method,
_ which was originally due to Goldberg et al. [5], involves reduction of the two-dimensional
(2-D) plate problem to a one-dimensional (1-D) problem by assuming a solution in one
direction, which is chosen here as the y direction. The governing equations are manipulated
algebraically to obtain a set of first-order differential equations involving only some depen-
dent variables which appear naturally on an edge x = constant. These dependent variables
are called intrinsic dependent variables, and the corresponding differential equations with
x as independent variable are termed intrinsic equations. The number of such intrinsic vari-
ables equals the order of the governing partial differential equation of the theory (fourth,
sixth, and twelfth order for Kirchhoff, Reissner-Mindlin, and higher-order theories, respec-
tively). Intrinsic equations consist of a set of first-order partial differcntial equations, each
of which necessarily contains the first derivative with respect to x of onz of the so-called
intrinsic dependent variables. These intrinsic dependent variables appear naturally on the
edge x = constant. In the present formulation these dependent variables, stored in vector Y,
are w. 6,, V;, and M, for Kirchhoff theory, w, 8,, 8,, Oy, M,, M,, for Reissner-Mindlin
theory, and w, 6, 6,, w*, 6;, » Qxy My, Myy, OF, M. My for higher-order theory. The
system of equations obtamed after the required mampulatlons for each of the three theories,
along with the basic assumptions in the respective theories, are presented below.

Kirchhoff thin-plate theory

The formulation for the Kirchhoif thin-plate theory is based on the following assump-
tions:

1. The plate is thin, i.e., 1/a < 1, where h and a are the thickness of the plate and the
width of the plate, respectively.

2. In-plane displacements vary linedrly through the plate thickness.

3. Normals to the mid-surface remain straight and normal to it. and their lengths remain
unchanged during deformation.

Algebraic manipulation of the governing equations, given in Appendix A, gives rise to
the following system of equations:

ow
dx
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oV,
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The other dependent variables are expressed as functions of intrinsic variables, by
simple algebraic relations called auxiliary relations, in the following form:

) D% 62w D1 '
e\ Py 5) a5t + oo =

My, =2D,, ZE;’ (2b)
2’0, M,
0y?2 + 0x
L= (22 =2DyDi - D} 8w | /2D,,+ D,\ o,
Qy:( D, )‘ay3+( D, )ay
gl (D,Dy —4D,,D, — 1)12) dw 2 (4D,y + 91)9%
! D, 0y? D, dy

Oy = 2ny (2c)

(24)

(2e)

The generalized displacement components and the corresponding stress resultants
which form the vector Y of the intrinsic variables are functions of x and y. For a piate
with two opposite edgesy=0and y = b simply supported, these may be represented
in the form of a Fourier series, which automatically satisfies both the displacement and
the force boundary conditions along these edges to any desired degree of accuracy, as

follows:
|

w(x,y) = Z Wy, (x) sin any- Ba)

m=1.35

=3 Bl 2 (3b)
m:l—.g,S b

Vi3 = 37 Venx)sin T (3¢)

m=1,3,5

T
Mit. )= 37 Mn(ysin 22  Gd)

m=1,35

Substitution of the Egs. (3a)-(3d) in the system of Eqs. (1a)~(1d) and analytic in-
tegration of these equations with respect to the independent variable ¥, coupled with the
use of orthogonality conditions of the basic beam functions used in the Yy direction in the
aforesaid expansions, réduccs the set of partial differential Egs. (1a)~(1d) into the following
set of simultaneous first-order ordinary differential equations (say, for the rmth harmonic)
involving only four intrinsic variables. The series uncouples with respect to the harmonic
m, leading to a term-by-term analysis which enables storage of only the final discrete values
of the intrinsic and auxiliary depender:t variables corresponding te a particular harmonic
analysis to be added to'the values of subsequent harmonic analysis:

s

dx
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Dy m?m? 4 s
bTwmx i D_:TMxm i3 %(P: + pz & ph) (40)

dV, e 212 mimt
dx e

am,,, m?m?
s g e (4a)

and the auxiliary relations (2a)—(2e) take the form

D\ m?n? D, .
y m=Z];,5 [( Y Dx) b2 Wy + D, xm] sin —b (50)
Mxy = 2nyex’n ﬂt CcOS .”ﬂ (Sb)
) m=1,3,5 b b
_mzﬂz . mmy :
Qx = 2ny 2 Gx,,, + me sin ——2- (SC)
m=1,3,5 b :
e Z D ity LY Wy + 2D,y + D, M,
> m=13,5 ' D; p2 Wm T A
X 'n;—ﬂ COS ”% : | | (Sd)
D? +4D, Dy — DD, \ m?m? 4D + D,
" = I . | 2D+ By
y il [ ( D, b2 W + D, M,
X %t COoS mTTIy (Se)

Reissner-Mindlin plate theory

In the Reissner-Mindlin plate theory the restriction on transverse normal (whick is
assumed to be perpendicular to middie surface) in the Kirchhoff theory is relaxed. Thus
it is assumed that the transverse normal does not remain normal to the (deformed) middle
surface of the plate. This amounts to including transverse shear strain energy i iie theory.

Algebraic manipuiation of the governing equations, given in Appendix B, gives rise to
the following system of equations: i

g—f =N Gfl:!:s Fl
26, x .

ai - _% aa—iy " g_x | E
I a7 R R TR
a;:x = aaLy» | £9¢)

M., Gy, [dw D}\d%, D,oM
el Be | ReCm LY R Ve S s AR | 6
5 = (5 +0) (-3t 5% D F
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Other dependent variables for Reissner-Mindlin theory are given by

Gy.h (Ow k
=it i
" ks (ay r y)

D{\oee, b,
i (Dy . DT)E T

(7a)

(7b)
For a plate with two o

PPosite edges y = 0 and Y =bsimply Supported, intrinsic variables
may be represented by means of a Fourier series as described earlier jn Egs. (3a)(3d). Only
those variables not deﬁned earlier are given below

m7
@M= 3 8,0(x)cos M (8a)
m=1,3,5 b

G0 = 3 Qenr)sin T (85)
m=1,35

mm
Myy(x,y) = M,y (x) cos Ty

(8c)
Substitution of Egs.

earlier procedure reduces
first-order ordinary diffe

(3a)~(3d) and

dw,,
=
de,
de.
de,,,
=
dQm
dx
dM,,,
dx
d My, Gk
e S
Dy mm

e T A
+Dx b xm

Other auxiliary variables are given by

’ Gy.h mm my
Qy = kL: Z (?wm — 9).,,,) COST

m=]135

D\ mn Dy e
M = D e ‘1 ‘6 , Dy \
i o [mgd ( Y D.r) b amT D. A’lxm] sin 5
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Higher-order plate theory

The present formulation is based on a theory incorporating a higher-order displacement
model, quadratic variation of the transverse shearing strains (Y, and Yy,) through the plate
thickness, linear variation of the transverse normal strain (€;;) through the plate thickness,
and consideration of the three-dimensional Hooke’s law.

Algebraic manipulation of the governing equations, given in Appendix C, gives rise to
the following system of equations, similar to Eqgs. (1a)<(1d) and (6a)—(6f) obtained earlier
for other theories:

— =-0,+
ax leKL v Kl):KZX

28 S0 D3: D, — D}, Dax 08, (D2, D, — D3, Dyy)
ax DlxDZx b2y D?xD“x ay DlxD:x — DrxD4X
D} M, — Dy M?

D\, Dy, — D} Dy,

20, 3¢, = Dj My — Dy M,

e o
ox dy DyD3,, — D’lkxy Dy,
ow* =_36*+ K;;QX_KIXQ;
Ox ' KnK} — K5 K,
_ —(Dsy D}, — D%, Djy) _3_9;_ . Di:M; — D\ M}

ox DD}, — D}, Dy, 0y ' D4:Dj, — D3 Dyy

20! MyDj, — M}, Dy,
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ay ay DnyDrxy T Dz*xyDlx v
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+
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oM; ow Qw*
i b dr Naled o T *
o KIY(ay +6y) +3K2y( dy +36y)

* * 2%
_[D,, i(ae ) 2%, 20w ., 000 0 By]
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Other dependent variables are
£ ow ow*
Qy = Kly($+6,> +K2y( ay y) (120)
: 00, 06, 06} 06} '
My = D3y_2w + Dly Y + D4y ox g DSVE (12b)
* aw * a *
Qy = Ky, (a L ey) ¥+ K2y (F + 36}’) (2e)
) L0, 06 . .00 20"
M3 (Dly o +D;, — % L+ D3 2w* + by =" o il % ) (12d)
20, 20, g 20} 065
M, = Dy, + D3z2w + Dy, +Ds, (12¢)
Ox ay ’ Ox Oy

For a plate with two opposite edges y = 0, b simply supported, intrinsic variables
are represented in the form of a Fourier series as described earlier in Egs. (3a)~(3d) and
(8a)—(8c). The variables not described earlier are given below.

w*(x,y) = Z w, (x)sin ? (13a)
m=1,3.5
0 (x, y) = 02, (x)sin '":y (13b)
m=1.,3.5 &
Gj(x, y) = 85, (x) sin % (13¢c)
m=],3.5
i ’ . mT 5
Qi(x,y) = 0} (x)sin =2 (i3d)
m=1,3.5
M (x,y) = M?(x)sin 772 (13¢)
m=1,3.5

Following the earlier procedure, the partial differential Eqs. (11a)—«(11k) are trans-
formed into the following set of first-order ordinary differential equations for the mth

harmonic:
d ? K K
AWm =—0,, + ZxQ*x Qi 2x S (14a)
dx K, K3 — K1 Koy
d6xn ot Dy, D§, ~ D} Dy, _ (DD}, — D3 Dyy) mm

ox D\.D;, —D},Dyy DD —D!.Dsy b




Square QR}SBE..Q piate under uniformly distributeq load, simply supported along four edges ( Vxy =V, =1y, = 0.3, ks =6/5, a/h=35):
parametric study with various E, /Ey ratios (converged values with n — 20)

B e R 5 o el e — - /!///I/

va\bu\\mra.a \—\.\x\.wu.bw \—\Y\ENQN gkk\.ﬁmram @».\bu.h Qv.\ﬁmva

b’ R e i T onoke L AN L
E:/E, K RM H K M H K RM § K RM g K RM g Nw.gm

e i ’l[l..lll.l/" //
1 0384 0448 0441 0382 .0385 0393 2 0379 .0386 . 0324 0414 3229 -3296 .3301 3278 3229 3285
1.25 . .0367 0431 .0425 0438 0439 (0445 s 0359 .0366 <3 .0421 .0397 3360 -3420 3423 3177 3179 3184
150 .0352 .04i6 0410 0488 .0487 0493 : 0342 0348 0403 .0381 3477 -3528 3529 3083 -3086 .3092
2 0324 0388 0383 0577 0571 .0574 : 0313 .0319 0373 .0352 3675 3711 3709 2912 2924 2930
For 0878 .0344 .0340/ 0717 0698 0699 g 0270 .0277 0327 .0308 3975 3982 3975 2636 2670 .2679
.03445**
0137 .0220 0217/ 12111044 1039 4 154 0162 . 0197 .0184 4812 4706 .4688 1768 1938 .1959
(2215%

0041 .0142 .0138/ 1326 1242 1237 0083 .0092 . 0116 .0103 5180 S115 5096 .1102 1463 1490
01472

(Continued on next page)




Table 4
Square orthotropic plate under uniformly distributed load, simply supported along four edges (Vxy = Vxz = Vyz = 0.3’kg= 6/9,
a/h = 5): parametric study with various Ex /Ey ratios ( converged values with n = 20) ( Continued)

ox(pFa*/h?) oy(p;a*/h?) Tey(pya*/h?) TepFa?/ h?) TP} a*/ h?)

E./Ey K R-M H K R-M H K R-M H K R-M H K R-M H

1.0 2296 2310 .2404 2296 2270 2367 .2662 2640, . 2127 3300 .4665 3280 .4652
125 2592 .2740 2729 .1622 2150 .2243 2540 2520 2622 3420 4827 3180 .4501
1.5 2866 3130 .3024 .1197 2050 2137 2428 2420 2524 3530 4970 3090 4363
2.0 3351 3800 .3536 .0700 .1880 .1961 2232 72240 2342 3710 .5820 - .2920 4122
3.0 4117 4840 .4337 0273 .1620 .1701 .1926 1960 .2082 .3980 .5560 2670 3755
10.0 6346 .8000 .6836 .0080 .0920 .1001 .1020 .1 190 .1361 AT10  .6432 .1940 .2666
40.0 7469 .1188 1.003 .0046 .0500 .0568 .0392 0690 .0808 5070 .6648 1460 .1962

*Solution obtained using MIF {7].
Boundary conditions along four edges: K, w = M, = 0; R-M, w =8, = M, = 0;Hw=0=M,=w"=6 =M =0
K, Kirchhoff theory; R-M, Reissner-Mindlin theory; H, higher-order theory.
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Table 6 5
Square orthotropic plate under uniformly distributed load, simply supported along four edges ( Vxy = Vxz = Vy; = 0.25, ks = 6/5), (a/h = 2-100,
E«/Ey = 1-40) (converged values with n = 20)

M./ p}a?

Sbw\ﬁu.na gw\ﬁu.hn gxw.\ﬁu.an Qk\ﬁm.m Qv.\ﬁw.a
a/h Ex/JE, K RM H K R-M H K R-M H K R-M H K. ReMe: U H Ko R-M '~ H

2 1.00 .0033 .0071 .0064 .0395 .0412 .0465 0395 .0376 .0430 .0428 .0419 .0275 .3279 .3305 .3368 .3276 .3259 .3274
1.25 .0032 .0068 .0062 .0448 .0457 .0502 .0372 .0363 .0414 .0410 .0403 .0269 .3407 .3402 .3454 3176 3171 3188

1.50 .0030 .0066 .0060 .0496 .0495 .0534 .0352 .0352 .0401 .0393 .0389 0262 3520 .3484 .3525 .3082 .3097 .3118

2.00 .0029 .0063 .0057 .058z .0557 .0536 .0313 .0335 .0383 .0363 .0365 .0249 3714 .3612 3638 .2914 2976 .3008

3.00 .0025 .0059 .0054 .0717 .0643 .0659 .0265 .0313 .0360 .0315 .0332 .0228 .4014 .3785 .5790 2641 .2810 .2859
10.00 .0012 .0051 .0046 .1113 .0832 .0%29 .0117 .0265 .0311 .0168 .0255 .0171 .4840 .4166 .4141 .1776 2432 2516
40.00 .0004 .0047 .0041 .1324 .0921 .0931 .0022 .0243 .0277 .0065 .0215 .0135 .5223 .4347 4345 .1105 2246 2295

5 1.00 .0033 .0039 .0039 .0395 .0397 .0406 0395 .0391 .0400 .0428 .0423 .0392 .3279 .3245 .3252 .3276 .3278 .3285
1.25 .0032 .0038 .0037 .0448 .0449 .0457 .0372 .0369 .0378 .0410 .0410 .0378 .3407 .3367 .3420 .3176 3178 .3184

1.50 .0030 .0036 .0035 .0496 .0496 .0502 .0352 .0351 .0360 .0393 .0393 .0364 .3520 .3474 .3525 .3082 .3086 .3093

2.00 .0029 .0033 .0033 .0582 .0576 .0531 .0318 .0321 .0330 0363 .0363 .0338 .3714 .3655 .3701 2914 .2925 2933

3.00 .0025 .0029 .0028 .071 7 .0700 .0702 .0265 .0277 .0286 .0315 .0315 .0298 .4014 .3924 .3965 2641 .2674 .2685
10.00 .0012 .0018 .0018 .1118 .1042 .1037 .0117 .0158 .0168 .0168 .0168 0179 4840 .4647 .4675 .1776 .1944 .1969
40.00 .0004 .0012 .0012 .1324 .1241 .1235 .0022 .0085 .0095 .0065 .0065 .0100 .5223 .5061 .5087 .1105 1465 .1049




10 1.00 .0033 .0035 .0035 .0395 .0395 .0398 .0395 .0394
7 1.25 .0032 .0033 .0033 .0448 .0448 .0450 .0372 .0371
1.50 .0030 .0032 .0031 .0496 .0496 .0498 .0352 .0351
2.00 .0029 .0029 .0029 .0582 .0580 .0582 .031& .0319
3.00 .0025 .0025 .0025 .0717 .0713 .0714 .0265 .0269
10.00 .0012 .0013 .0013 .1118 .1096 .109% .0117 .0128
40.00 .0004 .0005 .0005 .1324 .1313 .1313 .0022 .0038

100 1.00 .0033 .0034 .0034 .0395 .0394 .0295 .0395 .0395
1.25 .0032 .0032 .0032 .0448 .0447 0447 .0372 .0371

1.50 .0030 .0030 .0030 .0496 .0496 0496 .0352 .0351

2.00 .0029 .0027 .0027 .0582 .0581 .0582 .0318 .0318

3.00 .0025 .0023 .0023 .0717 .0717 .0718 .0265 .0266

10.00 .0012 .0011 .0011 .1118 .1117 .1113 .0117 .0117
40.00 .0004 .0003 .Gu03 .1324 .1324 .1324 .0022 .0022

Kw=M,=0;RM;w=06,=M,=0Hw=8, = n=w* =097 =M;=0.
K, Kirchhoff theory; R-M, Reissner-Mirdlin theory; ¥, higher-order theory.
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Table 7
Square isotropic plate under uniforinly distributed load, simply supported along edges
y =0, b, and just supported along edges x = 0, a (v = 0.3, ks = 6/5), (a/h = 2-100)
(converged values with n = 20)

wD,/pfa* M./pfa* M,/pfa* M,/pfa* Q:/pfa  Qy/p}a
a/h RM H RM H RM H RM H RM H RM H

2 .0101 .0091 .0558 .0574 .0534 .0556 .0031 .0042 .3570 .3504 .3509 .3572
5 .0053 .0051 .0507 .0512 .0515 .0519 .0056 .0052 .3915 .3823 .3481 .3474
.0053* 0051 .0507 .0512 .0515 .0519 4030 .4010 .3480 .3470

10 .0044 .0044 .0491 .0493 .0498 .0499 .0096 .0095 .3955 .3825 .3405 .3405
.0044* 0044 .0491 .0493 .0498 .0499 . 4130 .4130 .3400 .3400

20 .0042 .0042 .0484 .0485 .0488 .0489 .0158 .0159 .3900 .3670 .2264 3365
25 .0042 .0042 .0483 .0484 .0486 .0487 .0183 .0184 .3850 .3614 .3356 .3357
50 .0041 .0041 .0481 .0481 .0482 .0483 .0262 .0262 .3681 .3427 3339 .3344
0041% 0041 .0481 .0481 .0482 .0482 4190 .4190 .3340 .3340
100 .0041 .0041 .0479 .0480 .0481 .0481 .0313 .0313 .3484 .3301 .3332 .3302
0041 .0041 .0480 .0481 .0480 .0480 4200 4200 .3330 .3330

Boundary conditions on simply supported edges y =0, b: K, w = M, = 0; R-M, w =6, = Mn =
OGCHw=6=M,=w*"=60=M;=0.

Boundary conditions on just supported edges x =0,a: R-M,w =M, =M,, =0;H,w = M, =
My=w=M =M, =0.

#Results published in [4].
K, Kirchhoff theory, R-M, Reissner-Mindlin theory; H, higher-order theory.

Examplie 7: Square isotropic plate with S boundary conditions along edges y = 0 and b
and free (F) boundary conditions along edges x = 0 and a
In this exampie, the free edge conditions, iinplying vanishing of transverse shear, normal
bending mement, and twisting moment along x = 0, a, are assumed (F). Exact satisfaction
of such benndary conditions is quite simple in the present formulation. Results for w, M,,

M,(—ve), M, O, and Q, are shown in Table 1i. These results are compared with the
results published earlier [2-4].

Example 8: Square orthotropic plate with S boundary conditions along edgesy = 0 and b
and free (F) boundary conditions along edges x = 0 and a '

In this example, the free edge conditions, implying vanishing of transverse shear, normal
bending moment, and twisting moment along x = 0, a, are assumed (F). Exact satisfaction
of such boundary conditions is quite siinple in the present formulation. Relevant results are

presented in Table 12 for maximum central deflection w and stress resultanis such as M,,
My, etc.

Example 9: Square orthotropic plate with S boundary conditions along edges y = 0 and b
and unsymmetric boundary conditions along edges x = 0 and a

Different boundary conditions are considered next along edges x = 0 and a, to generate

data for future comparisons. These boundary conditions are C-S, C-F, C-S*, S-F, S-S*, F-S*.

The results for these boundary conditions are presented in Tables 13-18.




Table 8
Square orthotropic plate under uniformly distributed load, simply supported along edges y = 0, b, just supported
along edges x = 0, a (vxy = 1y, = vy, = 0.3, ks = 6/5), (a/h = 2-100, E, /Ey = 1-40) (converged values with n = 20)

°

.Ebw\\uu.aa / x\\vu,an >\~v.\.b~+n~ E\C.\EM.QN Qx\ﬁu’& @a\ﬁm_.a

a/h E./E, RM H R-M H R-M H R-M H R-M H R-M H

2 .00 .0081 . 0516 0457 .0489 .0071 .0072 3732 .3715 .3542 .3476
1235 0T 0569 0436 .0468 .0068 .0042 .3836 .3810 .3417 .3367

1.50 .0074 . 0613 . 0420 .0452 .0065 .0040 .3885 .3885 .3313 .3276

2.00 .0070 . 0681 . 0394 0428 .0060 .0038 .3997 .3997 3147 .3133

3.00 0064 . .0770 0361 .0297 .0053 .0035 .4140 .4140 2926 .2944

10.00  .0G53 , .0950 0293 .0332  .0039 .0025 .4437 .4437 2458 .2534
40.00 .0049 1028 0263 .0029 .0032 .0020 .4603 .4603 2242 .2291

1.00  .0044 .0431 0436 .0443 0129 .0121 .3959 .4063 .3500 .3494
1257+ 0042 0487 0411 .0417 .0123 .0116 .4607 .4166 .3387 .3382
1.50 .C040 0537 0389 ..0396.. 0117 . .,0109. 4157 . .. 425) . .3283... 3279
2.00 .0036 0624 0353 .0366 .0108 .0102 .4300 .4387 .3098 .3096
3.00 .0031 0753 0301 0309 .0093 .0088 .4504 .4578 2807 .2810
10.00 .0019 .1089 0165 .0175 .0055 .0052 .4998 .5042 .1989 .2019
40.00 .00i2 A278. . 0086 0096 .0032 0029 5247 5277 .1497 .1509

(Continued on next page)
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CONCLUSIONS

The segmentation method is used in conjunction with Kirchhoff, Reissner-Mindlin,
and higher-order theories for linear elastic analysis of orthotropic plates. It is well known
that the effect of transverse shear deformation and normal stress in the thickness direction
becomes important above a certain value of thickness/length ratio. One significant feature
of the present formulation is its ability to satisfy exactly both the displacement and the force
boundary conditions along an edge. This is in contrast with the popular displacement-based
finite-element formulation, where only displacement boundary conditions can be satisfied
exactly. However, the formulation is not general, as all equations in the present formulation
are derived for specific boundary conditions on edges y = constant. It is proposed to extend
the formulation to the solution of layered, cross-ply composite and sandwich orthotropic
plates simply supported on two opposite edges. :
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APPENDIX A

Basic equations of Kirchhoff plate theory

A complete set of equations defining a fourth-order boundary-value problem for an
isotropic material plate is available in [2]. This formuiation is extended here for an or-
thotropic material. s Sl

Displacement model (sce Figure A1)
u(x, y, z) = 260,(x, y)
v(x, y,2) = 26,(x, v)
w(x, y,z) = w(x, y)

Strain displacement relaiiors
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APPENDIX A

Basic equations of Kirchhoff plate theory

A complete set of equations defining a fourth-order boundary-value problem for an
isotropic material plate is available in [2] This formuiation is extended here for an or-
thotropic material. oy

Displacement model (sce Figure A1)
u(x. y, z) = z6,(x, 3)
v(x, ¥, 2) = z6,(x, v)
w(x, y,z) = wx,y)

Strain displacement relaiiors
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(15¢)
N UMERICAL EXAMPLES
A square plate of side a, thickness h, and loaded with a uniformly distributed transverse
load p is considered throughout, The two opposite edges, y =
assumed to be sj

mply Supported (8S), implying specific boundary conditions for each of
the three theories, Kirchhoff, Reissner—Mindlin, and the highe -order theory. However, any
boundary conditions i

d along the edges x = () anqg X = a. These boundary
conditions are Summarized below,

=0and y = b, are always

a. Along edges Y=0andy=yp
Kirchhoff: yy — M,=0
Reissner—Mindlin: w=0, =
Higher-order: 4 0 = w*

b. Boundary conditions along e

M, =
dges x = constant

Boundary conditicns
Simply

Just
supported Clamped Free Supported
Theory ) (€) (F) (§%)
e el S \\»\\
Kirchhoff w=M = w=6, =0 V=M =
Reissner-Mindh'n w=60, = w=9, = O =M ' w=M =
M, = 0, =0 M, =0 =i}
Higher order w=0, =1 i =

. T length of the segment wag
eral trials for variou

barameters: set of 4 /h values —

arameters: set of £, /Ey values
£ = Ve =Wy, =03, Gy =G

2,5, 10, 20, 50, 100

wik0, 1.25, 1.5, 2.0, 3.0, 10.0, 40.0, anq
= 05E,, | —— 0.2E,

_
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Discrete numerical values of dependent variables are presented in nondimensional form
as follows:

= y/(P:-aZ)
= Qx/(p:a)
= 0y/(p}a)

EEISEES

i

8

Here p} is the intensity of load on face 7 = +4 (2

Example 1: Square isotropic plate with S boundary conditions along all jour edges

3-I exact sclution of this probiem s obiained in [6]. Vaiues in Table I cleaily indicate
that for w, M, M,, Myy, 0%, 0y, and 1.y, convergence 1s achieved quite early. with only
five harmonics. The same is not true for transverse forces/stresses, for which convergence
is seen cnly after 15 harmonics, -

Results in Table 2 show the effect of g / fr ratio on the deflection, sitess resultants, and
stresses as predicted by different theories. As scen from the results in Table 2, Kirchhoff
theory gives results which are independent of a/ h ratio, while the other two theories take into
account the shear deformation effects and hence for thick plates (a/h < 20) there is a large
difference between results predicted by Kirchhoff theory and those ﬁredicted by Reissner-
Mindlin and the higher-order theories. It is also seen that as the ratio @/ h is increased,
results of all theories converge to the exact solution given by classical (Kirchhoff) theory.

Example 2: Square orthotropic plate with § boundary conditions along ail four edges

The second example is a square, simply supperted orthotropic plate subjected to uni-
form transverse load. Key parameters of the plate are given in Table 3. Convergence of
results from various theories is shown in Table 3. Fora/h = § and E,/E, =3.0,it is seen
that the Reissner-Mindlin and higher-order theories give excellent agreement with theo-
retical solutions for transverse deflection. Numerical vajues of M, and M, predicied by

{
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Reissner-Mindlin and the higher-

order theories are very
of Kirchhoff theory for M,

and M, are seen to be 2.5%

the hi gher-order/Reissner—Mindlin theories

=5, predictions of the Kirchhoff theo

I’ Kant and M. G. Gadygil

close to each other. The

predictiong

higher and 4% lower, respectively,

with exact results [7]. Resu

error for orthotropic plates with
predictions of the Reissner-

Its of stress resultants M, My, M
" Ox, Oy, Tyy, Ty,, and Tyz are also shown in Table 4. It s

Ey/Ey more than 2. For ratios of

x/E, as high as 40,
Mindlin and higher-order theories are in

excellent agreement
xys Ox, and Q, and stresses
seen from Table 4 that moments
nced by the rigidity ratio E L By,

ot change to the same extent as My and M,. Thus, for

E./E, = 10, M./M, = 6.4, while 0:/0Qy =2.45. No
the literature for these problems.

analytical solution is available in

Further parametric results, for a square orthotropic plate, simpiy supported on al] four
edges, shown in Tab

le 5, show the effect of v
and stress resultants. It is seen from the

Example 3: Square isotropic plate with § bo

and just supported (8*) along edges x
Results for w, M,, My, M,, Q., and 0,
compared with results published earlier [2-4].

In this example, edges along x =0, g are taken

Example 5: Square isotropic plate with § bounda

to be just supported, i
M, (M. ;). Relevant results are shown in Table §.

)and E, /E,

results shown in Table 6 that as

-way plate, so that for Fx/E,
M, is much larger than M, though

arying a/ h ratios on the maximum deflectiop

(ranging

f the plate is square and

=0and a

and clamped (C) along edges x = () and a

Results for w, M., M

10), al! theories predict more
undary conditions along edges y = 0 and b
are shown in Table 7. These results are
7y conditions along edgesy =0 arnd b
niplying vanishing

ry conditions along edges 'y =0 and b

«(—ve), M, Q,, and Q, are shown in Table 9. These results are
compared with the results

published earlier [2-4].

Example 6: Square orthotropic p
and clamped (C) bounda

late with S boundary conditions alon
ryconditions along edges X = 0 and a

»M,, O, and Q) are shown in Table 10. These are
. M, (—ve) and Q. are calculated
=4a/2, y = b/2. As #een from
(+ve) is much larger than M,,

by a reasonably large margin.

x/Ey, the moment M,
» 1S also larger than oy
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z

X

Figure A1. Positive set of displacement components at mid-surface.

b SR R

Figure A2. Positive set of stress components.
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:

\'\
e)
y |
I
)
N.* Reference Surface
X . )
01=0,+% &
X
0,=0,+ %dy etc. :
Figure A3. Positive se; of stress resultants—forces.
14
Lquilibrium equations
0 0
T 00 +p  +p +ph=0 (A3aq) ,
ox 6] £ :
f oM oM,, !
: o 2+ =i (A3b) .
> Ox dy i
oM., M,
- =0 (A3c
Ox dy 0 )
)
mn which p is the unit weight of the material and # is the total plate thickness; p7 and ps
are surface tractions on the top and bottom surfaces of the plate, respectively. . . )
iy
Constitutive relations (see Figure A2)
|
Ox UyxCy
& = — — — 2 Ada
\ Sl E, (Ada) |
Oy V.0,
€y = — — Adpb
Bt s (Adb) |
Tyy
= — Adc
Yxy s . (Adc)
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Reference Surface

M.=M_ + oM, &
: ox

& oM,
M. -M_+— Zdx etc
) v ox

Figure A4. Positive stress of resultants—-couples.

and the inverse relations are

E,
Ox (&x +Vyx€y)
1 —VyxVay

E)’ \
0y = ~(ey + Vxy€x)
1 — VyeVey -

Tey = ny‘ny

Force displacement relations (see Figures A3 and A4)

e - dw d’w
M= =—\D,— +D1—>
. ./—h/Z ke ( et ¥ a)’z)

g U o’w o’w
H f—h/2 & e ( ox2 5 ayz)

h/2 aZw
M., = T.oz2dz =—2Dwy—
v /-h/z e ™ 0xQy
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Segmentation Method Analysis of Orthotropic Plates

E.h?

D, = m

J 3
D, = '1?(1_?\;@3 (A5e)
D, = ﬁ% (ASf)
L (ASg)

12

‘Boundary conditions
On edge x = constant

_ On edge y = constant

w=w or V=V, (A6¢)
6,=8, or M,=M, (A6d)
{
APPENDIX B

Basic equations cf Reissner-Mindlin plate theory

A complete set of equations defining a sixth-order boundary-value problem for an
isotropic material is available in [3]. This formulation is extended here for an orthotropic

material.
Displacement model (see Figure Al)
u(x,y.z) = 28:x, ) (Bia)
v(x, y,2) = 20,(x, y) (B1b)
wix, ¥, 2) = WX, ¥) (Blo)
Strain displacement relations
06
€ = Z— (B2a)
ox ' :
28, d
=z7— B2b
8)’ z ay ( )
00, 06, ; ,
= pint 4 B2ec
Ve Z(by+ax) i
g 1 /0w )
Yxz = '—(_ 2 ex\ (B24d)
ks \ Ox ]
1 /0w
Yo = E(—a; : 3 ey) (B2e)
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Equations of equilibrium
These equations are the same as Eqgs. (A3a)—(A3c)

Constitutive relations

B e Ox V)0,
L
E, E,
€ . o\‘ vxvo-x
Y E, E,
Yoy = 2.
xy G
xy
T,z
YXZ = G
Xz
Yoy = oL
g = G
yz

and the inverse relations are

X
Ox = [ex +_Vyx5_v]
1-— VyxVzy

>
Oy = “"{sy +'Vx_\'ex]
1 = VyxVyy

Tey = nyyx).
Txz = GV
Ty = G_\z'sz

Force dispiacement relations (see Figures A3 and A4)

k2 20 08,
Mr=/ O'XZdZ=Dx-a—X+D]—'

h/2 X oy
hR 00, 00,
M = gdz =D D,-—
¥ ./:h/Z L oy
h/2 26
M -Mx._/ Tpytdy =2 4 —
. ’ J—k/2 ‘ k Jy
e G h (Ow
X = x*d = = = ex
- /—h/z’r = ks (ax N )
TR G,.h (Bw \
0, = Ty dz =——| — +0,
. ./—h * ks X 0 d
where
_ E.h3
T12(1 —vgyuy)
E,h3

y

T 1231 —vyyvy,)

(B3b)
(B3c)
(B3d)

(B3e)

B3

(B3g)

(B3h)

(B3i)

(B3))
(B4a)
(B4b)
(B4c)
(B4d)

(B4e)

(B4

(B4g)




Segmentation Method Analysis of Orthotropic Plates

Dy = vy, E b3
12(1 — VxyVyy)

Goh®

12

Boundary conditions
On edge x = constant

On edge y = constant

w

o
o,
0,

e)‘
6«

APPENDIX C
Basic equations of higher-order plaie theory
-order boundary-value problem for an

A complete set of equations defining a twelth
isotropic material is available in [4]. This formulation is extended here for an orthotropic

material.
Displacement model (see Figure A1)

u(x, y,2) = z0,(x, y) + 220%(x, y)
v(x. ¥, 2) = 20, (x, y) + 220%(x, )

w(x, y, 2} = wix, y) + 22w*(x, y)

Strain displacement relations

4 ae,+aie, (8, %
hiidnt e wf B By ' ox
ow

ow ) 2 *
=—+06 or
Vicz (ax+ x, +z(aw +3 x)

ow 2 f Ow* "
sz o= (a o0 9}') +2z (W +39y)
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Equilibrium equaiions

30, 8Os . ¥y 4=
ax-&-ay+pz+pz+ph_-0

6Qx 005 h? ph?
Bk SRR S s +4ip)+——==0
x| oy + P TP
M, OMyy
oMx 29 _0,= 0
ox * 3y Qs
OM; Mg,
0Ny L B =V
ox oy 2 )
oM,y oM, '
OMzy , 2 -0y= 0
ox ¥ dy 2
IM;, oM
0% 4 ot -305=0
+ y Q.
Constitutive relations
PR LA, Vzx 0z :
ey = T s Cda
T el ety O10)
Wyl . Oy V2y02z
o EE e Cc4b
VesOx  Vy2Oy Oz
o et T B (Che
‘ : Ex E, E: ? |
< ‘ Txy
ny = = (C4d)
| G
L
\ T (Cle)
XZ
Tyz
Y2 = (C4f)
+3 L
. % and the inverse relations are
i e Ex /1
{ Oy K[\l — Vyz sz)ax + (‘va + V- 'Vyz)Ey + ('sz +Vyszy)€z] (CSa)
E ‘
v, Oy = 'Zy'[('\'xy ""'sz'vxz)ex +(1- VeVax)Ey T (Vzy + 'ny'sz)f«z] (C5Db)
2 :
i E
- - 0; = Az[(’»' 2t vxy‘vyz)sx + (Vyz +‘Vyx‘sz)£y +@A- ‘ny'vyx)gz] (CSc)
> Tay— nyny (CSd)
Ty, = GyrYyz (C5e)
Tex = GxzYiz . (CSf)

i
—-—-»———»' i s S e TR = B
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Force displacement relations (see Figures A3 and A4)

Segmentation Method Analysis of Orthotropic Plates

M, = f :/; 0.2 dz = Du s + Dax ze’ 4 Dy2" + Dos % + D a:y’ (C6a)
M, f }:; ayzdz = Dyy— aae + Dyy—> aae, + D3,2w* + Day——= aae* + Dsy aae (C6b)
. 26}
M, = —}:; gz dz = Dy —— aae - Du?%’ + D3 2w* + Dy, aa: ; + DSZ—a—y- (C6c)
.
Mxy 7 f_’;/;'fxyz A= Dlxy(ae 5 %9?) DZx)(aaey iy _OTY) : * (C6d) .
M; = J/_,;/; gz’ dy = D}, aae + D3, —— aaey + Dy 2w ¥ D= aaex + D5, aaey (Cé6e)
M; = ’;//22 o,z dz = Dj, aae Dy aaey + D3, 2w" + Dgy—— aae, + D5, ayy (C6r)
* 20}
g f_ ':; ol Ku(gﬂ +9 ) ' (—— + 39*) (con)
Q,=f_://22»:‘zdé_xly(%w—+e) }—sz( = +3e*) (C6i)
0= [ nctaee i (o) i (G +50) <
g = f_/ : Tt dg = l’l( % ) K2y< + 39* (C6k)
where' |
EES b;;z 1 — VyUy) A (C7a)
Dy = ?223 (Vyx + VaxVy2) (C7b)
Dae= ZZ}TAB (Vzx + VyxVzy) (CTe)
Dyx = ig"g (1= VyeV) (C7d)
D ES’(‘)"; . VD) (CTe)
3 Za”;(l - Vy;Vzy) (Fl7f)
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T. Kant and M. G. Gadgil
3 E.W
sz = —S-EK(UYX + szvyz) (C7g)
E:h’°
D3x = ‘S‘OK(sz =t nyvzy) (C7h)
Exh’
D3 4;8 L Vogdipi) (CTi)
E.h’ <
D, = 43 A(vy, 4+ VxVyz) (C7j)
Al —VeyVys — VyeVoy — VgxVaz — ZVyxVayVxz
p ’prressions are obtained for other constants for the y and z directions.
‘;4 J)i j 3
E; Goyh?
Dlxy = "—le?_ (C7k)
Gyyh®
= — C7
Daxy 20 (€1
* nyhs \
D,y 20 (CTm)
1 Gyyh'
Pl ia (CTn)
Kix = zeh (C70)
Gy h®
Ko = Cl
2 2 (C7p)
Ky, = Gy:h (C79)
G 3
Koy = 1‘2" (C7n)
3 3
| ;. L Guf i
: i 12
i GXZl’l5
{ K, = CT1)
i i 80 ¢
g f % Gyzh3
K{, = D (CTu)

s « Boundary conditions
ok On edge x = constant

-

N
@
|

|| Il
CD‘ (D\ &1

-«

w
0

' (CT»



Segmentation Method Analysis of Orthotropic Plates

On edge y = constant

W@ o Oy=0, w*=w*
8 =8 ‘or My =My 0r=0"
0,=6, or My=M, e;='e_;

- —.

or

or

0:=0r
M: =M
M; = M?

(C84d)
(C8e)
(C8f)

'k
g

r

=

w
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