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Abstract

Closed-form formulations of 2D higher-order shear deformation theories for the thermo-mechanical analysis of simply sup-
ported doubly curved cross-ply laminated shells are presented. Formulation includes the Sander’s theory for doubly curved shells.
Two of the higher-order shear deformation theories account for the effects of both transverse shear strains/stresses and the
transverse normal strain/stress, while the third includes only the effects of the transverse shear deformation. In these developments a
realistic parabolic distribution of transverse shear strains through the shell thickness is assumed. The temperature variation con-
sidered in the formulation is uniform or sinusoidal over the surface and linearly varying through the thickness. Numerical results are
presented for thermal and mechanical load cases in laminated composite and sandwich shallow shells. The closed-form solutions
presented herein for laminated composite plate or shells are compared with the available 3D elasticity solutions for mechanical
loading and it is believed that solutions for thermal loading will serve as bench mark in future.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the advancement of the technology of composite material it is now possible to use these materials in high-
temperature situations. Consequently the thermal deformations and stresses which are induced by non-uniform
temperature in composite structures become important parameters in structural design. Use of higher-order theories
will make it possible to determine these parameters precisely in composite structures. Studies involving the thermo-
elastic behaviour using classical or first-order theories are described by Kant and Khare [1], Khdeir and Reddy [2] and
Khdeir et al. [3]. The first ever literature available based on higher-order theory is by Pao [4] who developed higher-
order equations applying Fliigge’s [5] shell theory to orthotropic and laminated materials for the analysis of composite
shells under thermal loading. Kant [6,7] presented a general theory for small deformations of a thick shell made up of a
layered system of different orthotropic materials having planes of symmetry coincident with the orthogonal reference
frame and subjected to mechanical and arbitrary temperature distribution. Kant and Patil [8,9] presented the gov-
erning equations describing the behaviour of a general shell form, subjected to both mechanical and thermal loads,
specifically for two thick shell theories in addition to a so-called thin shell theory. They considered the numerical
examples drawn from literature for the analysis of pressure vessels.

Khdeir and Reddy [2] and Khdeir et al. [3] developed the exact analytical solution of refined plate/shell theories to
study the thermal stresses and deformation of cross-ply rectangular plates and cross-ply laminated shallow shells. The
state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the
theories under various boundary conditions for plates and doubly curved, cylindrical and spherical shells. Morton and
Webber [10] used analytical methods for the calculations of free edge stresses due to mechanical and thermal loads,
together with a quadratic interlaminar stress criterion to predict interlaminar failure in laminated composite plates for
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various stacking sequences. Jonnalagadda et al. [11] developed high-order displacement theories for thermoelastic
composite plates and compared these with some of the published high-order theories. He [12] used a discrete-layer
shear deformation laminated plate theory to analyse steady-state thermal stresses in laminated plates.

Locke [13] developed a numerical Fourier series solution for the classical thin laminated plate equation as applied to
inhomogeneous antisymmetric cross-ply laminates subjected to a combined thermal-mechanical load. Dano and Hyer
[14] presented a methodology to predict the displacements, particularly the out-of-plane component, of flat unsym-
metric epoxy-matrix composite laminates as they are cooled from their elevated temperature. Ali et al. [15] presented a
displacement-based higher-order theory, which employs realistic displacement variations. Wang and Karihaloo [16]
presented the optimum in situ strength design of multidirectional composite laminates under combined in-plane
mechanical and thermal loads. Verijenko et al. [17] developed a higher-order theory of laminated anisotropic shells for
the solution of thermal stress problems that takes into account transverse shear stress.

Carrera [18] made a comparative study of theories formulated on the basis of the classical principle of virtual
displacements to mixed theories formulated on the basis of the Reissner mixed variational theorem to evaluate the
thermal response of orthotropic laminated plates. Zenkour and Fares [19] presented a single-layer thermoelastic model
of composite laminated cylindrical shells using a refined first-order theory. Rohwer et al. [20] presented higher-order
theories for thermal stresses in layered plates. Patel et al. [21] studied static and dynamic characteristics of thick
composite laminates exposed to hygrothermal environment using a realistic higher-order theory. The formulation
accounts for the non-linear variation of the in-plane and transverse displacements through the thickness, and abrupt
discontinuity in slope of the in-plane displacements at any interface.

The purpose of the present study is to investigate the thermo-mechanical behaviour of simply supported, laminated
cross-ply, composite and in particular sandwich shell panels using the various higher-order theories, which account for
the effects of transverse shear strains/stresses and the transverse normal strain/stress. In these developments a realistic
parabolic distribution of transverse shear strains through the shell thickness is assumed. Analytical solutions are
presented to show the effects of variations in geometry, shallowness, lamination parameters and the shear deformation
on the thermal response of statically loaded layered anisotropic composite and sandwich shell panels.

2. Geometric definition

Fig. 1 contains a differential element of a doubly curved shell. Here (x, y,z) denote the orthogonal curvilinear co-
ordinates (shell co-ordinates) such that x and y curves are lines of principal curvature on the mid-surface z = 0. The
values of the principal radii of curvature of the middle surface are denoted by R, and R, along x- and y-axes re-
spectively.

3. Definition of displacement field

The Taylor’s series expansion is used to deduce a two-dimensional formulation of a three-dimensional elasticity
problem and the following set of equations are obtained by expanding the displacement components u(x, y,z), v(x, y,z)
and w(x,y,z) of any point in the laminate space in terms of the thickness co-ordinate z. Thus

u(x,,2) = to(x, ) + 20.(x, ) + 21 (x, ) +2°0;(x, ),
v(x,»,2) = vo(x,) +Z@y(xvy) +szi(xvy) +Z30;(x’y)a (1)
w(x,7,2) = wo(x,7) + 20-(x,7) + 2w} (x,5) + 20 (x, ).

In the above relations, the terms u, v and w are the displacements of a general point (x, y, z) in the laminate domain in
the x, y and z directions respectively. The parameters u,, v, are the inplane displacements and w, is the transverse
displacement of a point (x,y) on the element middle plane. The functions 0,, 0, are the rotations of the normal to the
element middle plane about y- and x-axes respectively, as shown in Fig. 1(a). The parameters u?, v*, w*, 07, 9;, 07 and 6,
are the higher-order terms in the Taylor’s series expansion and they represent higher-order transverse cross sectional
deformation modes.

The various displacement models assumed here for theoretical developments are summarised as follows:

u=u,+z0, +zzuz +z30;,

v =0, +z0, + 20} +z30;,
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Typical lamina

(1,2,3) - Lamina reference axes, (x,y,z) - Laminate reference axes.

z,3

Lqminate

Fig. 1. Laminated shell geometry with positive set of lamina/laminate reference axes, displacement and fibre orientation.

HOST12:  w=w, +z0, + 22w’ + 20, (2b)
HOSTI11:  w=w, +z0, + 2w}, (2¢)
HOST9: w=w,, (2d)
FOST: wu=u, +z0,,
v =, +z0,, (2e)
w=w,.

4. Strain—displacement relations

With the definition of strains from the linear theory of elasticity, assuming /4/R,,n/R, < 1, the general strain—
displacement relations in the curvilinear co-ordinate system are given as follows:

0w w _0v o ow ow Ou @ ou Oow u ov Oow v

_a-FR—x, 8};—E+R_y7 82—57 yx,\,:a'i'axv Viz

&x

az+a_R_x’ T T d R’ (3)

Substituting the expressions for displacements at any point within the laminate space given by Eqgs. (2a)—(2e) for the
displacement models considered herein, the linear strains in terms of middle surface displacements, for each dis-
placement model can be obtained as follows:
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Strain expressions corresponding to model HOST12

&y 78’“’+Z/CX+ZZS* +Z3X;7 &y = &y t 2, +228* +Z3/*7

& = &+ 2y} + 2%, T = Boo T 2l + Zz?iw +2%, (4a)
Ve = O T 2 FEO DL V= btz H 2O+ 2,
where
Ou, w, Ov, w, Ou, Ov,
(€105 €101 €205 Exy0) = <§+R 6 Jr ) Z,§+§)’
00, 02 00, 02 . 00, 00, ov, Ou,
(Les s 225 2oe) = (a R a_ R0 Ty coaﬂ’oa),
. who . oul av;
(é’xo’ €0 zm 'cyo ( ay ox )7
C 0. 0 69’i 0* 66* 00 o ou (4b)
(XX’XWXW):<6 Ry TR e o C"ax+c"ay>’
ow, u, ow, v, , 00, 0, . 00, 0,
(s Dy Lo Ay2) = <9 5, R y+§*R—yv YWt TR TG R_yy)’
* * * % * * * 0"
Wity = (30,4 e - a0+ G- B S TR0
in which, ¢, denotes the constant
1/1 1
«=3(z7) (40

This term is introduced by Sanders [22] and distinguishes the Sander’s theory from others. The strain expressions
corresponding to the displacement models of other higher-order theories are same as of displacement model HOST12
with following difference.

HOSTI11
& = &z +Z/fzv (/vax_v)_ (ax 7@)7 (I{xz’xyz)_ <_1TX7_R_},) (4d)
HOST9
a0, a0, . .« _ (Ou; 0u
SZ_O’ (an/fy>_ (a’§>7 (8xo’8yo)_ (ax 76)/)7
o0; 60; 0 0,
k) x _ Yy 2 o 2 * __ Y
o) = () ) = (2 i) (40
g, 00 8
(Gt = (30, 30, —R—y).
FOST
& = &xo +Zan &y = &y +ZXya & = 07 (4f)
Ty = &xpo +ZXxy7 Tz = ¢x + Z)es Py = ¢y +ZX)/27
where all above terms are same as given in displacement model HOST?Y, except following terms:
0, 0,
9 = _—, — — ]. 4
et = (~ 5~ (4g)

5. Stress—strain relations and stress resultants

Assuming the principal material axes (1,2,3) and laminate axes (x,y,z) in the curvilinear co-ordinate system as
defined in Fig. 1, the three-dimensional stress—strain relations for an orthotropic lamina with reference to the principal
material axes for the theory to be developed based on the displacement model HOST12 and HOST11 are defined as
follows:
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L

(] C11 C12 C13 0 0 0 €1 —{ZlAT
() C12 C22 C23 0 0 0 & — OCzAT
g3 _ C13 C23 C33 0 0 0 &3 — CX';AT (Sa)
T12 0 0 0 C44 0 0 Y12
713 0 0 0 0 GCs 0 Y13
T23 0 0 0 0 0 C66 V23
in which

Coi = Ei(1 —V*V23V32) ’ Cpp = Ey(vy :;\’31"23) 7

Cps = Ei(vs) :;V21V32) 7 Cyp = Ex(1 —V*V13V31) 7

C23 _ Ez(ng ;‘:V12V31) : C33 _ E3(1 —V*\ilz\)z[) : (Sb)

Cu = Gra, Css =Gz, Cg = G,

¥
Vo= (1 — Vi2Va1 — V23V32 — V31V13 — 2V21V32V13)-

Here AT is the temperature rise and o; (i = 1,2, 3) are the linear thermal expansion coefficients in the directions of
principal material axes. E’s and v’s are Young’s modulii and Poisson’s ratios, which are not independent but related by
the expressions:

== = an =
E, E, E E; E, Ej

In conformity with the assumptions that the normal stress g; may be assumed small and negligible and the corre-
sponding strain &; is equal to zero. Eqgs. (5a)—(5¢) is modified and the corresponding reduced stress—strain relations are
given as

Mo _Va VY vn Y

(5¢)

01 C, Cp 0 0 0 e — oy AT

02 Cp Cn 0 0 0 & — AT

T2 p =1 0 0 Cs 0 0 Y12 ) (6a)
T13 0 0 0 644 0 Y13

123 0 0 0 0 655 723

where

Cy =E /(1 =vipva), Cia = vuEr /(1 = viavay),
Cyn =E)/(1 —vipva), Vi2/E1 = va1 /E>, (6b)
Cy3 =G, Cu=Gp, Css= Gy

The relations given by Egs. (6a) and (6b) are adopted to develop theoretical formulation based on the displacement
models HOST9 and FOST.
These equations in compacted form may be written as

o = C¢. (7)

As mentioned earlier, the relations given by Eq. (7) are the stress—strain constitutive relations for the Lth orthotropic
lamina referred to lamina’s principal material axes (1,2, 3). The principal material axes of lamina may not coincide
with the reference axes of the laminate (x,y,z) (refer Fig. 1). It is therefore necessary to transform the constitutive
relations from the lamina fibre axes (1,2,3) to laminate reference axes (x,y,z). This is conveniently accomplished
through the transformations as described by Cook [23]. The final relations are as follows:

Oy On Qo Oi Qu 0 0 & — o, AT

ay On On 0On Ou 0 0 & — AT

o: | _ O Oxn On Ou 0 0 & — o, AT (52)
Ty [ |Qu Ou Ou QOu O 0 Yoy — Uy AT [

Taz 0 0 0 0 Os Os Vaz

Ty 0 0 0 0 Os O iz
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where
o, = o cos® 0 + o, sin’ 0,
o, = oy sin’ 0 4 o cos® 0, (8b)
o = A3,
oy = 2(0ty — 02) sin O cos 0.
In the above equations 6 is the angle of the axis parallel to the fibres (direction-1) with the x-axis. Similarly the stress—
strain relations of the Lth lamina for the theory to be developed based on displacement model HOST9 and FOST are
as follows:

Ox On On O 0 0 & — AT
Oy On On O3 0 0 &y — AT
Ty 0= Qi O Oi 0 0 Ty = %y AT (8¢)
T 0 0 0 04 O YV
Tyz 0 0 0 Q45 Q55 V}z
or in concise form
g = Qe )

in which the coefficients of the Q matrix, called as reduced elastic constants of the orthotropic material corresponding
to Lth lamina are defined in Appendix A. Upon integrating through the laminate thickness the Eq. (9) is reduced to

D, D, :|

c

in which D — {Df 0 ] where D, = { (10b)

0 D
¢ and ¢ are the vectors of mid-surface strains and stress resultants respectively, N is the vector of thermal stress
resultants corresponding to ¢ and the matrices D,,, D;, D, and D, for various displacement models are given in
Appendix B. The component of the mid-surface strain vector & and the corresponding components of the stress-
resultant vector ¢ and the thermal stress-resultant vector Ny for various models are defined as follows:

For displacement models HOST12 and HOST11

o= (NvavanyaN;aN;7N:y,szvaMwMquyaM:aM)T?M;_VaM;v Qx> va Q;v Q;v va Sy, S:a S;)ta (1 la)
& = (Ex0s Eyor Exyor Ergs Ergs Erys Ez0r Eags Yes Los Koys Koo Koo Kos Xos P> Dy Dy Dy Yoo T Zier 1) (11b)
NT = (NxT7 NyT> nyT7 ]V;T; N;T; N;yTa ]VZT7 ]Vz*T7 MxTa AlyT7 MxyT7 M:T7 M::]H M;Fy]H MZT7 07 07 07 07 07 07 07 0)t7 (1 1C)
where the components of the stress-resultants vector ¢ for the laminate with NL number of layers are defined as
Nx N: Mx M; 8x
N, N M, M| <K [ ] ) 3
N. N M. 0 —; ., o, ((Lzhz7)dz (12a)
Ny Ny M, M Vo
L Oun On Oi QOu &y Ny Ny Mg M:
O On On Ou &y 23 Ny Ny My My
= - 1,z°,z,2°)dz — % . 7 12b
; /ZL Oz 0On 0On O & ( ) Np N Mg 0 (12b)
Ou Ou 0Ou QOu]l 7y Nor Nyr Mor My
(0. O S S*} - / { T, } )
" s = (1,z%,z,2°)dz (12¢)
_Q—V Qy Sy Sy ; £ Tyz
and the thermal stress resultants are defined as
[ Nir N:T M. Mg NL Ou Qn Oi Ou Olx
Nyr N }*T M,y M;T / 0 On On O Oy 2 3
5 ; = AT(1,z°,z,z”)dz. 12d
N Np Mg 0 ; w93 On On Oul| | % ( ) (124)
L vaT N, ;yT nyT M, ;y]‘ Q14 Q24 Q34 Q44 OCxy

To use the same flexural rigidity matrix as is used in displacement model HOST12 defined above the terms N = 0 and
¢ = 0 are retained in the displacement model HOST11 with zero values so that they are not effecting the equilibrium
equations.
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For displacement model HOST9

G = (Nuy Ny Noy NI NS NG Moy My, Moy, ME M MG, O, Oy, 05,0548, 8,508 (13a)

& = (80 8101 81101 Eug1 Er1 Enyor Lvs Ko Tows Tow Lips Hogs Prs Dy D @5 Hoer Tomo Lis )’ (13b)

Nr = (Nor, Nyr, Nz, N, Ny, Ny, Mo, My, My, M, My, M1, 0,0,0,0,0,0)'. (13¢)
For displacement model FOST

G = (Nos Nyy Noy, My, My, My, 01, 0,85, 8,)', (14a)

& = (Exos Eyos Exros Ls Xy Ly P Pys Lo 22)' (14b)

Nr = (Nur, Nyry Nuyrs Moz, My, My, 0,0, 0, 0)'. (14c)

The definition of components of the vectors of stress-resultants ¢ and the thermal stress resultants Ny for the element
laminate with NL number of layers is same as given in Egs. (12a)—(12d) with corresponding reduced elastic constants.

6. Equilibrium equations and boundary conditions

For equilibrium, the total potential energy must be stationary and using the definitions of stress-resultants and mid-
surface strains stated in above sections principal of virtual work yields

S =8(U—-W)=0, (15)

where U is the strain energy of the laminate and W represents the work done by external forces. These are evaluated as
follows:

oU = / / /(axésx + 0,08, + 0.0¢. + 14,07, + 107, + 1,:07,,) drdydz. (16)
x Jy Jz

Integration through the plate thickness and substituting in terms of mid-surface strains and introducing stress resul-
tants, the above relations transform in the following form.
For displacement model HOST12 and HOST11

Xyo

oIl = / /(Nxégm + N, 08y, + Nyy0ey, + N 0e;, + N;és;o + Nx*yés* + N.0¢&., + N d¢., + M Sy, + M0y, + M0y,

+ Mog, + Moy, + M 61y, + MZ67. + Q:60, + 0,00, + Q10¢, + 0100, + Scdy,. + 8,67, + S;0%;.
+ 8;6x;. — ow,q)dxdy = 0. (17a)

For displacement model HOST9

Xy0

oIl = / /(Nxéam + Ny0¢y, + Ny dey, + N de,, + N;de,, + N, d¢ , + M0y, + M0y, + M0y, + Moy,
+ zyvl;éx; + M 67y, + Q¢ + 0,00, + 0;6¢, + 0,0, + S:0%,. + S,0%,. — ow,q) dxdy = 0. (17b)
For displacement model FOST
oll = / /(Nxéax,, + Nydey, + Nyt + MOy, + M0y, + M0y, + 0:0¢, + 0,00, + S0y, + 5,07,
X— ;wgq)dxdy =0 (17¢)

in the above equations ¢ is the distributed transverse load.

The governing equations of equilibrium can be derived from Egs. (17a)—(17c) by integrating the displacement
gradients in mid-surface strains by parts and setting the coefficients of derivatives of mid-surface displacements to zero
separately. Thus one obtains the following equilibrium equations for each displacement model.
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For displacement model HOST12

agixuaa—ﬂjy—Qw%:O, %Jr%_%_%_m:o,

1
O ) @ g, W NG 8 "
0. 66_%5_1;_5_%_2@:0, R A
o agj;_w;%zu e %Syi_%_";_f_w;:o.

In addition following line integrals are obtained
/ (N,6v, + Nyyou, + N, ov, + Ny ouy + M, 60, + M,,00, + CoMy,Su, + M; 60, + M;,00; + C,M;,0u; + O,0w,

+ O,0w, + 5,60, + Sjé@j) dx + / (NyOu, + Nyyov, + N ou + N;,6v, + M 00, + M,,60, — C,M, 60,

y

+ M50 4 M 00, — C,M,00; + Qcdw, + Q0w + S.00. + S;60.) dy
=0. (19)

The equilibrium equations for displacement models HOST11 and FOST are the first eleven and first five equations of
displacement model HOST12 given in Eq. (18) respectively and the equations for displacement model HOST9 are same
as the equations of displacement model HOST12 given in Eq. (18) by deleting the sixth, ninth and twelfth equations.
Similarly in each displacement model the line integrals are also obtained.

6.1. Closed-form solutions

The exact form of the spatial variation of the solution of above equations can be obtained under the following
boundary conditions:

Symmetric and antisymmetric cross-ply laminates.

Simply supported boundary conditions:

U{):Wo:gy:HZ:U::szetzez:Nx:Mr:N;:M;:0
on an edge x = constant and
u(lzwa:H)CZHZ:“::WZZQ:ZBIZM’:M)’:N;:M:ZO

on an edge y = constant.
Sinusoidal variation of transverse load and temperature is considered as under:

= . . mmn mmn
q= mEn qmnSlnmxSIHﬁya 06—7, ﬁ*?a
o (20)
z
AT = <Tomn _Tmn) i i
g + 50 sin ax sin fy

mn

in which a and b are the dimensions of shell middle surface along the x and y-axes respectively and /4 is the thickness of
shell. 7, is the average and 7 is the difference in rise in temperature of top and bottom surfaces of shell. The exact form
of the spatial variation of mid-surface displacements is given by
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é;
NgE

[o¢]
U, = E Uy COS 0X SIN By, Domn SIN 00X COS By,

m,n

o0
W, = E Womn SIN 0x SIN By, 0, =

m,n

3
3

NgE

0 mn COS 01X SIN Sy,

&
]

0, = Z Oy sin ox cos By, 0, = Z 0. SIN 0x SIN Py,
m,n m,n
o (21)

.
v: - sin ox cos By,

QC*
I
NgE

* * .
u, E u, cosoxsin fy,

K
)

n,

3

o0
* * : . * * .
wr = E w . sinaxsin By, 0. = E 0., cosoxsin fiy,

m,n m,n
o0 o0

0, = E 0}, sin ox cos fiy, 0 = E 0, sinoxsin fy.
m,n m,n

Clearly the assumed solution satisfies the boundary conditions stated above exactly. Substitution of Eq. (19) and series
of Eq. (21) into Eq. (18) yields a set of linear algebraic equations in terms of the unknown amplitudes .., Vomn> Womns
Ovmn> Oymn> O-mn and their higher-order (*) terms. These equations can be expressed in matrix form as

C'A4=F. (22)

Here C', 4 and F for all the displacement models are given in Appendix C.

7. Discussion of numerical results

The primary purpose of the present paper is to highlight and compare the accuracy of the various higher-order
theories in the light of available 3D solutions under mechanical loading and then to study the behaviour of composite
and sandwich plates and shells under thermal loading.

Example 1. The examples presented by Bhimaraddi [24] are analysed here to compare the response of higher-order
theories. Isotropic (Poisson’s ratio = 0.3) and orthotropic spherical shells with following properties are analysed.

B 5o E_ | Ge_Gy_1 G |1
E, 7 E ' E E 2 E 5
vy =025, v, =0.03, v,.=04, hencev, =0.75.

The centre deflection (WE, /g at middle surface of the shell, x = a/2, y = b/2, z = 0) values for homogeneous isotropic,
orthotropic, antisymmetric cross-ply (0°/90°) and symmetric cross-ply (0°/90°/0°) spherical shells (equal thickness in
each layer) with different #/a and R/a ratios are shown in Tables 1-4 respectively. The results presented by all the
theories are approximately same with thickness ratio 4/a as 0.01, even with R/a ratio as 1 the difference with 3D is not
more than 1.3%. But with thickness ratios higher than 0.1 and small curvature i.e. R/a less than 3 the error in all the
theories comparing to 3D solutions presented by Bhimaraddi [24] is considerable. It is as high as 27.7% in the results of
FOST and 21.9% in the results of HOST12 in case of symmetric cross-ply spherical shells with thickness ratio 0.15 and
R/a ratio 1. One graph showing the non-dimensional centre deflection versus radius to side (R/a) ratios in case of
symmetric cross-ply (0°/90°/0°) spherical shell is shown in Fig. 2(a) and the percent error in non-dimensional centre
deflection values is shown in Fig. 2(b) for 0.1 thickness ratio (#/a). The error in all the higher-order theories is reduced
with increase in values of R/a ratios. It is less than 6.3% with R/a ratios higher than 5 in HOST12 and HOST11 and
less than 8% in HOST9 but in FOST the error is even upto 13% with thickness ratio (4/a) as 0.1 and 16% with
thickness ratios 0.15. The error in higher-order theories is less in other cases of laminate orientations and in descending
order of error values are antisymmetric cross-ply, orthotropic and isotropic spherical shells respectively. In these cases
the error is less than 5% even with R/a ratio 3 in all the theories. Thus the higher-order theories presented here are
certainly an improvement over first-order theory and are in good agreement with 3D solutions in the range of even
higher #/a ratios but with R/a ratio more than 3.
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Table 1
Comparison of centre deflection (WE, /q) for isotropic (v = 0.3) spherical shell with different #/a and R/a ratios (a/b =1, Ry = R, =R)
R/a h/a HOSTI12 HOSTI1 HOST9 FOST Bhimaraddi [24]
1 0.01 99.710 99.710 99.690 99.690 100.59
0.1 7.8440 7.8440 7.7300 7.2300 8.7095
0.15 4.2300 4.2300 4.1100 4.1100 4.9497
2 0.01 394.64 394.64 394.56 394.56 396.45
0.1 17.530 17.530 17.340 17.340 18.451
0.15 7.2250 7.2240 7.1000 7.1000 7.7240
3 0.01 872.59 872.59 872.41 872.41 875.36
0.1 22.708 22.707 22.526 22.527 23.381
0.15 8.3076 8.3072 8.1990 8.2800 8.5912
4 0.01 1514.6 1514.6 1514.3 1514.3 1518.3
0.1 25.324 25.323 25.159 25.159 25.785
0.15 8.7666 8.7664 8.6680 8.6690 8.9235
5 0.01 2296.8 2296.8 2296.3 2296.3 2301.4
0.1 26.749 26.749 26.597 26.598 27.061
0.15 8.9966 8.9964 8.9039 8.9052 9.0755
10 0.01 7375.1 7375.1 7373.9 7373.9 7383.1
0.1 28.921 28.921 28.790 28.790 28.910
0.15 9.3225 9.3225 9.2389 9.2404 9.2505
20 0.01 16490 16490 16488 16488 16499
0.1 29.520 29.520 29.398 29.399 29.356
0.15 9.4077 9.4077 9.3266 9.3282 9.2666
oo (plate) 0.01 28043 28043 28042 28042 29504
0.1 29.725 29.725 29.606 29.607 29.44
0.15 9.4365 9.4365 9.3560 9.3578 9.2352
Table 2
Comparison of centre deflection (wE, /q) for homogeneous orthotropic spherical shell with different #/a and R/a ratios (a/b =1, Ry =R, = R)
R/a hla HOSTI12 HOSTI11 HOST9 FOST Bhimaraddi [24]
1 0.01 74.504 74.504 74.436 74.434 75.397
0.1 3.9830 3.9780 3.8240 3.8240 4.7117
0.15 2.0624 2.0584 1.9490 1.9540 2.5641
2 0.01 283.45 283.45 283.18 283.17 285.72
0.1 5.5745 5.5720 5.4698 5.4760 5.9693
0.15 2.4783 2.4765 2.4166 2.4289 2.6788
3 0.01 589.59 589.59 589.06 589.04 593.43
0.1 6.0071 6.0057 5.9372 5.9461 6.2215
0.15 2.5681 2.5672 2.5262 2.5406 2.6635
4 0.01 947.87 947.87 947.09 947.06 953.25
0.1 6.1738 6.1730 6.1198 6.1298 6.3014
0.15 2.6007 2.6001 2.5668 2.5820 2.6494
5 0.01 1318.8 1318.8 1317.8 1317.8 1325.5
0.1 6.2540 6.2534 6.2080 6.2187 6.3332
0.15 2.6159 2.6156 2.5860 2.6016 2.6393
10 0.01 2757.7 2757.7 2756.5 2756.5 2767.7
0.1 6.3639 6.3638 6.3297 6.3411 6.3593
0.15 2.6364 2.6363 2.6120 2.6281 2.6256
20 0.01 3791.9 3791.9 3791.3 3791.2 3802.5
0.1 6.3920 6.3919 6.3610 6.3725 6.3532
0.15 2.6416 2.6416 2.6185 2.6348 2.6022
oo (plate) 0.01 43337 4333.7 4333.5 4333.5 4343.0
0.1 6.4014 6.4014 6.3713 6.3830 6.3343

0.15 2.6433 2.6433 2.6210 2.6370 2.5879
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Comparison of centre deflection (wE, /q) for antisymmetric cross-ply (0/90) spherical shell with different #/a and R/a ratios (a/b =1, Ry =R, = R)

R/a hla HOSTI12 HOSTI1 HOST9 FOST Bhimaraddi [24]
1 0.01 53.564 53.564 53.557 53.553 54.129
0.1 4.0666 4.0662 4.0226 4.0111 4.6920
0.15 2.2155 2.2149 2.1694 2.1688 2.7386
2 0.01 211.07 211.07 211.05 211.09 212.33
0.1 8.1661 8.1656 8.1097 8.1428 8.8092
0.15 3.4615 3.4610 3.4153 3.4611 3.8190
3 0.01 463.40 463.40 463.40 463.36 456.46
0.1 10.026 10.026 9.9787 10.053 10.512
0.15 3.8573 3.8571 3.8174 3.8865 4.0856
4 0.01 796.77 796.717 796.86 796.79 799.81
0.1 10.893 10.893 10.853 10.951 11.263
0.15 4.0176 4.0175 3.9811 4.0610 4.1758
5 0.01 1194.5 1194.5 1194.8 1194.7 1198.7
0.1 11.347 11.347 11.312 11.424 11.639
0.15 4.0963 4.0962 4.0617 4.1470 4.2131
10 0.01 3572.2 3572.2 3575.9 3575.8 3584.8
0.1 12.015 12.015 11.987 12.121 12.150
0.15 4.2061 4.2061 4.1742 4.2676 4.2457
20 0.01 7110.6 7110.6 7126.4 7126.8 7142.6
0.1 12.194 12.194 12.169 12.309 12.258
0.15 4.2344 4.2344 4.2033 4.2988 4.2399
oo (plate) 0.01 10615 10615 10652 10653 10674
0.1 12.255 12.255 12.231 12.373 12.257
0.15 4.2439 4.2439 4.2131 4.3093 4.1291
Table 4

Comparison of centre deflection (wE,/q) for symmetric cross-ply (0/90/0) spherical shell with different #/a and R/a ratios (a/b =1, Ry = R, =R)

R/a hla HOSTI12 HOSTI11 HOST9 FOST Bhimaraddi [24]
1 0.01 53.626 53.624 53.613 53.609 54.252
0.1 3.4132 3.4101 3.3583 3.2567 4.0811
0.15 1.9004 1.8977 1.8536 1.7606 2.4345
2 0.01 208.86 208.86 206.81 206.78 208.36
0.1 5.6510 5.6485 5.5955 5.3030 6.3134
0.15 2.6871 2.6855 2.6483 2.4519 3.0931
3 0.01 439.30 439.28 439.19 439.10 441.81
0.1 6.4220 6.4205 6.3763 5.9954 6.9888
0.15 2.9050 2.9042 2.8135 2.6414 3.2228
4 0.01 724.02 724.00 723.85 723.65 727.62
0.1 6.7432 6.7423 6.7032 6.2820 7.1476
0.15 2.9895 2.9890 2.9614 2.7147 3.2605
5 0.01 1034.3 1034.2 1034.1 1033.7 1039.0
0.1 6.9029 6.9023 6.8660 6.4241 7.3674
0.15 3.0302 3.0300 3.0039 2.7499 3.2736
10 0.01 2413.1 2413.1 2412.7 2410.9 2422.4
0.1 7.1278 7.1276 7.0957 6.6237 7.5127
0.15 3.0862 3.0861 3.0624 2.7983 3.2769
20 0.01 3619.3 3619.3 3619.0 3615.0 3632.2
0.1 7.1863 7.1862 7.1555 6.6756 7.5328
0.15 3.1005 3.1005 3.0077 2.8107 3.2669
oo (plate) 0.01 4343.0 4343.0 43427 43427 4356.9
0.1 7.2060 7.2060 7.1757 6.6930 7.5169
0.15 3.1053 3.1053 3.0824 2.8148 3.2525
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Fig. 2. (a) Non-dimensional centre deflection versus R /a ratio of simply supported symmetric cross-ply spherical shell subjected to sinuodial load and
(b) % error in (a).

Example 2. The exact solutions presented by Pagano [25] and Reddy [26] are illustrated in this example to compare the
response of higher-order theories in the sandwich plates and shells. A square plate with various 4/a ratios and a
cylindrical shell with various //a and R/a ratios are analysed here with following properties.
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Face sheets : E, =25x 10% psi, E, =E.=1x10° psi, G, =0.5x 10° psi,

G.=02x10° G.=G,, vy=v,=v,=025 h;=0.1h
Core: E,=E, =0.04x 10° psi, E.=0.5x10%psi, G, =0.016 x 10° psi,
Gy = G, =0.06 x 10° psi, v, = v, =v, =025 h. =0.8h.
Hence v, = v, =0.02.

Table 5 shows the values of non-dimensional centre deflection (100wE,4*/ga*) in square orthotropic sandwich plate
with different thickness ratios (%/a). In the thin regime the results by all the theories are close to each other and in good
agreement with 3D exact results presented by Pagano [25]. The error in the results presented by FOST is upto 29% and
37% in moderately thick and thick plates respectively comparing to 3D results. This error in the results presented by
higher-order shear theories is only upto 5.5% even in thick regime. Table 6 shows the values of non-dimensional centre
deflection (100wE,A*/qa*) in orthotropic sandwich cylindrical shell with different thickness ratios (4/a). The 3D and
finite element solutions of this problem are presented by Reddy [26] and Menon [27] respectively. Again in the thin
regime the results by all the theories are close to each other and comparable to 3D results. In thick shells error in FOST
results is very high (30%) at #/a = 0.1 and even more (upto 39%) at #/a = 0/25. The error in the results of higher-order
shear deformation theories is 5-8% at #/a = 0.1 and 6-10% at i/a = 0.25 except in case of very low R/h ratio (i.e.
R/h = 2), as this ratio does not come under the perview of assumptions of present theories. The results of present
formulation are maching well with the finite element results of thin shell higher-order theories presented by Menon
[27].

Example 3. The 2D analytical solutions presented by Khdeir et al. [3] are compared and presented in this example to
study the thermal effects on the response of cross-ply laminated shallow shells with variation of geometry and lami-
nation. The non-dimensionalized centre deflection of cross-ply cylindrical (0°/90°), spherical (0°/90°) and ten layer
cylindrical (0°/90°/...) panels subjected to antisymmetric variation of temperature through thickness and uniform
variation over the surface of the shell are presented in this example. The material and thickness of all the laminae are
same with following properties:

Table 5
Comparison of centre deflection (100wE,/#*/qa*) for orthotropic sandwich plate with different //a ratios (a/b = 1)
h/a HOSTI12 HOSTI1 HOST9 FOST Pagano [25] Reddy [26]
0.01 0.88818 0.88818 0.89103 0.88522 0.892 0.8924
0.1 2.0823 2.0823 2.0848 1.5604 2.20 2.20046
0.25 7.1794 7.1794 7.1538 4.7666 7.596 7.5965
Table 6

Comparison of centre deflection (100wE,/*/ga*) for orthotropic sandwich cylindrical shell with different #/a and R/h ratios (a/b=1, Ry =R,
Rz = OO)

h/a R/h HOSTI12 HOSTI11 HOST9 FOST Reddy [26]  Menon [27]
Theory 1 Theory 2
0.01 100 0.11774 0.11697 0.11800 0.11790 0.11863 - -
50 0.03255 0.03231 0.03262 0.03262 0.03294 - -
20 0.00521 0.00517 0.00523 0.00523 0.00535 - -
0.1 100 2.0830 2.0830 2.0853 1.5615 2.2108 2.075 2.085
50 2.0850 2.0850 2.0867 1.5646 22218 2.076 2.096
20 2.0981 2.0981 2.0958 1.5858 2.2574 - -
10 2.1296 2.1294 2.1149 1.6551 2.3115 2.096 2.203
5 2.0141 2.0117 1.9839 1.7734 2.1858 1.944 2.134
2 0.3666 0.3581 0.3546 0.3135 0.4498 0.361 0.439
0.25 100 7.1803 7.1803 7.1547 4.7675 7.6310 - -
50 7.1831 7.1831 7.1571 4.7701 7.6669 - -
20 7.2024 7.2024 7.1741 4.7882 7.7816 - -
10 7.2710 7.2710 7.2344 4.8534 7.9959 - -
5 7.5377 7.5377 7.4680 5.1192 8.5081 - -
2 8.6990 8.6936 8.4688 6.9533 10.039 - -
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The non-dimensionalised deflection parameter

. w(a/2,b/2,0)

o o1 lez

is used in the results. Mechanical loading and average temperature are zero. The results presented by all the theories
are in good agreement with the corresponding theories presented by Khdeir et al. [3] as shown in Table 7.

Example 4. A new problem is chosen here to study the thermal effects on the response of sandwich shells with variation
of geometry and lamination in orthotropic and cross-ply cylindrical and spherical panels under a temperature vari-
ation, uniform over the surface and antisymmetric through the thickness of the shell. The geometric and material
properties are same as used in Example 2 with assuming the linear coefficients of thermal expansion as under:

Face sheets : o, =0.1 x 107°/°C, o =2x107°/°C, o3 =a.
Core: o =0.1x10"°/°C, a0 =02x107°/°C, o3 =a.

Table 8 shows the non-dimensionalized centre deflections w = 10wh/(a?a; T7) in orthotropic sandwich cylindrical and
spherical shells subjected to sinusoidal temperature load with different R/a and 4 /a ratios for all the theories used here.
The uniformly distributed load (¢) and average temperature 7, are considered to be zero here. In the thin regime, i.e.
h/a = 0.01, the results presented by all the theories are matching well with each other. The maximum difference in the
results of first-order shear theory (FOST) and the results of the displacement model HOST12 of higher-order shear
theories is 2% in thin regime. Further with increase of 4/a ratios the difference in the results of first- and higher-order
shear theories increases enormously and is 14% in case of #/a = 0.1 and 23% in case of 4/a = 0.25. The results in these
two cases are plotted in Fig. 3(a) and Fig. 3(b) with respect to various R/a ratios. As is already seen in above examples
the results of higher-order shear deformation theories are closer to the 3D exact solution, in this example these should
be considered to be more reliable and may be used for further reference to numerical or analytical solutions of
temperature loading.

Tables 9 and 10 show the non-dimensionalized centre deflection defined earlier in antisymmetric (0°/core/90°), and
symmetric (0°/90°/core/90°/0°) cross-ply sandwich cylindrical and spherical shells respectively subjected to sinusoidal
temperature load. The results presented by all the theories are not deviating much particularly in the thick regime in
these two cases. The maximum difference is 2% in thick and 3% in thin regime.

Table 7

Non-dimensionalized centre deflections w of cross-ply shells subjected to sinusoidal temperature load with different R/a ratios
R/a HOSTI12 HOSTI1 HOST9 FOST Khdeir [3]

HSDT FSDT CST

Cylindrical shell (0/190) with a/b =1, h/a=0.1, Ry =00, R, =R
5 1.1261 1.1261 1.1279 1.1272 1.1235 1.1248 1.1280
10 1.1434 1.1434 1.1449 1.1444 1.1421 1.1439 1.1447
50 1.1493 1.1493 1.1507 1.1501 1.1482 1.1501 1.1501
Spherical shell (0/90) with a/b=1, h/a=0.1, Ry =R, =R
5 1.0588 1.0588 1.0602 1.0578 1.0545 1.0546 1.0660
10 1.1256 1.1256 1.1269 1.1258 1.1235 1.1248 1.1280
50 1.1487 1.1487 1.1500 1.1493 1.1475 1.1493 1.1494
Plate 1.1497 1.1497 1.1510 1.1504 1.1485 1.1504 1.1504
Ten layer cylindrical shell (0/90]...) with a/b =1, h/a=0.1, Ry =00, R, =R
5 1.0224 1.0224 1.0239 1.0234 1.0216 1.0215 1.0247
10 1.0299 1.0299 1.0312 1.0307 1.0303 1.0302 1.0310
50 1.0325 1.0325 1.0337 1.0330 1.0332 1.0330 1.0331

Plate 1.0326 1.0326 1.0339 1.0331 1.0333 1.0331 1.0331
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Table 8
Non-dimensionalized centre deflections w of orthotropic sandwich shells subjected to sinusoidal temperature load with different R/a and &/a ratios
R/a hja HOSTI12 HOST11 HOST9 FOST
Cylindrical shell with a/b =1, Ry =00, R, =R
5 0.01 1.43467 1.43231 1.40776 1.40652
0.1 2.49668 2.49650 2.46217 2.14244
0.25 4.22802 4.22787 4.21900 3.26804
10 0.01 1.70695 1.60612 1.67497 1.67189
0.1 2.51013 2.51009 2.47518 2.15131
0.25 4.24059 4.24055 4.23050 3.27583
20 0.01 1.79187 1.79164 1.75833 1.75457
0.1 2.51351 2.51350 2.47845 2.15354
0.25 4.24374 4.24373 4.23337 3.27778

Spherical shell with a/b =1, Ry =R, =R

5 0.01 0.877956 0.874442 0.861476 0.862432
0.1 2.46373 2.46345 2.42979 2.12390
0.25 4.20316 4.20297 4.19525 3.26282
10 0.01 1.43679 1.43447 1.40977 1.40854
0.1 2.50176 2.50169 2.46695 2.14663
0.25 4.23434 4.23429 4.22452 3.27453
20 0.01 1.70767 1.70685 1.67565 1.67258
0.1 2.51141 2.51139 2.42639 2.15236
0.25 4.24217 4.24216 4.23188 3.27746
Plate 0.01 1.82208 1.82208 1.78798 1.78397
0.1 2.51464 2.51464 2.47955 2.15428
0.25 4.24478 4.24478 4.23433 3.27843

Example 5. To compare the stresses computed by the present formulation under mechanical and thermal loading
following two cases are considered with the same material properties as used in Example 2.

(a) An analysis of a layered laminated (0°/90°/0°) circular cylindrical shell roof with simply supported edges is
carried out and the results are compared with available elasticity solution given by Ren [28] under mechanical loading.
The shell roof has a radius R = 5 units, length b = 30 units and subtended angle of 60 degrees. A sinusoidal load
q = g, sin(nx/a) sin(ny/b) is applied on the shell surface. The thickness of each layer is /4, 1/2 and % /4 respectively as
per their orientation. Numerical results are obtained for different R/4 ratios, namely 100, 10, 5, and 2 and are presented
in Table 11. The maximum deflection and the normal stresses at the centre (a/2, 5/2) and the shear stress at the support
(0,0) are normalized as

W= IOOWEy/(qohs4), (Gx, Gy, Try) = (0%, 0y, Txy)/(qosz), s =R/h.

The percentage difference between the present and the elasticity solutions is presented in the bracket below each value.
It is observed from these results that for lower R/ ratios, both stress and displacement fields, given by the higher-order
shear deformation theories are close to the exact three-dimensional solutions while comparing with the results of first-
order shear theory.

(b) The thermal bending of simply supported, symmetric (0°/90°/0°) and antisymmetric (0°/90°) cross-ply square
plates is considered in this example. The temperature rise is assumed to be sinusoidally distributed as

AT = (Ta +%Tl) sin(nx/a) sin(ny/b) in which 7, =0 and T} = 1.

The layers are of equal thickness. The results of this problem are compared with available analytical solution of
discrete layer theory given by He [12]. Numerical results are obtained for two a/k ratios, namely 5 and 10 and are
presented in Tables 12 and 13. The maximum deflection and the normal stresses at the centre (a/2,a/2) and the
transverse shear stresses at the support [7,,(0,0),7,.(0,a/2), and t,.(a/2,0)] are normalized as

w = 10hw/(a; T1a%), (Gxy Gy Tayy Tazs Tyz) = (O, Oy, Tayy Tazs Tyz) 10R/ (s T Eyat).
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Fig. 3. (a,b) Non-dimensional centre deflection versus R/a ratio of simply supported orthotropic sandwich spherical shell subjected to sinusoidal
temperature load.

It is observed that the results presented by the higher-order shear theories of present formulation are close to the results
given by He [12] while the first-order shear theory under-predicts the results, in general.
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Non-dimensionalized centre deflections w of antisymmetric cross-ply sandwich (0/core/90) shells subjected to sinusoidal temperature load with
different R/a and h/a ratios

R/a h/a HOST12 HOST11 HOST9 FOST
Cylindrical shell with a/b =1, Ry = 0o, R, =R
5 0.01 2.56432 2.56368 2.47910 2.47964
0.1 6.57874 6.57865 6.47152 6.47765
0.25 6.64641 6.64635 6.57582 6.62009
10 0.01 4.75854 4.75799 4.64179 4.64214
0.1 6.63063 6.63061 6.52688 6.53324
0.25 6.60229 6.60227 6.53658 6.58232
20 0.01 6.05362 6.05340 5.93405 5.93417
0.1 6.63772 6.63771 6.53587 6.54297
0.25 6.57810 6.57810 6.51479 6.56187
Spherical shell with a/b =1, Ry =R, =R
5 0.01 0.885045 0.884719 0.862706 0.862964
0.1 6.20150 6.20118 6.10588 6.12662
0.25 6.45154 6.45132 6.39433 6.45714
10 0.01 2.53488 2.53425 2.47684 2.47738
0.1 6.51914 6.51905 6.42031 6.43204
0.25 6.52690 6.52684 6.46685 6.51931
20 0.01 4.73032 4.72977 4.63899 4.63950
0.1 6.60338 6.60336 6.50379 6.51294
0.25 6.54602 6.54600 6.48527 6.53504
Plate 0.01 6.64726 6.64726 6.54029 6.54037
0.1 6.63198 6.63198 6.53213 6.54037
0.25 6.55254 6.55254 6.49156 6.54037
Table 10

Non-dimensionalized centre deflections w of symmetric cross-ply sandwich (0/90/core/90/0) shells subjected to sinusoidal temperature load with
different R/a and h/a ratios

R/a h/a HOST12 HOST11 HOSTY9 FOST
Cylindrical shell with a/b =1, Ry = 0o, R, =R
5 0.01 1.32704 1.32690 1.30120 1.30218
0.1 1.80304 1.80305 1.78069 1.77727
0.25 1.79713 1.79713 1.83620 1.79004
10 0.01 1.66168 1.66163 1.63018 1.63053
0.1 1.81008 1.81008 1.78755 1.78261
0.25 1.79640 1.79640 1.85394 1.78983
20 0.01 1.77326 1.77325 1.73995 1.74003
0.1 1.81184 1.81184 1.78927 1.78395
0.25 1.79713 1.79713 1.83620 1.79004
Spherical shell with a/b =1, Ry =R, =R
5 0.01 0.733198 0.733022 0.718389 0.719637
0.1 1.76909 1.76913 1.74783 1.74992
0.25 1.77381 1.77393 1.81551 1.77707
10 0.01 1.32657 1.32643 1.30074 1.30175
0.1 1.80144 1.80144 1.77918 1.77568
0.25 1.79146 1.79149 1.83118 1.77685
20 0.01 1.66139 1.66134 1.62990 1.63026
0.1 1.80967 1.80967 1.78717 1.78221
0.25 1.79589 1.79590 1.83511 1.78930
Plate 0.01 1.81384 1.81384 1.77989 1.77985
0.1 1.81242 1.81242 1.78984 1.78439
0.25 1.79737 1.79737 1.83643 1.79011
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Table 11
Maximum non-dimensionalized centre deflection (w) and stresses for a simply supported three-layered (0/90/0) laminated cylindrical shell roof for
different R/h ratios

Quantity R/h HOSTI2 HOST11 HOST9 FOST 3D Ren [28]
W 100 0.5421 0.5421 0.5417 0.5404 0.533
(1.70) (1.70) (1.63) (1.39)

10 1.4706 1.4688 1.4525 1.3147 1.577
(=6.75) (~6.86) (~7.89) (~16.63)

5 3.3070 3.3020 3.2396 27547 3.694
(~10.48) (-10.61) (~12.30) (~25.43)

2 14.460 14.459 14.022 12.737 16.728
(~13.56) (~13.56) (-16.18) (~23.86)

G.(z = £h/2) 100 0.5443 0.5439 0.5439 0.5422 0.533
2.12) (2.05) (2.05) (1.73) -0.548
-0.5358 -0.5362 -0.5360 ~0.5355
(-2.23) (=2.15) (=2.19) (-2.28)

10 0.9428 0.9384 0.9397 0.8168 0.957
(~1.48) (~1.94) (-1.81) (~14.65) ~1.058
~0.9658 ~0.9665 ~0.9638 -0.862
(~8.70) (-8.62) (~8.90) (~18.52)

5 1.2312 1.2280 1.2368 0.7944 1.252
(~1.66) (-1.92) (-1.21) (~36.55) ~1.562
-1.2916 ~1.2888 ~1.2744 -0.8872
(-17.31) (~17.49) (-18.41) (~43.20)

2 2.3480 2.3458 2.5175 0.7143 2.637
(~10.96) (-11.04) (~4.50) (=72.91) -3.951
-2.6425 ~2.6375 -2.5150 -0.9483
(-33.12) (-33.24) (~36.34) (~76.00)

G,(z = £h/2) 100 0.01547 0.01516 0.01538 0.01534 0.0157
(~1.46) (=3.44) (~2.04) (-2.29) ~0.0032
0.00311 0.00280 0.00310 0.00308
(-2.81) (~12.50) (-3.12) (~6.25)

10 0.01359 0.01106 0.01387 0.01219 0.017
(~20.06) (~34.94) (~18.41) (~28.29) ~0.0099
~0.00969 -0.01218 -0.00907 ~0.00811
(=2.12) (23.03) (-8.38) (~18.08)

5 0.0178 0.01358 0.0195 0.01386 0.0306
(~41.83) (~55.62) (-36.27) (~39.22) ~0.0171
-0.0161 -0.0201 -0.0140 -0.00994
(-5.85) (17.50) (~18.13) (-41.87)

2 0.02543 0.02376 0.04575 0.02435 0.1135
(-77.6) (=79.10) (~59.70) (~78.55) ~0.0489
~0.04160 -0.04320 -0.03410 -0.01725
(~14.93) (~11.66) (~30.26) (—64.72)

Ty (z = £h/2) 100 ~0.01697 -0.01697 -0.01709 -0.01706 ~0.0174
(=2.47) (-2.47) (~1.80) (-1.95) 0.0253
0.02485 0.02485 0.02474 0.02468
(-1.78) (-1.78) (=2.21) (=2.45)

10 -0.003617 -0.003605 -0.00291 ~0.002446 ~0.0031
(16.68) (16.68) (=6.13) (=21.10) 0.0153
0.01408 0.01406 0.01391 0.01256
(-7.97) (-8.10) (=9.10) (-17.91)

5 ~0.01098 -0.01096 ~0.00937 ~0.006732 -0.0096
(14.38) (14.17) (~2.39) (~29.89) 0.0256
0.0218 0.021732 0.021096 0.017204

(~14.84) (-15.11) (-17.59) (=32.79)
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Quantity R/h HOSTI12 HOSTI1 HOST9 FOST 3D Ren [28]
2 —0.0442 —0.04423 —-0.03805 —-0.02503 —0.0350
(26.28) (26.37) 8.71) (-28.49) 0.0750
0.05863 0.05855 0.05373 0.04325
(-21.83) (-21.93) (—28.36) (—42.33)
Table 12
Maximum non-dimensionalized centre deflection (w) and stresses in a simply supported symmetric cross-ply (0/90/0) square plate under thermal
loading
a/h Quantity HOSTI12 HOSTI11 HOST9 FOST He [12]
5 w 1.0823 1.0823 1.0874 1.0763 1.0904
GX(z = —h/6) 0.6628 0.6628 0.6616 0.6556 0.6712
Gl(z=—h/6) 0.3024 0.3024 0.2736 0.1357 0.4776
Gl(z=—h/2) 0.01215 0.01215 0.08264 0.4072 0.1478
’ﬁ(z =—h/6) —0.8550 —0.8550 —0.9838 —-1.0208 —0.8265
6}1,(2 =—h/2) 1.8538 1.8538 1.8590 1.8618 1.8450
Tl (z=—h/2) 1.0814 1.0814 1.0786 1.0722 1.0850
T.(z=—h/6) 0.1263 0.1263 0.1272 0.07948 0.0844
T.(z=10) 0.1433 0.1433 0.1448 0.07948 0.0674
T,.(z = —h/6) —0.1055 —-0.1055 —0.1046 0.10598 —-0.1094
T.(z=0) —-0.04136 —-0.04136 —-0.04088 0.0424 —-0.0480
10 w 1.04889 1.04889 1.05013 1.04602 1.0517
G (z = —h/6) 0.3308 0.3308 0.3306 0.3296 0.3325
Gl(z=—h/6) 0.05808 0.05808 0.05395 0.02822 0.0960
Gl(z=—h/2) 0.01647 0.01647 0.02656 0.08467 0.0361
G*(z = —h/6) —-0.1590 —-0.1590 —0.1630 —-0.1621 —0.1436
6'y‘ (z=—h/2) 0.9705 0.9705 0.9712 0.9715 0.9690
f;y(z =—h/2) 0.5192 0.5192 0.5188 0.5178 0.5200
T.(z=—h/6) 0.04329 0.04329 0.4336 0.02616 0.0293
T:(z2=0) 0.04971 0.04971 0.04981 0.02616 0.0250
T,.(z=—h/6) —0.03553 —0.03553 0.03547 0.03488 —-0.0316
T,.(z=0) —-0.01443 —-0.01443 0.01440 0.01395 —-0.0234
Table 13
Maximum non-dimensionalized centre deflection (w) and stresses in a simply supported antisymmetric cross-ply (0/90) square plate under thermal
loading
a/h Quantity HOSTI12 HOST11 HOST9 FOST He [12]
5 W 1.1478 1.1478 1.15297 1.1504 1.1557
G2 (z=0) 0.06566 0.06566 0.06764 0.0700 0.0589
X (z=h/2) —-1.7096 —-1.7096 -1.7114 —-1.7654 —-1.6956
Gl(z=0) 2.2160 2.2160 2.2320 2.3100 1.9444
Gl(z=—-h/2) —-0.2410 —0.2410 —-0.1818 —-0.6148 —-0.3077
2(z=0) -2.2160 -2.2160 2.2320 —-2.3100 —1.9444
63(2 =h/2) 0.2410 0.2410 0.1818 0.6148 0.3077
fiy(z:h/Z) -1.1576 -1.1576 —-1.1556 —-1.1354 —-1.1653
T.(z=10) —-0.03646 —-0.03646 —0.03544 - —-0.0740
T.(z=0) —0.03646 —0.03646 —0.03544 - —0.0740
10 W 1.1497 1.1497 1.1510 1.1504 1.1519
62(z=0) 0.03387 0.03387 0.03469 0.0350 0.0334
62(z=h/2) —0.8748 —0.8748 —-0.8753 —-0.8827 —-0.8728
gl(z=0) 1.1430 1.1430 1.1450 1.1550 1.1032
Gl(z=—-h/2) —0.2547 —0.2547 —-0.2460 —-0.3074 —0.2638
2(z=0) —-1.1430 —-1.1430 —1.1450 —1.1550 -1.1032
&f, (z=1n/2) 0.2547 0.2547 0.2460 0.3074 0.2638
’ﬁy(z =h/2) —-0.5707 —-0.5707 —0.5704 —0.5677 —0.5719
T.(z=0) —-0.01039 —-0.01039 —-0.01031 - —-0.0210
T.(z=0) —-0.01039 —-0.01039 —-0.01031 - —-0.0210

=
51
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8. Conclusions

Closed-form formulations of 2D higher-order shear deformation theory are presented for the analysis of simply
supported composite and sandwich laminated doubly curved shells under thermo-mechanical loading conditions.
These solutions are also applicable to the plates by taking both the radii of curvature as infinity and cylindrical shells
by taking one radius of curvature as infinity. The present results are compared with the exact solutions available in the
literature. The results presented by the higher-order theories are found closer to the exact results in comparison to the
results obtained by first-order shear-deformation theory. Particularly in case of sandwich laminates, where the error in
the results of first-order shear deformation theory with respect to the results of 3D is large (upto 40% even in de-
flection), the error in the results of higher-order shear deformation theories is not more than 5-10%. Thus, the im-
portance of higher-order shear deformation theories especially for sandwich laminates is established beyond any
doubt.
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Appendix A

Reduced elastic constants of the orthotropic material corresponding to Lth lamina:
For displacement model HOST12 and HOST11

0y = Ciis* +2(C1y + 2Cyy)s*c* + Cooc?,

On = Ci3s” + Cac?,

0x = (Cyy — C1p — 2Ca)s’c + (C1y — Cyy + 2Cy)Cs,

O3 = Gy,

O3 = (C31 — C3y)sc,

Ou = (Ci1 = 2C1p + Cpy — 2Cuy)5°¢* + Cua(c* +5),

Oss = Css¢” + Cegs”,

Oss = (Css — Cee)sc,

Qg = Csss” + Coc> and Q= O, i,j = 1,6.
For displacement model HOST9 and FOST

0,1 = Ciic* +2(Cy + 2C33)s°c* + Cops*,

01 = Cia(c* +5*) + (Ciy + Cyy — 4C33)s°c?,

013 = (C1i — Cip — 2Cx3)s¢® + (Ciz — Cy 4 2Cx3)cs,

0y = Ciis* +2(Cpy + 2C33)57¢ + Cc?,

0,3 = (Cj) — C1y — 2C33)s°c + (Cpy — Cyy + 2C33)Cs,

033 = (C1) —2C1p + Cypy — 2C33)s%c + Cx3(c* +5),

Oy = Cuc® + Csss’,

@45 = (644 - Ess)SC,

Oss = Cus’ + Css¢® and 0, =0, i,j=1t05

in which s = sin 6 and ¢ = cos 0.
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Membrane, flexure, coupling and shear rigidity matrices for various models:
For displacement model HOST12 and HOST11

[ 01 H,
NL
D’n =
=
[ On1H;
NL
D=3
=
[ OnH,
NL
D, =
=1
| O13H,
[ OssH,
NL
D=3
=
I—[i _ (ZiJrl ._ ZIL)

)

1

gLy oo

For displacement model HOST9
The elements of the D,,, D, and D, matrices are same as given for displacement models HOST12 and HOST11 and

the elements of D, matrix are given below:

[ O,,Hi

OysHt
stHl

For displacement model FOST

OH, O1H,;
OnH,; OxH,
OuH,
Symmetric
QM3 O14H;
OnHj O Hj
OuyH;
Symmetric
OnH, O14H,
OnH, Or4H,
OuH,
Symmetric
O H, Os4H,
OseH, OssHs
OesH) OseH3
OssHs
Symmetric
i=1,2 7.

Outts
OusH;
OuHs

Symmetric

O H;
O Hs
O14H;
O H;s

O Hs
O12Hs
O14Hs
O H;

O H,
OnH,
OuH,
OuH,

Oi13Hs

OseH;
OseH3
OseHs
QOs6Hs

OusH;
OssH;
Q45H 5
OssHs

O H;
OnHs
O H;
OnHs
OnHs

Ot
O Hs
0n4Hs
OnH;
OnH;

OnH,
OnH,
OnH,
O12Hs
OxnHs

O»3Hs

OssH,
OscH,
OssH,
OscH,
OssHs

O14H3
Or4H;
OuHs
O1H;s
O Hs
OusHs

O H;s
0n4Hs
QOuHs
Oty
O Hy
QusH7

Q4H,
Or4H,
OusH,
O14Hs
0Or4Hs
OuHs

O34Hs

OseH,
Qg H
OscH,
OscH,y
OseH3
OesH3

Oi3H,
O H,
OsH,
OiH;
O H;
OxH;
Os3H,

O1:H; |
O H;
Os4H;
O13H;
O3 H;
0Oz Hs
Os3H; |

Oi:H, ]|
O H,
OxH,
O13H,
O3 H,
Os4H,
O3 H)

Os33Hy |

OssH,
OseH,
OssHg
OseHs
QOssHs
OseHs
QOssH;

Outy  Qusth  QuH,
Oyt OssHy  QysH,
Outy OysHy Oy
OusHs  OssHy QysHe

[

OusH;
OssH;

Outls
OusHs
OuHy

O13H; |

O Hs
Q4 H3
O13H;s
O3 H;
0Oz Hs
Os3H;

Os33H; |

OscH, |

OscH,y
OseHs
OscHs
OseHs
OesHs
OseH;

QOseH7 |

Oyt
OssH,
OusHs
OssHs
OusHs
OssHs
OusH;

OssH; |
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OuH, O,sHi Q44H y OysHs

NL 0, H 0,H, OH, NL = =
D — 1471 glel glsHl D _ OuHy Oy Oulh
" i1 Uty | s OuHs O.H
L=1" | Symmetric O+:H, =1 aalls Uysts

Symmetric OssH;

The elements of the D. and D, matrices are obtained replacing H, by H, and Hj respectively in the D,, matrix and
I_[i = (ZZJrl _Zi)/i’ i= 13233~

Appendix C

C', 4 and F used in Eq. (22) for various displacement models are as follows:
For displacement model HOST12

— * * * * * *
4= (u”m”’ Uomns Womn s me’” 0}””"’ 02’"’“ Uomns Comns Womn) merﬂ eymrﬂ Bzmn)’

NXT NVT MxT MT * * N; N*T * *
F= (O(JVXT7 ﬂNVT7 - R_ - R_ = > M.z, ﬁMyT’ - R— - R_y - N.r, aNxT? B ¥ R_T - R_y — ZMZT; aMxp ﬂ VT
X y X y . 8
* t
Rx Ry zT )
D
Cly = ~o2Dpi1 — Dy — 26, Dysny — Dyt —
D Dy D,
Ciz = —O(ﬁ(Dflz +Df33 — ciD““l)’ C/13 =g S11 + 112 + 11 7
A A A R" R_V Rx
Dy Dy
C;4 = _asz19 - ﬁzDﬁll - CoﬁzD_/’lm + R st )
X X
D, D D
CiS = _aﬁ(DfIIO +Df311 ‘|‘CUDf1111)7 Cl16 =0 Df17 + /19 =+ f110 s15 )
R, R, R,
Dyas 2D,
Cl; = =&’ Dyis — BDyss — cof’Dyzia — coff*Dysit — o Dyinis — Réz R =,
X X
Cls = =2B(Dy1s + Dyzs = €oDysia + ¢oDyent = ¢;Dpina),
Driy Dyis D3
= o =£ 2D,
19 ( R. + R, +2Dy11s5 + R )
3Dy D,
Chio = =#Dpiz = BDyais — cof*Dying + R—” — R; ,
X X
Ci1; = —oB(Dsi1s + Dysia + ¢oDyinna),
Dra | Dpiis - Dar
Cip, = “(3Df18 + 'Rx + Ry R )
D;
Cpp = =*Dysy = f*Dy + 2¢,4°Dysi — €’ Dyt — R—zz’
>
D D D,
Chy = ﬁ( Rflz I Igzz " Rzz)’ Chy = —af(Dyao + Dysit — cDpinn),
X -y y
Doy Dy
Cys = —B*Dyao — @’ Dyt + 0 Dyr + R;22 B R;i’
Y y

D D D
Cx=58 <Df27 +=2 4 220 = )1

R R R
Ch, = —0aB(Dyas + Dy3s + €oDy3ta — ¢oDysit — 2Dyi11a),

D4 + 2Dy

2
Cly = —B°Dyrs — o0’ Dy36 + co0*Dy31a + o0’ Dygiy — 20’ Dyiiig — & TR
y Y
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Dy D D,
Ch :ﬁ( £24+RL25+2D,215+ R“)
X y

Ch10 = —0f (D212 + Dysig — ¢oDrinna),

oy = =B"Dya1s — *Dysia + o’ Dyina + 32;24 - %28 ;
Cyy = —’ Dy — ﬁDszz—%_%_%7
Cg4:a(i:9+%_ Sll+%)’ Cgs:ﬂ(%JrDIf;m Dy + R‘jﬁ

Cl = —o*Dyjs — ﬁzDS% _&_%_@_%_&_Dzm

Dps Dpa Dy ) Dps  Dps D,
Cg7—05( fl4+ f24+ 13_2Ds15>, C38—ﬂ( f15+ f25+ 24_2D§26),

R, R, R,

Dpiy Dpis 2Dpiis Dppa Dpps 2Dpns 5
Cly = — 21421 oy DSBS op o BDg,
39 R)zc Rx Ry Rx Rx Ry R2 Ry s13 ﬁ 524

R, ' R, R,

D D ) D D,
G = a(%_y% = 3Das + R”) Gy = ﬂ(—fm + =22 3D, +

R, R,

X -y X

DfllZ _ 3Df]8 _ 3Df28 _ Dfll3 _ Df212 _ Df2]3

C/ = — _ 2DS _ ZDS ,
=" TR, R RR Rk, R PP Das
2D D
2 s15 s55
Chy = —0’Dyoy — B*Dyiiny — Doy + R R
D Dy D,
Cys = —0B(Dyoro + Driinn), Cl = OC(D[79 L2 ;:10 Dus + Rss)
x ¥ X
D Dgs 2D,
Cliy = —’Dyso — BDyonn — ¢o*Dyrna + RB 2Dy5 — st 2 >,

)

D, D
Cis = —0B(Dyso + Dyo1y — ¢oDyi11a), Cp = OC( AN ﬂ + 2Dyo15 4 Dy13 —|—

R,

Dy7 | 3Dgs Dy
R R R

Chio = —%*Dyo1z — B Dyi1ia — 3Dg13 +

Dyo» Dy D,
Caiy = —4B(Dyo1s + Dyina), Cypp = | 3Dyso + 912 ZP  pos 7,
R. R, R.
y 2Dy D,
Css = _ﬂszlOlO — oDy — Dy + 26 _ :6 ,
R, Ry
Droro Drioro Dygs
Ci=p(D 4 — D,
56 ﬁ( 710 + R + R, 26+Ry )
Ci; = —af(Dparo + Dyst + ¢oDyina),
Dy D, 2D,
C = _ﬁzD/’Slo - OCZDfén + CUOCZDfHM += — 2Dy — ;;6 + 66,
R R TR,
D D
Cy = ﬂ( ;410 + 12510 +2Dy1015 — Dyos + )
* y

Cs10 = —0B(Ds1o12 + Dyrin1a),
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Dys  3Dgus  Dyss
Cyy = —ﬁszlow - 062Df1114 — 3Dy + —

R R, R
D D D,
C§12—5<3Df81 4 Dpona J;om_Dsngr R687>’
X Y v
Dyro9 2Dyro19  Dyiono 2D79  2Dqg
Cl = —Dyss — PDys — 22 - ) et ,
66 ss5 — B Diss R RR, i "R, R

D, Dy D
C = oc( o= s+ ;;“0 +Df47)

X X

Dy Dyso | Dysio
C/ = _ZDS‘ D
68 ﬁ( Ry 66 +—— Rx +— R{ + 157
Chy = —’Dy3s — B Dys — Df;” _ Dysy  2Dpo1s Dyparo Df5210 ~ 2Dpiis Dpar - Dysy 2Dy,
R RR, R RR, R R, R. R,
Dys; D1z | Drioi
Cém:“(—3Ds35+ R. +R_x+ R, + D712
Dsss | Dro13 | Drions
C, = - 3Ds — D
611 ﬁ( 46 1+ R, + R, + L= R + D713

Clyy = —02Dysy — f*Dygs — 3Dgs9 Doz Dyois 3Dgsi0 - Dpioiz - Dyiois AD e Ds72 Dymis

R, R RR, R, RR R TR, R
Dy | 4Dg
Chy = —0Dyss — B Dyes — 2¢ofDyois — 2 Dyrars — o + Rs > —4Dss,
Dy Dy D
Crs = —aB(Dpas + Dyes — ¢;Dsuans),  Crg = “(% - j$45 +2Ds41s — 2Dgss + 1;33>
X y X

2DSS7 + 3Dx33 _ Dx37
R, R, R

X

Cho = —OCZD_/'412 - ﬁz(Dfém + ¢,Dp1a14) — 6Dg3s +

Dy D D,
Con = —of(Dpars + Dyora + coDpiana), oy = “(3Df4s + 1/;12 + 1/;13 2Dys7 + R37>
Dy 4D,
Cég = — Df66 — ﬁ Df55 —+ 2COOC Df6]4 — C o Df]4]4 R;M 4 R 46 _ 4DS66,
Y
/ Dpas | Dyss Dy ,
Cyy=p R + R, +2Dysis — 2Dy + R ) Cg1o = —0B(Dys12 4+ Dye1a — coDy1414),
X Y

2Dss | 3Dws Dy

Gy = _ﬁzD/‘SB - “Z(D/‘ém — ¢oDy1414) — 6Dy +

R, R, R
s = (301 + 222 20 3 D),
Cly = —o*Dys — f*Dyas — [Z; _ Dlgzss _ 2le£;5 B 41;;;415 B 4D}éf:15 —4D1ss,
Copy = ﬁ( —3Dgus + D};:g - DI;;:‘CB D}/{B + 2Df1315)

3Dps  Dpaz Dysis Dyyiz 3Dyss Dysip 6D e — 2Dyio1s 2Dji3is
R, R R RR, R, RR, "R R,
6D37  Dym
R, R

X

! 2 2
Cy, = =0 D37 — " Dyg —

C;mo = _aszIZIZ - ﬁzDﬂm —9Dg3 +




R K. Khare et al. | Composite Structures 59 (2003) 313-340

D s77

D, D,
Clon = —B(Dsi213 + Driaa), Clon = O€(3Df812 + % + ;2]2]3 —3Dg7 +
X )7
6D, Dy
Ciiy = —%Dyais — ﬁszms + R % Rig — 9Dy,
24 y
Driois  Drizis | Dags
Cl, =B 3D A — 13D,
12 ﬂ( st —p— R, + R, s |5
6Ds31>  6Dsg13 Dyipin 2Dgpinis Dyians
Cl,, = —*Dyg7 — f*Dygg — 9D gy — —2o2 - S35 - -
1212 o Ds77 — f"Diss /88 R, R, R,zc R.R, R_% )
C,=C, ij=1t 12

For displacement model HOST11

* * * * *
4= (uomn; Vomns Womn s exmna Hymna gzmna Uppns U w 0 0 )7

omn’ "“omn’ Y xmn’ ~ ymn
NxT NT MxT MT
F= OC]\])(7 N, 7____}’_ mn7aMx7 M, 7____y_NzaaN*7 N*7_
( y BNyr R, R, q T, BMyr R, R, ry Ny, B VT

t
- 2MZT7 OCM;T? ﬁMfT) .

* *
NxT _ NyT

R,

)

R

y
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The elements of C’ matrix for this displacement model can be obtained by eliminating the twelfth row and twelfth

column of C' matrix of the displacement model HOST12.
For displacement model HOST9

* * : *
4= (uomn; Vomny Womn mena 0 u % 0, 0 )7

ymns Zomn> ~“omn? Y xmn? ~ ymn

F, = (O(NxT7 ﬁNyTv - R_T - RLT — 9mn; oC[‘l)cTa ﬁ%’T’ O(]VxTa ﬁNyTa OCMXJH ﬁMyT> )
x y
2 2 2 202 Dy
C\, = =Dyt — BDy33 — 2¢," D39 — ¢, Dyog — =
D D D
2 11 12 s11
Cl = —aB(Dp> + Dy — 2Dyo),  Cly = a( pu g e 2 >
Dy D,
C;4 = _OCZDfn - ﬁsz39 - Caﬁsz99 + el ;5 ,
R, R
Cis = —of(Dyis + Dy3o + ¢,Dyoo),
Dys 2D,
Cls = =" Dyis = B Dyss = o Dranz = o Droo — L Dypony = =5+ 2,
- X
Ci; = —aP(Ds1s + Dyss — coDy3i2 + ¢oDyso — c2Dgo12),
3Dy D,
C;s = _0‘2Df110 - ﬁszm - Coﬁszglz + R B R;’
X X

Clg = —of(Dyin + Dy3in + ¢,Dgona),

Dy
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v
Dsis Dy Dy
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Dgn Dy
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Yy y
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Dgy 2Dy
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v v

Cis = —af(Dya10 + Dy3iz — ¢,Djor2),
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3D, D,
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Y v
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For displacement model FOST

A = (uomn ) Uomnu anlI’l7 0Xml‘l7 0}’”’!")7
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/ 2 2 2 202 D1y
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D 11 2D 12 D 2
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