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Abstract

A semi-analytical method incorporating various displacement-based formulations has been developed to
investigate propagation of time harmonic waves and vibrations in fiber reinforced polymer composite
laminated and sandwich plates. Various displacement-based models starting from the first order shear
deformation theory to the fourth order theory have been developed using combinations of linear,
quadratic, cubic and quartic variation of axial and transverse displacements through the thickness of a
lamina or a mathematical sub-layer. These displacement-based formulations have been validated by
comparing their results with the analytical solutions available in the literature. Results of all the
displacement models have been compared with those obtained by displacement model using quartic
variation of in-plane and transverse displacements for vibration problem. Higher order displacement-based
theory using cubic variation of in-plane and transverse displacements through the thickness of sub-layer has
been found to yield converging results for wave propagation in laminated composite plates as well as for
vibration problems. All the investigations performed indicate the importance of higher order theories for
analysis of wave propagation and vibrations in composite laminated and sandwich plates.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

Composite laminated plates are being increasingly used in many engineering applications like
components of space structures, bridges, automobile vehicles, nuclear reactors etc. Therefore
analysis of sandwich and composite laminated plates subjected to harmonic waves and natural
vibrations has become a topic of major concern for researchers in this field. The complexities,
attendant with the dynamics of composite laminated plates, are so many that except for a few
special cases, exact solutions do not exist. The anisotropic properties of the composite lamina
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along-with the through thickness warping of cross-section make the analysis of such structures a
difficult task. Propagation of waves through laminated composite plates has been investigated
extensively in the past by many researchers.
A few exact solutions have been reported on wave propagation in isotropic plates (e.g.,

Refs. [1,2]). Dong and Nelson [3], on the other hand, presented a method to analyze natural
vibrations of laminated orthotropic plates in which a displacement field was assumed for each
lamina. The displacements were characterized by a discrete number of generalized co-ordinates at
the lamina bounding planes and their mid-surfaces. Subsequently, Dong and Pauley [4] presented
a Ritz method for determination of frequencies and modal patterns of vibrations and waves in an
infinite anisotropic plate. Dong and Huang [5] investigated plane-strain edge vibrations in
laminated composite plates by using finite element method in which anisotropic laminate
properties were considered. All these studies were based on a parabolic variation of displacement
field through thickness.
Shah and Datta [6] investigated harmonic wave propagation through a periodically laminated

infinite medium by using a stiffness method. Each lamina was divided into several sub-layers and
the displacement distribution through the thickness of each layer was approximated by cubic
polynomial interpolation functions, involving a number of discrete generalized co-ordinates,
which were the displacements and tractions at the interfaces of the adjoining sub-layers. Datta
et al. [7] presented a similar technique for investigating dispersion of waves in a laminated plate
and an improvement over the work of Dong and Huang [5] was claimed. Each lamina was
modelled as a homogeneous transversely isotropic medium with the symmetry axis parallel to the
fibers. The overall effective elastic properties of a lamina were calculated from the fiber and matrix
properties by using an effective modulus theory developed by Datta et al. [8]. Karunasena et al. [9]
used a stiffness method and an analytical method to investigate the dispersion characteristics of
guided waves in laminated composite plates. A Rayleigh–Ritz type of approximation of the
through-thickness variation of the displacements that maintain continuity of displacements and
tractions at the interfaces between the layers had been used in the stiffness method. The analytical
method used Muller’s method to obtain exact dispersion relation of the laminated plate with
initial guesses obtained through the stiffness method.
Various techniques for the free vibration analysis of composite laminated plates have been

reported in the literature. Reddy and Khedeir [10] presented analytical and finite element
solutions for vibration and buckling of laminated composite plates using various plate theories to
prove necessity of shear deformation theories to predict the behavior of composite laminates.
Khedeir and Reddy [11] obtained a complete set of linear equations of the second order theory to
analyze the free vibration behavior of cross-ply and antisymmetric angle-ply laminated plates. The
exact analytical solutions were obtained for thick and moderately thick plates as well as for thin
plates and plate strips. Cho et al. [12], for example, used a higher order plate theory in each
individual layer of a simply supported rectangular laminated plate to determine the natural
frequencies and the relative stress and deflection distributions through the thickness of plate. The
theory approximated the in-plane and normal displacements by employing third and second order
functions of the thickness co-ordinate, respectively. Dawe and Wang [13], on the other hand,
utilized B-spline functions to define the displacement field in analysis of composite laminated
rectangular plates by Rayleigh–Ritz method. Taylor and Nayfeh [14] obtained solutions for the
individual layers which relate the field variables at the upper and lower layer surfaces and used
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linear transformations to refer to the anisotropy of each layer to a global co-ordinate system.
Wang and Lin [15], on the other hand, presented a finite strip method based on higher order plate
theory for determining the natural frequencies of laminated plate. Chen et al. [16] investigated free
vibration analysis of symmetrically laminated thick rectangular plates with various combinations
of free, simply supported and clamped boundary conditions. The p-Ritz method was employed in
which uniquely defined polynomials for displacement and rotation functions were used. Liew et al.
[17] examined the sensitivity of the vibration responses to variations in the lamination, boundary
constraints and thickness effects and also their interactions using Ritz procedure and first order
shear deformable plate theory. Srinivas and Rao [18] presented an exact analysis for the statics
and dynamics of various thick laminates. A three-dimensional, linear, small deformation theory
of elasticity solution was developed for the bending, vibration and buckling of simply supported
thick orthotropic rectangular plates and laminates.
Liew [19] employed a global p-Ritz method for vibration analysis of thick rectangular laminates

with various combinations of boundary conditions. First order Reissner/Mindlin plate theory was
utilized to incorporate the effects of transverse shear deformation and rotary inertia. Chen et al.
[20] analyzed free vibrations of symmetrically laminated thick plates with rounded corners. The
plate perimeter has been defined by a super elliptic function with a power defining the shape
ranging from an ellipse to a rectangle. The Reddy third order plate theory has been employed to
incorporate the transverse shear deformation. Liew et al. [21] reviewed existing literature on the
vibration analysis of thick plates. Most of the works covered were based on the Mindlin theory
and the modified Mindlin plate theories of laminated plates, while some papers using higher order
shear deformation plate theories were also included.
Karunasena et al. [22] proposed a hybrid method for analysis of lamb wave reflection by a crack

at the fixed edge of a composite plate by combining finite element formulation in a bounded
interior region of the plate with a wave function expansion representation in an unbounded
exterior region. Karunasena et al. [23] also employed an approximate method based on the wave
function expansion procedure to solve the reflection of plate waves at the fixed edge of a
composite plate. The amplitudes of reflected waves have been determined by satisfying the fixed
edge condition through the application of variational principle. Lim et al. [24] performed free
vibration analysis of pre-twisted, cantilevered composite shallow conical shells, wherein an
extremum energy principle was employed to derive the eigenvalue equation and a flexible global
admissible function was developed to account for the geometric boundary conditions.
Various displacement models have been developed in the present work, by considering

combinations of displacement fields for in-plane and transverse displacements inside a
mathematical sub-layer to investigate the phenomenon of wave propagation as well as vibrations
in laminated composite plates. Numerical evaluations obtained for wave propagation and
vibrations in isotropic, orthotropic and composite laminated plates have been used to determine
the efficient displacement field for economic analysis of wave propagation and vibrations in
laminated composite plate. The numerical method developed follows a semi-analytical approach
with analytical field applied in longitudinal direction and layer-wise displacement field employed
in transverse direction. The present work aims at developing a simple numerical technique, which
can produce very accurate results in comparison with the available analytical solution and also
to decide upon the level of refinement in higher order theory that is needed for accurate and
efficient analysis.
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2. Formulation

A semi-analytical method has been presented for analyzing plane-strain propagation of waves
and vibrations in composite laminated plate. Two types of problems have been investigated, viz.,
(a) wave propagation through composite laminated plate; and (b) free vibrations of simply
supported composite laminated plate.
The laminated composite plate shown in Fig. 1 consists of a number of layers. The local co-

ordinate system (xi; yi; zi) for ith layer is selected parallel to the global system (x; y; z). The origin
of the local system is located at the mid-plane of a lamina of thickness 2hi: In the sequel, hi will be
denoted as h:
By assuming different combinations of variation of displacements through a lamina of a

laminate, the time-dependent axial and transverse displacements of any point lying in the x � z

plane for various models can be expressed as

uðx; z; tÞ ¼
Xn

i¼0

ziaiðx; tÞ;

wðx; z; tÞ ¼
Xm

j¼0

zjbjðx; tÞ: ð1Þ

The models are classified as follows:

1. First order shear deformation theory (FOST, n ¼ 1; m ¼ 0).
2. Higher order shear deformation theory 1 (HOST1, n ¼ 1; m ¼ 1).

Fig. 1. Laminate geometry with positive set of laminate reference axes.
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3. Higher order shear deformation theory 2 (HOST2, n ¼ 2; m ¼ 1).
4. Higher order shear deformation theory 3 (HOST3, n ¼ 2; m ¼ 2).
5. Higher order shear deformation theory 4 (HOST4, n ¼ 3; m ¼ 2).
6. Higher order shear deformation theory 5 (HOST5, n ¼ 3; m ¼ 3).
7. Higher order shear deformation theory 6 (HOST6, n ¼ 4; m ¼ 3).
8. Higher order shear deformation theory 7 (HOST7, n ¼ 4; m ¼ 4).

Here, ai; i ¼ 0; 1;y; n; bj, j ¼ 0; 1;y;m are the generalized parameters. By expressing ai and bj

in terms of the generalized displacements (at z ¼ �h;þh; 0), rotations and normal strains (at
z ¼ 7h), the following equations are obtained:

uðx; z; tÞ

wðx; z; tÞ

( )
¼ ½X ðzÞ�fqðx; tÞg; ð2Þ

where

½X � ¼
½Xn� ½0�

½0� ½Xm�

" #
; fqgt ¼ ½ ½pn� ½qm� �: ð3aÞ

Constituent matrices [X ] and vectors [p] and [q] are defined below:

½X0� ¼ ½X01�; ½X1� ¼ ½X11 X12 �; ½X2� ¼ ½X21 X22 X23 �;

½X3� ¼ ½X31 X32 X33 X34 �; and ½X4� ¼ ½X41 X42 X43 X44 X45 �:

½p1� ¼ ½ p11 p12 �; ½p2� ¼ ½ p21 p22 p23 �; ½p3� ¼ ½ p31 p32 p33 p34 �;

½p4� ¼ ½ p41 p42 p43 p44 p45 �; ½q0� ¼ ½q01�; ½q1� ¼ ½ q11 q12 �;

½q2� ¼ ½ q21 q22 q23 �;

½q3� ¼ ½ q31 q32 q33 q34 � and ½q4� ¼ ½ q41 q42 q43 q44 q45 �: ð3bÞ

The Xij; i ¼ 0; 1; 2; 3; 4; j ¼ 1; 2; 3; 4; 5 appearing in Eq. (3b) are the shape functions for various
diaplacement models given by

X01 ¼ 1; X11 ¼
ð1� xÞ

2
; X12 ¼

ð1þ xÞ
2

;

X21 ¼
�xð1� xÞ

2
; X22 ¼ 1� x2 and X23 ¼

xð1þ xÞ
2

;

X31 ¼ 1
4
ð2� 3xþ x3Þ; X32 ¼ 1

4
ð2þ 3xþ x3Þ;

X33 ¼
h

4
ð1� x� x2 þ x3Þ and X34 ¼

h

4
ð1� xþ x2 þ x3Þ;

X41 ¼ 1
4
ð�3xþ 4x2 þ x3 � 2x4Þ; X42 ¼ ð1� 2x2 þ x4Þ; X43 ¼ 1

4
ð3xþ 4x2 � x3 � 2x4Þ;

X44 ¼
h

4
ð�xþ x2 þ x3 � x4Þ and X45 ¼

h

4
ð�x� x2 þ x3 þ x4Þ; ð4Þ

where x ¼ z=h:
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Furthermore, pij; i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4; 5 and qij ; i ¼ 0; 1; 2; 3; 4; j ¼ 1; 2; 3; 4; 5 are

p11 ¼ p21 ¼ p31 ¼ p41 ¼ u1; p12 ¼ p23 ¼ p32 ¼ p43 ¼ u2; p22 ¼ p42 ¼ u3;

p33 ¼ p44 ¼ yx1; p34 ¼ p45 ¼ yx2; q01 ¼ w0; q11 ¼ q21 ¼ q31 ¼ q41 ¼ w1;

q12 ¼ q23 ¼ q32 ¼ q43 ¼ w2; q22 ¼ q42 ¼ w3; q33 ¼ q44 ¼ yz1; and q34 ¼ q45 ¼ yz2:

ui and wi; i ¼ 1; 2; 3 are the displacements at interfaces along the x and z directions, at z ¼ �h; þh
and 0, respectivety. Displacement w0 indicates constant displacement through the thickness. The
yxi; yzi; i ¼ 1; 2; on the other hand, are termed rotation and normal strain, respectively, in the text
and are defined at z ¼ ð�1Þih as yx ¼ @u=@z and yz ¼ @w=@z: The strain–displacement relations for
a lamina or a mathematical sub-layer are

ex ¼
@u

@x
¼

Xnþ1
j¼1

Xnjp
0
nj ; ð5Þ

ez ¼
@w

@z
¼

Xmþ1

j¼1

%Xmjqmj; ð6Þ

gxz ¼
@u

@z
þ

@w

@x
¼

Xnþ1
j¼1

%Xnjpnj þ
Xmþ1

j¼1

Xmjq
0
mj; ð7Þ

where the primes denote the partial derivative with respect to x whereas the overbars denote the
partial derivative with respect to z:
Eqs. (4)–(7) can be written in a concise matrix form

feg ¼ ½B1�fqg þ fB2gfq0g ð8Þ

with

fegt ¼ ½ ex gxz � ðfor model FOSTÞ;

fegt ¼ ½ ex ez gxz � ðfor models HOST12HOST7Þ; ð9Þ

½B1� ¼
½0� ½ %X0�

½ %X1� ½0�

" #
; ½B2� ¼

½X 0
1� ½0�

½0� ½X 0
2�

" #
ðfor model FOSTÞ;

½B1� ¼

½0� ½0�

½0� ½ %Xm�

½ %Xn� ½0�

2
64

3
75; ½B2� ¼

½X 0
n� ½0�

½0� ½0�

½0� ½X 0
m�

2
64

3
75 ðfor models HOST12HOST7Þ; ð10Þ

where ½ %Xi� ¼ ½ %Xi1 %Xi2 y %Xii � and ½X 0
i � ¼ ½X 0

i1 X 0
i2 y X 0

ii �:
The stress–strain relationships of a lamina are

fsg ¼ ½C�feg; ð11Þ

where

fsgt ¼ ½ sx txz � ðfor model FOSTÞ;

fsgt ¼ ½ sx sz txz � ðfor model HOST12HOST7Þ: ð12Þ
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Here, [C] is the elasticity matrix constituted by Young’s moduli Ex; Ez; the Poisson ratios nxz and
nzx and the shear modulus of elasticity Gxz:
The equation of motion for a lamina can be obtained by using the variational principleZ t2

t1

%d
X

k

ðTk � UkÞ dt ¼ 0; ð13Þ

where Tk and Uk are, respectively, the kinetic and the strain energies of the kth lamina and %d is the
first variation. The kinetic energy can be expressed as

Tk ¼
1

2

Z
V

rf ’ugtf ’ug dV ; ð14Þ

where

f ’ug ¼ ½ ’uðx; z; tÞ ’wðx; z; tÞ �t ¼ ½X ðzÞ�f ’qðx; tÞg: ð15Þ

Here, the dot indicates derivative with respect to time ‘t’.
By substituting Eq. (15) in Eq. (14),

Tk ¼
1

2

Z
½f ’qgt ½m�f ’qg� dx; ð16Þ

is obtained where

½m� ¼
Z h

�h

ð½X �tr½X �Þ dz: ð17Þ

The explicit form of [m] has been presented in the appendix for various displacement models
discussed above.
The internal strain energy, Uk; of a lamina can be computed from

Uk ¼
1

2

Z
V

fegtfsg dv: ð18Þ

The strain energy per unit width of lamina can be derived by substituting Eqs. (8) and (11) into
Eq. (18) as

Uk ¼
1

2

Z
ðfqgt ½k11�fqg þ fqgt ½k12�fq0g þ fq0gt ½k12�tfqg þ fq0gt ½k22�fq0gÞ dx; ð19Þ

where

½kab� ¼
Z h

�h

ð½Ba�t½C�½Bb�Þ dz; a; b ¼ 1; 2: ð20Þ

Matrix [k] in Eq. (20) has been evaluated explicitly and is presented in the appendix for various
displacement models discussed above for ready reference and also for ease in computer
implementation.
By substituting Eqs. (16) and (19) into Eq. (13), performing variation and collecting terms, the

equation of motion for a laminated plate is obtained as

½K11�fqg þ ½½K12� � ½K12�t�fq0g � ½K22�fq00g þ ½M�f .qg ¼ f0g; ð21Þ
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where the global matrices are evaluated as

½Kab� ¼
X

k

½kab� and ½M� ¼
X

k

½m�:

Eq. (21) can be shown to be

½½K1� þ ilð½K2� � ½K2�tÞ þ l2½K3� � o2½M��fq0g ¼ f0g ð22Þ

for wave propagation problem, by assuming a general solution

fqg ¼ fq0g exp iðlx � otÞ; ð23Þ

where

½K1� ¼ ½K11�; ½K2� ¼ ½K22� and ½K3� ¼ ½K33�:

Here, fq0g is the amplitude vector, o is circular frequency and l is the wave number. On the other
hand, following homogeneous equation can be obtained for vibration problem:

½½K1� þ lð½K�
2 � � ½K�

2 �
tÞ þ l2½K3� � o2½M��fq0g ¼ 0; ð24Þ

by assuming a general solution

fq0g ¼ fq0;1gsinðlxÞexpð�iotÞ þ fq0;2gcos ðlxÞexpð�iotÞ: ð25Þ

Here, l ¼ 1=Ls and Ls is the span length (half-wavelength). The superscript * in Eq. (24) indicates
the modified nature of stiffness matrix ½K2� after substitution of Eq. (25) into Eq. (21). Here, fq0;1g
and fq0;2g are the amplitude vectors defined as follows:

fq0;1g ¼ f ½A�ð1xnÞ ½0�ð1xmÞ g
t and fq0;2g ¼ f ½0�ð1xnÞ ½B�ð1xmÞ g

t; ð26Þ

where

½A� ¼ ½A1 A2 y An � and ½B� ¼ ½B1 B2 y Bm �:

Equation for wave propagation and vibrations in a lamina is written in a compact form as

½½K � � o2½M��fq0g ¼ f0g; ð27Þ

where

½K � ¼ ½K1� þ ilð½K2� � ½K2�tÞ þ l2½K3� for wave propagation problem;

K½ � ¼ K1½ � þ lð½K�
2 � � ½K�

2 �
tÞ þ l2½K3� for vibration problem; ð28Þ

from which the frequency o can be computed for given l:
Both the mass and stiffness matrices presented in the appendix have been derived, by

performing explicit integration of individual terms with respect to thickness direction. By using
such explicitly derived matrices in program, approximate numerical integration procedures have
been avoided.
The stiffness and mass matrices thus calculated for all laminae are assembled to form global

matrices by enforcing the compatibility of generalized displacements, rotations and normal strains
at the interfaces of laminae.
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The determinant of the coefficient matrix in Eq. (27) must be zero for a non-trivial solution.
This results in a generalized eigenvalue problem when l is specified. The wave travelling in the
positive x direction must correspond to a complex wave number, l; having a form l ¼ lR þ lI

where lR and lIX0 for a bounded solution. In contrast, if lR=zero and lIa0; the mode is
evanescent or non-propagating.

3. Numerical examples

Various displacement-based formulations have been encoded into a general purpose
FORTRAN-90 program which can evaluate the frequencies for free vibration as well as for
wave propagation problems for different values of wave number, l: Both real and imaginary wave
numbers have been considered in wave propagation. The frequencies and the wave number have
been normalized to facilitate comparative study. The normalized frequency, O; and the
normalized complex wave number, z,, have been defined as

O ¼ o
Hp

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

C55

� �
01

s
and z ¼

lHp

p
;

where Hp is the total thickness and r is the mass density. The natural frequencies are normalized
with respect to the reference frequency ðoref Þ which has been specified as the third lowest
frequency near the cut off for a wave number Z ¼ 0:001 for natural vibrations of composite
laminated plates. Similar normalization procedure was followed in Ref. [3], using a rational
argument that, it is not possible to have a normalization factor for a laminated plate similar to
oref ¼ p=H

ffiffiffiffiffiffiffiffiffi
G=r

p
used for isotropic plate. The real wave number has been expressed as Z ¼

Hp=Ls:
Four examples involving analysis of isotropic, orthotropic and composite laminated and

sandwich plates have been considered. Number of sub-layers have been chosen such that total
number of degrees of freedoms (d.o.f.’s) remain same for all the displacement models in all the
examples. A convergence study has been performed in each example by considering different
number of sub-layers with HOST7 model. The total number of d.o.f.s of HOST7 model, which
provided converging solution, has been taken as a reference value based on which number of sub-
layers for all other displacement models have been decided. This approach of considering same
number of total d.o.f.’s for various displacement models seems more logical as compared to some
of the earlier works in which identical number of layers were considered to investigate vibrations
in plate by using different displacement models.
A summary of material properties such as thickness, mass density and elasticity coefficients for

the illustrative examples considered has been presented in Table 1. Comparison and brief
discussion of the results obtained by various displacement models are presented next.
Karunasena et al. [9] has provided an analytical method of analysis to analyze wave

propagation in composite laminated plates. The method employs Muller’s algorithm for
getting exact frequencies of vibration using the frequencies obtained with a numerical technique
making use of parabolic displacement model as an initial guess. These results have been used in
the following three examples for comparison of results obtained with various displacement models
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of the proposed method applied to an isotropic, cross-ply laminated and sandwich composite
plates.

Example 1. Wave propagation through an isotropic plate having properties defined in Table 1 has
been analyzed by employing all the displacement models presented here. By and large, 304 d.o.f.’s
have been considered to model the isotropic plate with various displacement formulations. Results
obtained by using different displacement models and the analytical solution [9] have been
compared in Fig. 2(a)–(h). Both symmetric and antisymmteric modes obtained using analytical
method are shown separately in these graphs. It can be observed that the displacement models
after HOST4 have yielded equally accurate results. The close agreement of results obtained by
higher order displacement models with the analytical solution demonstrates accuracy and
applicability of the displacement-based formulations developed in this paper.

Example 2. A cross-ply laminate with lamina stacking sequence (01/901/901/01) and material
properties as presented in Table 1 was investigated for plane-strain condition. The normalized
frequencies given by various displacement models for real and imaginary wave numbers have been
superimposed on the symmetric and antisymmetric dispersion curves obtained using analytical
method. In total, 484 d.o.f.’s were utilized to model the laminated plate for each of these seven
displacement models. It can be observed from Fig. 3(a–h) that all the higher order models after
HOST4 have produced results exactly coinciding with the analytical solution. On the other hand,
the lower order models like FOST, HOST1 completely fail in analyzing wave propagation in
composite laminated plate.

Example 3. A sandwich plate with two stiff layers and a soft core in between having properties as
defined in Table 1 was analyzed for wave propagation problem using different displacement
models. The sandwich plate has been modelled using 304 d.o.f.’s for all the displacement models.
Normalized frequencies obtained using different displacement models have been compared in
Fig. 4 with the dispersion curves obtained using analytical method [9] for real as well as imaginary
wave numbers. The results obtained with all the higher order models after HOST4 have shown
excellent agreement with the analytical solution whereas the results of HOST1, HOST2, HOST3

Table 1

Material properties of various plates considered for the investigation

Data for

Example No.

Type of

plate

Thickness of

plate H (10�3m)

Mass density

r (kg/m3)

C11 (GPa) C13 (GPa) C33 (GPa) C55 (GPa)

1 Isotropic 25.4 2.7668� 104 955.9200 429.4700 955.9200 263.2000

2 (01/901/901/01)

01 Lamina 12.7 2.7668� 104 1468.3000 40.8300 159.9100 58.6200

901 Lamina 12.7 2.7668� 104 159.9100 40.8300 1468.3000 58.6200

3 Sandwich

Face Sheet 0.9144 2.6831� 103 928.3400 397.890 928.3400 265.2600

Core 12.7 32.83810 2.8970 1.2410 2.8970 0.8270

4 Orthotropic 25.4 2.7668� 104 2069.1000 0.8870 22.7390 0.0796
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Fig. 2. Comparison of results obtained by using analytical method and various displacement models for an isotropic

plate of Example 1.
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Fig. 2 (continued).
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Fig. 3. Comparison of results obtained by using analytical method and various displacement models for a laminated

plate (01/901/901/01) of Example 2.
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Fig. 3 (continued).
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Fig. 4. Comparison of results obtained by using analytical method and various models for sandwich plate of

Example 3.
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Fig. 4 (continued).
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show some variations at higher frequencies. It can be observed from Fig. 4(a) that
FOST completely fails to predict the complex phenomenon of wave propagation in sandwich
plate.
These investigations for wave propagation phenomenon in a variety of plates from isotropic to

cross-ply laminated and composite sandwich plates indicate that higher order displacement-based
theories are indeed very effective in analyzing this particular problem. A close comparison with
the results obtained by analytical method [9] reveals that displacement formulation making use of
cubic variation of in-plane and transverse displacements through the thickness of an individual
lamina or sub-layer of a plate proves to be the most effective model in terms of accuracy of results
and number of degrees of freedom consumed in modelling the plate thickness.
The exact solution provided by Srinivas and Rao [18] has been utilized to solve the problem of

vibrations in an orthotropic plate. This analytical solution is used as a bench mark solution for
comparing the results of various displacement-based models for the vibration analysis of
orthotropic plate considered in next example.

Example 4. An orthotropic plate with material properties as presented in Table 1 was investigated
to illustrate the validity of various displacement models developed, for plane-strain vibrations
in plate. A collective comparison of results obtained with different displacement models with
the analytical solution presented in Table 2 demonstrates the usefulness of higher
order displacement formulations for vibration analysis of plane-strain vibrations in an
orthotropic plate. It can be observed that FOST yields totally erroneous results. The marginal
differences in accuracy achieved with various displacement models can be appreciated from
the numerical values of frequencies presented in Table 2. The results of all models beyond
HOST3 match very closely with analytical results. Therefore, it appears that the displacement
model with cubic variation of in-plane and transverse displacement across the thickness can be
adopted for accurate analysis. It can be concluded that displacement-based formulation
employing cubic variation through thickness for in-plane as well as transverse displacements
appears to be most effective model even for the problem of analysis of plane-strain vibrations in
composite plates.

4. Conclusions

Higher order displacement-based formulations assuming linear, parabolic, cubic and quartic
displacement fields have been developed and incorporated into a semi-analytical numerical
technique for solution of wave propagation and natural vibrations in fiber reinforced polymer
composite laminated plates. Results obtained by using different displacement models for analysis
of isotropic, orthotropic, sandwich and cross-ply composite laminated plates with equal number
of degrees of freedom used in modelling the plate have been compared. Comparison of results
obtained by various displacement models with the analytical solution for wave propagation in
isotropic, cross-ply laminated and sandwich plates validated the accuracy of all the displacement
formulations developed. On the basis of the numerical investigations, it can be concluded that
higher order displacement-based theory using cubic variation of in-plane as well as transverse
displacements through thickness of lamina provides the most accurate and economical
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Table 2

Model Frequency

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8 Mode9 Mode10

(a) Normalized frequencies of vibrations in an orthotropic plate obtained by employing various displacement models

for a wave number of l ¼ 1:0 and 2.0

l ¼ 1:0
FOST 0.98549 159.17990 159.18290 159.19210 159.20740 159.22880 159.25640 159.29010 159.32990 159.37580

HOST1 0.98584 16.71544 33.38918 50.07622 66.77113 83.47423 100.18680 116.91030 133.64570 150.38880

HOST2 0.98551 16.71608 33.39281 50.08740 66.79671 83.52338 100.27100 117.04320 133.84340 150.66940

HOST3 0.98567 16.71541 33.38733 50.06889 66.75283 83.43770 100.12300 116.80830 133.49300 150.17140

HOST4 0.98539 16.71538 33.38731 50.06887 66.75282 83.43769 100.12300 116.80830 133.49300 150.17140

HOST5 0.98539 16.71538 33.38731 50.06887 66.75278 83.43758 100.12270 116.80770 133.49190 150.16930

HOST6 0.98533 16.71537 33.38731 50.06886 66.75278 83.43758 100.12270 116.80770 133.49190 150.16930

HOST7 0.98536 16.71537 33.38731 50.06886 66.75278 83.43758 100.12270 116.80770 133.49190 150.16930

Analytical 0.98536 16.71537 33.38731 50.06886 66.75278 83.43758 100.12270 116.80770 133.49190 150.16930

l ¼ 2:0
FOST 1.97309 318.3597 318.3612 318.3658 318.3735 318.3842 318.3980 318.4148 318.4347 318.4577

HOST1 1.97357 16.80263 33.43293 50.10544 66.79311 83.49198 100.2019 116.9240 133.6595 150.4100

HOST2 1.97321 16.80322 33.43653 50.11659 66.81868 83.54112 100.2861 117.0569 133.8572 150.6910

HOST3 1.97344 16.80259 33.43107 50.09810 66.77483 83.45546 100.1381 116.8220 133.5068 150.1924

HOST4 1.97302 16.80249 33.43102 50.09806 66.7748 83.45544 100.1381 116.8220 133.5068 150.1924

HOST5 1.97302 16.80249 33.43102 50.09806 66.77476 83.45533 100.1378 116.8214 133.5057 150.1903

HOST6 1.97281 16.80244 33.43100 50.09804 66.77475 83.45532 100.1378 116.8214 133.5057 150.1903

HOST7 1.97294 16.80247 33.43101 50.09805 66.77476 83.45532 100.1378 116.8214 133.5056 150.1903

Analytical 1.97294 16.80247 33.43101 50.09805 66.77476 83.45532 100.1378 116.8214 133.5056 150.1903

(b) Normalized frequencies of vibrations in an orthotropic plate obtained by employing various displacement models

for a wave number of l ¼ 3:0 and 4.0

l ¼ 3:0
FOST 2.96063 477.5396 477.5406 477.5436 477.5487 477.5559 477.5651 477.5763 477.5896 477.6049

HOST1 2.96106 16.94701 33.50573 50.15405 66.8296 83.52119 100.2263 116.9449 133.6779 150.4265

HOST2 2.96078 16.94757 33.50930 50.16518 66.85515 83.57031 100.3105 117.0778 133.8756 150.7074

HOST3 2.96099 16.94696 33.50387 50.14671 66.81132 83.48469 100.1625 116.8430 133.5252 150.2089

HOST4 2.96060 16.94683 33.50380 50.14667 66.81128 83.48466 100.1625 116.8430 133.5252 150.2089

HOST5 2.96060 16.94683 33.50380 50.14666 66.81125 83.48455 100.1622 116.8424 133.5241 150.2068

HOST6 2.96036 16.94674 33.50376 50.14663 66.81123 83.48454 100.1622 116.8424 133.5241 150.2068

HOST7 2.96052 16.94680 33.50379 50.14665 66.81124 83.48454 100.1622 116.8424 133.5241 150.2068

Analytical 2.96052 16.94680 33.50379 50.14665 66.81124 83.48454 100.1622 116.8424 133.5241 150.2068

l ¼ 4:0
FOST 3.94809 636.7194 636.7202 636.7225 636.7263 636.7316 636.7385 636.7470 636.7569 636.7684

HOST1 3.94844 17.14711 33.60738 50.22202 66.88063 83.56204 100.2604 116.9741 133.7034 150.4493

HOST2 3.94824 17.14766 33.61094 50.23313 66.90616 83.61113 100.3445 117.1070 133.9011 150.7301

HOST3 3.94841 17.14707 33.60553 50.21469 66.86236 83.52555 100.1966 116.8722 133.5508 150.2317

HOST4 3.94808 17.14692 33.60546 50.21464 66.86232 83.52552 100.1966 116.8722 133.5508 150.2316

HOST5 3.94808 17.14692 33.60545 50.21463 66.86228 83.52541 100.1963 116.8716 133.5497 150.2296

HOST6 3.94785 17.14681 33.6054 50.2146 66.86226 83.52538 100.1963 116.8716 133.5497 150.2296

HOST7 3.94800 17.14688 33.60543 50.21462 66.86227 83.5254 100.1963 116.8716 133.5496 150.2296

Analytical 3.94800 17.14688 33.60543 50.21462 66.86227 83.5254 100.1963 116.8716 133.5496 150.2296
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displacement model for analyzing wave propagation as well as vibrations in composite laminated
plates. Performance of displacement model with parabolic through thickness variation also
produced good results in comparison with the analytical solution for the analysis of natural
vibrations in an orthotropic plate. However, the solution provided by displacement model with
cubic variation of displacements through thickness yielded results accurate up to fourth decimal.
The whole range of investigations performed justifies the use of higher order theories for
analyzing waves and vibrations in laminated composite plates.

Appendix. A

The mass ½M� and stiffness ½K � matrices for a lamina of laminated plate, explicitly derived
based on various displacement theories are presented here. The superscript 1; 2;y; 8 denote
the displacement model number. For example, ½K3� represents the stiffness matrix for a
single lamina of a laminated plate derived on the basis of displacement model 3 (HOST2).
Furthermore, d ¼ D ¼ i for wave propagation problem and d ¼ �1; D ¼ 1 for vibration
problem.

Table 2 (continued)

Model Frequency

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8 Mode9 Mode10

(c) Normalized frequencies of vibrations in an orthotropic plate obtained by employing various displacement models

for a wave number of l ¼ 5:0 and 6.0

l ¼ 5:0
FOST 4.93548 795.8992 795.8998 795.9017 795.9048 795.9091 795.9146 795.9213 795.9293 795.9385

HOST1 4.93577 17.401 33.73763 50.30927 66.94617 83.61452 100.3041 117.0116 133.7362 150.4784

HOST2 4.93562 17.40154 33.74118 50.32037 66.97168 83.66357 100.3882 117.1444 133.9339 150.7593

HOST3 4.93577 17.40097 33.73579 50.30196 66.92793 83.57805 100.2404 116.9097 133.5837 150.2609

HOST4 4.93549 17.40081 33.73571 50.30191 66.92789 83.57801 100.2403 116.9097 133.5837 150.2609

HOST5 4.93549 17.40081 33.73571 50.3019 66.92785 83.5779 100.2401 116.9091 133.5825 150.2588

HOST6 4.93529 17.4007 33.73565 50.30186 66.92782 83.57788 100.2400 116.9091 133.5825 150.2588

HOST7 4.93542 17.40077 33.73569 50.30189 66.92784 83.57790 100.2400 116.9091 133.5825 150.2588

Analytical 4.93542 17.40077 33.73569 50.30189 66.92784 83.57790 100.2400 116.9091 133.5825 150.2588

l ¼ 6:0
FOST 5.92284 955.0791 955.0796 955.0811 955.0837 955.0873 955.0919 955.0975 955.1041 955.1118

HOST1 5.92306 17.70637 33.89614 50.41571 67.02620 83.67860 100.3575 117.0574 133.7763 150.5141

HOST2 5.92297 17.70692 33.89968 50.42678 67.05167 83.72762 100.4416 117.1902 133.9739 150.7948

HOST3 5.92310 17.70635 33.89432 50.40842 67.00797 83.64217 100.2938 116.9556 133.6238 150.2966

HOST4 5.92286 17.70619 33.89424 50.40836 67.00793 83.64213 100.2938 116.9556 133.6238 150.2966

HOST5 5.92286 17.70619 33.89423 50.40836 67.00790 83.64202 100.2935 116.9550 133.6227 150.2945

HOST6 5.92267 17.70607 33.89417 50.40831 67.00787 83.64200 100.2935 116.9550 133.6226 150.2945

HOST7 5.92280 17.70615 33.89421 50.40834 67.00789 83.64201 100.2935 116.9550 133.6226 150.2945

Analytical 5.92280 17.70615 33.89421 50.40834 67.00789 83.64201 100.2935 116.9550 133.6226 150.2945
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A.1. Displacement model No. 1 [FOST]

½m1� ¼
rh

3

2 1 0

1 2 0

0 0 6

2
64

3
75; ½K1� ¼

ðA þ 2BÞ ð�A þ BÞ �dlC33

ð�A þ BÞ ðA þ 2BÞ dlC33

DlC33 �DlC33 2l2dC33h

2
64

3
75; ðA:1Þ

A ¼
C33

2h
; B ¼

l22C11h

3
:

A.2. Displacement model No. 2 [HOST1]

½m2� ¼
½m2

1� 0

0 ½m2
1�

" #
; where ½m2

1� ¼
rh

3

2 1

1 2

" #
;

½K2� ¼
½K2

1 � ½K2
2 �

½K2
3 � ½K2

4 �

" #
; ðA:2Þ

where

½K2
1 � ¼

ðA þ 2BÞ ð�A þ BÞ

ð�A þ BÞ ðA þ 2BÞ

" #
; ½K2

2 � ¼ d
ð�E þ F Þ ð�E � F Þ

ðE þ FÞ ðE � FÞ

" #
;

½K2
3 � ¼D

ðE � F Þ ð�E � F Þ

ðE þ F Þ ð�E þ F Þ

" #
and ½K2

4 � ¼
ðC þ 2DÞ ð�C þ DÞ

ð�C þ DÞ ðC þ 2DÞ

" #
;

where

C ¼
C22

2h
; D ¼

l22C33h

3
; E ¼

lC33

2
; F ¼

lC12

2
:

A.3. Displacement model No. 3 [HOST2]

½m3� ¼
½m3

1� 0

0 ½m2
1�

" #
where ½m3

1� ¼
rh

15

4 2 �1

2 16 2

�1 2 4

2
64

3
75;

½K3� ¼
½K3

2 � ½K3
2 �

½K3
3 � ½K2

4 �

" #
; ðA:3Þ
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where

½K3
1 � ¼

7G þ 4H �8G þ 2H G � H

�8G þ 2H 16G þ 16H �8G þ 2H

G � H �8G þ 2H 7G þ 4dH

2
64

3
75;

½K3
2 � ¼ d

�5I þ J �I � J

4I þ 4J �4I � 4J

I þ J 5I � J

2
64

3
75

and

½K3
3 � ¼ D

5I � J �4I � 4J �I � J

I þ J 4I þ 4J �5I þ J

" #
;

G ¼
C33

6h
; H ¼

l2C11h

15
I ¼

lC33

6
J ¼

lC12

6
:

A.4. Displacement model No. 4 [HOST3]

½m4� ¼
½m3

1� 0

0 ½m3
1�

" #
and ½K4� ¼

½K3
1 � ½K4

2 �

½K4
3 � ½K4

4 �

" #
; ðA:4Þ

where

½K4
2 � ¼ d

�3I þ 3J �4I � 4J I þ 3J

4I þ 4J 0 �4I � 4J

�I � 3J 4I þ 4J 3I � 3J

2
64

3
75;

½K4
3 � ¼D

3I � 3J �4I � 4J I þ 3J

4I þ 4J 0 �4I � 4J

�I � 3J 4I þ 4J �3I þ 3J

2
64

3
75

and

½K4
4 � ¼

7K þ 4L �8K þ 2L K � L

�8K þ 2L 16K þ 16L �8K þ 2L

K � L �8K þ 2L 7K þ 4L

2
64

3
75;

K ¼
C22

6h
; L ¼

l2C33h

15
:
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A.5. Displacement model No. 5 [HOST4]

½m5� ¼
m5
1

� �
0

0 ½m3
1�

" #
and ½m5

1� ¼
rh

105

78 27 22h �13h

27 78 13h �22h

22h 13h 8h2 �6h2

�13h �22h �6h2 8h2

2
6664

3
7775;

½K5� ¼
½K5

1 � ½K5
2 �

½K5
3 � ½K4

4 �

" #
; ðA:5Þ

where

½K5
1 � ¼

18M þ 78N �18M þ 27N 3Mh þ 22Nh 3Mh � 13Nh

18M þ 27N 18M þ 78N �3Mh þ 13Nh �3Mh � 22Nh

�3Mh þ 22Nh 3Mh þ 13Nh 8Mh2 þ 8Nh2 �2Mh2 � 6Nh2

�3Mh � 13Nh 3Mh � 22Nh 2Mh2 � 6Nh2 8Mh2 þ 8Nh2

2
6664

3
7775;

½K5
2 � ¼ d

27P � 3Q �24P � 24Q �3P � 3Q

3P þ 3Q 24P þ 24Q �27P þ 3Q

7Ph þ 7Qh �4Ph � 4Qh �3Ph � 3Qh

�3Ph � 3Qh 4Ph � 4Qh 7Ph þ 7Qh

2
6664

3
7775

and

½K5
3 � ¼ D

�27P þ 3Q �3P � 3Q �7Ph � 7Qh 3Ph þ 3Qh

24P þ 24Q �24P � 24Q 4Ph þ 4Qh �4Ph þ 4Qh

3P þ 3Q 27P � 3Q 3Ph þ 3Qh �7Ph � 7Qh

2
64

3
75;

M ¼
C33

30h
; N ¼

l2C11h

105
; P ¼

lC33

30
and Q ¼

lC12

30
:

A.6. Displacement model No. 6 [HOST5]

½m6� ¼
½m5

1� 0

0 ½m5
1�

" #
and ½K6� ¼

½K5
1 � ½K6

2 �

½K6
3 � ½K6

4 �

" #
; ðA:6Þ
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where

½K6
2 � ¼ d

�15P þ 15Q �15P � 15Q �6Ph � 6Qh 6Ph þ 6Qh

15P þ 15Q 15P � 15Q 6Ph þ 6Qh �6Ph � 6Qh

6Ph þ 6Qh �6Ph � 6Qh 0 2Ph2 þ 2Qh2

�6Ph � 6Qh 6Ph þ 6Qh �2Ph2 � 2Qh2 0

2
6664

3
7775;

½K6
3 � ¼ D

15P � 15Q �15P � 15Q �6Ph � 6Qh 6Ph þ 6Qh

15P þ 15Q �15P þ 15Q 6Ph þ 6Qh �6Ph � 6Qh

6Ph þ 6Qh �6Ph � 6Qh 0 2Ph2 þ 2Qh2

�6Ph � 6Qh 6Ph þ 6Qh �2Ph2 � 2Qh2 0

2
6664

3
7775

and

½K6
4 � ¼

18R þ 78S �18R þ 27S 3Rh þ 22Sh 3Rh � 13Sh

18R þ 27S 18R þ 78S �3Rh þ 13Sh �3Rh � 22Sh

�3Rh þ 22Sh 3Rh þ 13Sh 8Rh2 þ 8Sh2 �2Rh2 � 6Sh2

�3Rh � 13Sh 3Rh � 22Sh 2Rh2 � 6Sh2 8Rh2 þ 8Sh2

2
6664

3
7775;

R ¼
C22

30h
; S ¼

l2C33h

105
:

A.7. Displacement model No. 7 [HOST6]

½m7� ¼
½m7

1� 0

0 ½m5
1�

" #
; where ½m7

1� ¼
rh

315

130 40 �23 20h 7h

40 256 40 8h �8h

�23 40 130 �7h �20h

20h 8h �7h 4h2 2h2

7h �8h �20h 2h2 4h2

2
6666664

3
7777775
;

½K7� ¼
½K7

1 � ½K7
2 �

½K7
3 � ½K6

4 �

" #
; ðA:7Þ

where

½K7
1 � ¼

254T þ 130U �256T þ 40U 2T � 23U 29Th þ 20Uh 13Th þ 7Uh

�256T þ 40U 512T þ 256U �256T þ 40U �16Th þ 8Uh 16Th � 8Uh

2T � 23U �256T þ 40U 254T þ 130U �13Th � 7Uh �29Th � 20Uh

29Th þ 20Uh �16Th þ 8Uh �13Th � 7Uh 32Th2 þ 4Uh2 10Th2 þ 2Uh2

13Th þ 7Uh 16Th � 8Uh �29Th � 20Uh 10Th2 þ 2Uh2 32Th2 þ 4Uh2

2
6666664

3
7777775
;
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½K7
2 � ¼ d

�177V þ 33W �33V � 33W �58Vh � 58Wh 26Vh þ 26Wh

�144V þ 144W �144V � 144W 32Vh þ 32Wh 32Vh þ 32Wh

33V þ 33W 177V � 33W 26Vh þ 26Wh �58Vh � 58Wh

6Vh þ 6Wh �6Vh � 6Wh �8Vh2 � 8Wh2 6Vh2 þ 6Wh2

�6Vh � 6Wh 6Vh þ 6Wh �6Vh2 � 6Wh2 8Vh2 þ 8Wh2

2
6666664

3
7777775
;

½K7
3 � ¼ D

177V � 33W 144V � 144W �33V � 33W �6Vh � 6Wh 6Vh þ 6Wh

33V þ 33W 144V þ 144W �177V þ 33W 6Vh þ 6Wh �6Vh � 6Wh

58Vh þ 58Wh �32Vh � 32Wh �26Vh � 26Wh 8Vh2 þ 8Wh2 6Vh2 þ 6Wh2

�26Vh � 26Wh �32Vh � 32Wh 58Vh þ 58Wh �6Vh2 � 6Wh2 �8Vh2 � 8Wh2

2
6664

3
7775;

T ¼
C33

210h
; U ¼

l2C33h

315
; V ¼

lC33

210
; and W ¼

lC12

210
:

A.8. Displacement model No. 8 [HOST7]

½m8� ¼
½m7

1� 0

0 ½m7
1�

" #
;

½K8� ¼
½K7

1 � ½K8
2 �

½K8
3 � ½K8

4 �

" #
; ðA:8Þ

where

½K8
2 � ¼ d

�105V þ 105W �144V � 144W 39V þ 39W �22Vh � 22Wh �10Vh � 10Wh

144V þ 144W 0 �144V � 144W 32Vh þ 32Wh 32Vh þ 32Wh

�39V � 39W 144V þ 144W 105V � 105W �10Vh � 10Wh �22Vh � 22Wh

22Vh þ 22Wh �32Vh � 32Wh 10Vh þ 10Wh 0 �2Vh2 � 2Wh2

10Vh þ 10Wh �32Vh � 32Wh 22Vh þ 22Wh 2Vh2 þ 2Wh2 0

2
6666664

3
7777775
;

½K8
3 � ¼ D V

105V � 105W= �144V � 144W 39V þ 39W �22Vh � 22Wh �10Vh � 10Wh

144V þ 144W 0 �144V � 144W 32Vh þ 32Wh 32Vh þ 32Wh

�39V � 39W 144V þ 144W �105V þ 105W �10Vh � 10Wh �22Vh � 22Wh

22Vh þ 22Wh �32Vh � 32Wh 10Vh þ 10Wh 0 �2Vh2 � 2Wh2

10Vh þ 10Wh �32Vh � 32Wh 22Vh þ 22Wh 2Vh2 þ 2Wh2 0

2
6666664

3
7777775
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and

½K8
4 � ¼

254X þ 130Y �256X þ 40Y 2X � 23Y 29Xh þ 20Yh 13Xh þ 7Yh

�256X þ 40Y 512X þ 256Y �256X þ 40Y �16Xh þ 8Yh 16Xh � 8Yh

2X � 23Y �256X þ 40Y 254X þ 130Y �13Xh � 7Yh �29Xh � 20Yh

29Xh þ 20Yh �16Xh þ 8Yh �13Xh � 7Yh 32Xh2 þ 4Yh2 10Xh2 þ 2Yh2

13Xh þ 7Yh 16Xh � 8Yh �29Xh � 20Yh 10Xh2 þ 2Yh2 32Xh2 þ 4Yh2

2
6666664

3
7777775
;

X ¼
C22

210h
; Y ¼

l2C33

315
:

References

[1] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, New York, 1976.

[2] R.D. Mindlin, Waves and vibrations in isotropic elastic plates, Proceedings of the First Symposium on Naval

Structural Mechanics, Pergamon, New York, 1960, pp. 199–232.

[3] S.B. Dong, R.B. Nelson, On natural vibrations and waves in laminated orthotropic plates, American Society of

Mechanical Engineers, Journal of Applied Mechanics 39 (1972) 739–745.

[4] S.B. Dong, K.E. Pauley, Plane waves in anisotropic plates, American Society of Civil Engineers, Journal of

Engineering Mechanics 104 (1978) 801–817.

[5] S.B. Dong, K.H. Huang, Edge vibrations in laminated composite plates, American Society of Mechanical

Engineers, Journal of Applied Mechanics 52 (1985) 433–438.

[6] A.H. Shah, S.K. Datta, Harmonic waves in a periodically laminated medium, International Journal of Solids and

Structures 18 (1982) 397–410.

[7] S.K. Datta, A.H. Shah, R.L. Bratton, T. Chackraborty, Wave propagation in laminated composite plates, Journal

of the Acoustical Society of America 83 (1988) 2020–2026.

[8] S.K. Datta, H.M. Ledbetter, R.D. Kriz, Calculated elastic constants of composites containing anisotropic fibers,

International Journal of Solids and Structures 20 (1984) 429–438.

[9] W.M. Karunasena, R.L. Bratton, S.K. Datta, A.H. Shah, Elastic wave propagation in laminated composite

plates, American Society of Mechanical Engineers, Journal of Engineering Materials and Technology 113 (1991)

411–418.

[10] J.N. Reddy, A.A. Khdeir, Buckling and vibration of laminated composite plates using various plate theories,

American Institute of Aeronautics and Astornautics Journal 27 (12) (1989) 1808–1817.

[11] A.A. Khdeir, J.N. Reddy, Free vibrations of laminated composite plates using second-order shear deformation

theory, Computers and Structures 71 (6) (1999) 617–626.

[12] K.N. Cho, C.W. Bert, A.G. Striz, Free vibrations of laminated rectangular plates analyzed by higher order

individual-layer theory, Journal of Sound and Vibration 145 (1991) 429–442.

[13] D.J. Dawe, S. Wang, Free vibration of generally-laminated, shear-deformable, composite rectangular plates using

a spline Rayleigh–Ritz method, Composite Structures 25 (1993) 77–87.

[14] T.W. Taylor, A.H. Nayfeh, Natural frequencies of thick, layered composite plates, Composites Engineering 4

(1994) 1011–1021.

[15] W.J. Wang, K. Lin, Free vibration of laminated plates using a finite strip method based on a higher-order plate

theory, Computers and Structures 53 (1994) 1281–1291.

[16] C.C. Chen, K.M. Liew, C.W. Lim, S. Kitipornchai, Vibration analysis of symmetrically laminated thick

rectangular plates using the higher-order theory and p-Ritz method, Journal of the Acoustical Society of America

102 (1997) 1600–1611.

[17] K.M. Liew, W. Karunasena, S. Kitipornchai, C.C. Chen, Vibration of unsymmetrically laminated thick

quadrilateral plates, Journal of the Acoustical Society of America 105 (1999) 1672–1681.

M.R. Chitnis et al. / Journal of Sound and Vibration 263 (2003) 617–642 641



[18] S. Srinivas, A.K. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates

and laminates, International Journal of Solids and Structures 6 (1970) 1463–1481.

[19] K.M. Liew, Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz

method, Journal of Sound and Vibration 198 (3) (1996) 343–360.

[20] C.C. Chen, C.W. Lim, S. Kitipornchai, K.M. Liew, Vibration of symmetrically laminated thick super elliptical

plates, Journal of Sound and Vibration 220 (4) (1999) 659–682.

[21] K.M. Liew, Y. Xiang, S. Kitipornchai, Research on thick plate vibration: a literature survey, Journal of Sound and

Vibration 180 (1) (1995) 163–176.

[22] W.M. Karunasena, K.M. Liew, S. Kitipornchai, Hybrid analysis of Lamb wave reflection by a crack at the fixed

edge of a composite plate, Computer Methods in Applied Mechanics and Engineering 125 (1995) 221–223.

[23] W.M. Karunasena, K.M. Liew, S. Kitipornchai, Reflection of plate waves at the fixed edge of a composite plate,

Journal of the Acoustical Society of America 98 (1995) 645–651.

[24] C.W. Lim, K.M. Liew, S. Kitipornchai, Free vibration of pretwisted, cantilevered composite shallow conical shells,

American Institute of Aeronautics and Astronautics Journal 35 (2) (1997) 327–333.

M.R. Chitnis et al. / Journal of Sound and Vibration 263 (2003) 617–642642


	Comparisons of displacement-based theories for waves and vibrations in laminated and sandwich composite plates
	Introduction
	Formulation
	Numerical examples
	Conclusions
	Appendix
	Displacement model No. 1 [FOST]
	Displacement model No. 2 [HOST1]
	Displacement model No. 3 [HOST2]
	Displacement model No. 4 [HOST3]
	Displacement model No. 5 [HOST4]
	Displacement model No. 6 [HOST5]
	Displacement model No. 7 [HOST6]
	Displacement model No. 8 [HOST7]

	References


