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Abstract

A simple C0 isoparametric finite element formulation based on a shear deformable model of higher-order theory using a higher-
order facet shell element is presented for the free vibration analysis of isotropic, orthotropic and layered anisotropic composite and

sandwich laminates. This theory incorporates a realistic non-linear variation of displacements through the shell thickness, and

eliminates the use of shear correction coefficients. The validity and efficiency of the present formulation is established by obtaining

solutions to a wide range of problems and comparing them with the available three-dimensional closed-form and finite element

solutions. In addition, other plate and shell solutions of different kind and available in the literature are also compiled and tabulated

for the sake of completeness. The parametric effects of degree of orthotropy, length-to-thickness ratio, plate aspect ratio, number of

layers and fibre orientation upon the frequencies and mode shapes are discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminated composites are being used more exten-

sively as structural components in aerospace, automo-

bile, civil, marine and other related weight sensitive

engineering applications requiring high strength to
weight and stiffness to weight ratios. The mechanical

behaviour of laminated composites is strongly dependent

on the degree of orthotropy of the individual layers, the

ratio of transverse shear modulus to the in-plane mod-

ulus and the stacking sequence of laminae. By appro-

priate orientation of the fibres in each lamina, desired

strength and stiffness parameters can be achieved.

The simplifying assumptions, made in classical and
first-order theories, are reflected by the high percentage

error in the results of thick composite and sandwich

plates with highly stiff facings. The effect of plate aspect

ratio and transverse shear rigidities of stiff layers on

fundamental frequencies are more pronounced in

thicker plates than they are for thin plates. In contrast to

the first-order shear deformation theories, higher-order
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shear deformation theories do not require a shear cor-

rection coefficient, owing to more realistic representa-

tion of the cross-sectional deformation. Because of these

limitations, the need is obvious to use the refined theo-

ries, which include the consideration of realistic para-

bolic variation of transverse shear stress through the
laminate thickness and warping of the transverse cross-

section. Thus, the use of higher-order shear deformation

theory is very important for the vibration analysis of

laminated composite plates, especially for thick sand-

wich laminates.

Many analytical methods of analysis have been used

to study the vibration of plates and shells. In closed

form solutions, the analytical difficulties in solving the
equations have until now been overcome only in some

special cases, while the general case has not yet received

a satisfactory treatment.

The finite element approach has proved to be a

powerful and widely applicable method for the vibration

analysis of complex problems for which analytical

solutions are nearly impossible to find. A variety of new

elements have been proposed based on different struc-
tural theories, interpolation functions and formulation

procedures in order to achieve a more accurate predic-

tion of the free vibration of plates and shells.
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A number of theories exist in the literature for the

analysis of laminated composite structures. The classical

lamination theory due to Kirchhoff is based on the

assumption that the normals to the undeformed mid-
plane remain straight and normal to the deformed

midplane of laminate, and therefore the corresponding

neglect of the transverse shear effects was the starting

point in the development of general plate and shell

theories. The assumptions of classical theories lead to an

increase in the stiffness of the structure and hence dis-

placements are under-predicted and their natural fre-

quencies over-predicted.
The need to include transverse shear effects was first

recognized by Reissner [1], followed by Mindlin [2], who

included rotary inertia effects in the dynamic analysis of

plates. The first-order shear deformation theory of Re-

issener and Mindlin was extended by Yang et al. [3] to

laminated plates, followed by many variants of first-

order theory. Reissner [4], Noor and Burton [5] and

Reddy [6] have reviewed these developments. Noor [7]
used the first-order shear deformation theory to analyse

the free vibration of cross-ply laminated plates, while

Bert and Chen [8] developed a closed-form solution for

angle-ply laminated plates. Reddy [9] presented a finite

element model based on Yang–Norris–Stavsky theory

and its application to the free vibration of antisymmet-

ric, angle-ply laminated plates. Sinha and Rath [10]

presented a closed form solution of vibration and
buckling of simply supported cross-ply laminated

cylindrical panels based on the first-order shear defor-

mation Donnell’s shell theory. Carrera [11] analysed the

vibration of cross-ply laminated cylindrical panels by

the Navier method based on the first-order shear

deformation Flugge’s shell theory. Lim and Liew [12]

implemented the first-order shear deformation theory

for the prediction of vibratory characteristics of shallow
conical shell panels, while Chakravorty et al. [13]

implemented it for the finite element vibration analysis

of doubly curved laminated composite shells.

In order to overcome the limitations of first-order

shear deformation theories, higher-order shear defor-

mation theories that involve higher-order terms in the

Taylor’s series expansions of the displacements in the

thickness coordinate were developed. In these higher-
order theories an additional dependent variable is

introduced into the theory with each additional power

of the thickness coordinate. Hildebrand et al. [14] were

the first to introduce this approach to derive improved

theories of plates and shells. Nelson and Lorch [15]

presented higher-order displacement based shear

deformation theory for the analysis of laminated

plates.
Kant et al. [16] are the first to present finite element

formulation of a higher-order flexure theory. This the-

ory considers three-dimensional Hooke’s law and

incorporates the effect of transverse normal strain in
addition to transverse shear deformations. Reddy [17]

later proposed a higher-order shear deformation theory

utilizing a displacement field with cubic variations with

respect to the thickness direction. This higher-order
shear deformation theory was applied by Reddy and

Phan [18] for the determination of the natural frequen-

cies of elastic plates, by Khdeir [19,20] for free vibration

analysis of cross-ply laminated plates, and by Putcha

and Reddy [21] to develop a mixed finite element con-

sisting of 11 degrees of freedom. Kant and Mallikarjuna

[22] streamlined the higher-order shear deformation

theory by allowing the displacement in the thickness
direction to be quadratic with respect to the thickness

co-ordinate z, and developed a simple C0 finite element
formulation and presented solutions for the free vibra-

tion analysis of general laminated composite and sand-

wich plate problems.

Bhimaraddi [23] presented a higher-order theory for

free vibration analysis of circular cylindrical shells. Liew

and Lim [24] developed a higher-order shear deforma-
tion theory for vibration analysis of thick, doubly

curved shallow shells. Matsunaga [25] presented a global

higher-order theory for analyzing natural frequencies

and buckling stress of cross-ply laminated composite

plates.

Reddy and Khdeir [26] developed analytical and finite

element solutions of the classical, first-order and third-

order laminate theories to study the buckling and free
vibration behaviour of cross-ply rectangular composite

laminates under various boundary conditions. Wang

and Lin [27] developed the finite strip method based on

the higher-order plate theory for the free vibration of the

laminated plates. Mizusawa and Kito [28–30] presented

an application of the spline strip method based on the

first-order and higher-order shear deformation Don-

nell’s shell theories to analyse vibration of thick lami-
nated cylindrical panels.

Srinivas et al. [31], Srinivas and Rao [32], Noor and

Burton [33] and Chao and Chern [34] presented exact

three-dimensional elasticity solutions for the free

vibration of isotropic, orthotropic and anisotropic

composite laminated plates, while Bhimaraddi [35] and

Chern and Chao [36] provided solutions for curved

panels.
Flat facet shell elements are popular and are integral

parts of any general purpose finite element code. With

the advent of high-speed computers it is also possible

now a days to employ large number of elements, to

approximate even a curved shell by flat facet elements.

In facet shell elements, which have flat surface, the

membrane and bending stiffness are superposed at the

element level. The coupling between membrane and
bending is realized at the assemblage level by trans-

forming the local degrees of freedom to the global

ones. Because of the simplicity of the formulation, the

effectiveness of the computation and the flexibility in
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Fig. 1. Co-ordinates system for a quadrilateral element.
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applications such as shells of regular and irregular

shapes and folded plate structures, flat shell elements

are extensively useful in engineering practice. Allman

[37] used a triangular flat facet element for the dynamic
analysis of General thin shells. Kant and Khare [38]

presented a C0 finite element formulation of a flat
faceted element based on a higher-order displacement

model for the static analysis of general, thin-to-thick,

fibre reinforced composite laminated plates and shells.

Batoz et al. [39] presented a quadrilateral discrete Kir-

chhoff flat shell element with 16 degrees of freedom for

the linear analysis of plates and shells.
Mukherjee [40] presented a higher-order quadratic

isoparametric element for the free vibration analysis of

laminated composite plates. Shankara and Iyengar [41]

developed a C0 continuous finite element with five and
seven degrees of freedom, while Maiti and Sinha [42]

employed the higher-order shear deformation theory to

develop a finite element formulation using an eight-

noded isoparametric element for the free vibration
analysis of laminated composite plates.

Chandrashekhara [43] presented free vibration char-

acteristics of laminated composite shells using an iso-

parametric doubly curved quadrilateral shear flexible

element. Beakou and Touratier [44] developed a four-

noded C1 rectangular finite element for the analysis of
composite multilayered shallow shells. Gautham and

Ganeshan [45] presented a two-noded finite element for
the vibration analysis of thick orthotropic layered

shells of revolution based on the discrete layer theory.

Chakravorty et al. [46] developed a finite element for-

mulation based on the first-order shear deformation

theory for the free vibration analysis of point sup-

ported laminated composite thin, shallow cylindrical

shells using the eight-noded curved quadrilateral iso-

parametric element. Aksu [47] formulated a curved
isoparametric trapezoidal finite element for the free

vibration analysis of shells of general shape. This shell

element with eight nodes and 40 degrees of freedom is

applicable for both thin and moderately thick shell

analysis. Lee and Han [48] developed a nine-noded

degenerated shell element for the free vibration analysis

of plates and shells.

In the present work, a C0 continuous shear deform-
able finite element formulation of the facet quadrilateral

elements family based on a higher-order displacement

model is presented, which does not require the use of a

shear correction coefficient and includes the rotational

degree of freedom. The element is used for the free

vibration analysis of composite and sandwich laminates.

Accuracy of the present formulation is established by

obtaining solutions to a wide range of problems and
comparing them with the available three-dimensional

closed-form and finite element solutions for isotropic,

orthotropic and layered anisotropic composite and

sandwich plates and shells.
2. Theory and formulation

A facet element of a composite laminates consisting

of laminas with isotropic/orthotropic material proper-
ties oriented arbitrarily in space is considered and shown

in Figs. 1 and 2. The higher-order shear deformation

theory considered for investigation in the present work

is based on the assumption of the displacement field in

the following form.

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zhyðx; y; tÞ þ z2u�0ðx; y; tÞ
þ z3h�

yðx; y; tÞ;
vðx; y; z; tÞ ¼ v0ðx; y; tÞ � zhxðx; y; tÞ þ z2v�0ðx; y; tÞ

� z3h�
xðx; y; tÞ;

wðx; y; z; tÞ ¼ w0ðx; y; tÞ;

ð1Þ

where t is the time, u, v and w are the displacements of a
general point ðx; y; zÞ in an element of the laminate do-
main in the x, y and z directions respectively. The
parameters u0, v0 are the inplane displacements and w0 is
the transverse displacement of a point (x, y) on the
laminate middle plane. The functions, hx, hy are the
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rotations of the normal to the laminate middle plane

about x- and y-axes respectively. The parameters u�0, v
�
0,

h�
x , h�

y are the higher-order terms in the Taylor’s series

expansion and they represent higher-order transverse

cross sectional deformation modes. Though-thickness

variation of various components of the displacement

field is shown in Fig. 3.
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Fig. 3. Through-thickness variation of various components of the

displacement field.
By substituting Eq. (1) into the general linear strain–

displacement relations, the following relations are ob-

tained.

ex ¼ ex0 þ zvx þ z2e�x0 þ z3v�
x ;

ey ¼ ey0 þ zvy þ z2e�y0 þ z3v�
y ;

cxy ¼ exy0 þ zvxy þ z2e�xy0 þ z3v�
xy ;

cxz ¼ ux þ zvxz þ z2u�
x ;

cyz ¼ uy þ zvyz þ z2u�
y ;

ð2aÞ

where

ex0 ¼
ou0
ox

; ey0 ¼
ov0
oy

; exy0 ¼
ou0
oy

þ ov0
ox

;

e�x0 ¼
ou�0
ox

; e�y0 ¼
ov�0
oy

; e�xy0 ¼
ou�0
oy

þ ov�0
ox

;

vx ¼
ohy

ox
; vy ¼ � ohx

oy
; vxy ¼

ohy

oy
� ohx

ox
;

v�
x ¼

oh�
y

ox
; v�

y ¼ � oh�
x

oy
; v�

xy ¼
oh�

y

oy
� oh�

x

ox
;

ux ¼ hy þ
ow0
ox

; uy ¼ �hx þ
ow0
oy

; vxz ¼ 2u�0;

u�
x ¼ 3hy ; u�

y ¼ �3h�
x ; vyz ¼ 2v�0:

ð2bÞ

The constitutive relations for a typical lamina L with
reference to the fibre-matrix co-ordinate axes ð1; 2; 3Þ
can be written as

r1
r2
s12
s13
s23

8>>>><
>>>>:

9>>>>=
>>>>;

L

¼

C11 C12 0 0 0

C12 C22 0 0 0

0 0 C33 0 0

0 0 0 C44 0
0 0 0 0 C55

2
66664

3
77775

L e1
e2
c12
c13
c23

8>>>><
>>>>:

9>>>>=
>>>>;

L

;

ð3aÞ

where ðr1; r2; s12; s13; s23Þ, ðe1; e2; c12; c13; c23Þ are the

stresses and the linear strain components respectively

with reference to lamina co-ordinates in the element,

Cij’s of constitutive matrix C are the elastic constants of
the Lth lamina and are related to engineering constants
by the following relations:

C11 ¼
E1

1� m12m21
; C12 ¼

m12E2
1� m12m21

;

C22 ¼
E2

1� m12m21
; C33 ¼ G12; C44 ¼ G13;

C55 ¼ G23;
m12
E1

¼ m21
E2

:

ð3bÞ

The stress–strain relations for the Lth lamina in the
element co-ordinates ðx; y; zÞ are written as
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rx

ry

sxy
sxz
syz

8>>>><
>>>>:

9>>>>=
>>>>;

L

¼

Q11 Q12 Q13 0 0

Q12 Q22 Q23 0 0

Q13 Q23 Q33 0 0

0 0 0 Q44 Q45
0 0 0 Q45 Q55

2
66664

3
77775

L ex
ey
cxy
cxz
cyz

8>>>><
>>>>:

9>>>>=
>>>>;

L

;

ð3cÞ

or in short form r ¼ Qe; ð3dÞ

where r ¼ ðrx; ry ; sxy ; sxz; syz;ÞT and e ¼ ðex; ey ; cxy ; cxz;cyzÞ
T

are the stress and strain vectors, respectively with respect

to the element co-ordinates. Qij’s are the plane stress

reduced stiffness coefficients, and are derived following

the usual transformation rule of stress/strain between

the lamina ð1; 2; 3Þ and the element ðx; y; zÞ co-ordinate
system as described in Cook [49].

Integrating the Eq. (3d) through the laminate thick-

ness the stress–strain relations can be written in matrix

form asZ
rdz ¼

Z
ðQeÞdz; ð4aÞ

or �r ¼ D�e; ð4bÞ

in which �e is the mid-surface strain vector, �r is the stress-
resultant vector and D is the rigidity matrix composed of

membrane ðDmÞ, bending ðDbÞ, coupling ðDcÞ and shear
ðDsÞ rigidity matrices. Writing them in an equation form

N

M

Q

8<
:

9=
; ¼

Dm Dc 0

Dtc Db 0

0 0 Dm

2
4

3
5 e0

v0
/0

8<
:

9=
;; ð5Þ

in which

N ¼ Nx;Ny ;Nxy ;N �
x ;N

�
y ;N

�
xy

� �t
;

e0 ¼ ex0; ey0; exy0; e
�
x0; e

�
y0; e

�
xy0

� �t
;

M ¼ Mx;My ;Mxy ;M�
x ;M

�
y ;M

�
xy

� �t
;

v0 ¼ vx0; vy0; vxy0; v
�
x0; v

�
y0; v

�
xy0

� �t
;

Q ¼ Qx;Qy ;Q�
x ;Q

�
y ; Sx; Sy

� �t
;

/0 ¼ /x0;/y0;/
�
x0;/

�
y0; vxz; vyz

� �t
:

ð6Þ

The individual sub-matrices of the rigidity matrix D

are defined in Appendix A.
3. Finite element formulation

For the present study, a nine-noded quadrilateral

(Lagrangian family) two-dimensional C0 continuous
isoparametric element with nine degrees of freedom per

node is used. The displacement vector d at any point on

the mid-surface is given by
d ¼
XNN
i¼1

Niðx; yÞdi; ð7Þ

where di is the displacement vector corresponding to

node i, Ni is the interpolating or shape function associ-
ated with node i, and NN is the total number of nodes
per element (nine in this case).

Knowing the generalized displacement vector d at all

points within the element, the generalized mid-surface

strains at any point given by Eq. (2) can be expressed in

terms of nodal displacements in matrix form as follows:

�e ¼
XNN
i¼1

Bidi; ð8Þ

where Bi is a differential operator matrix of shape

functions [50].
The governing differential equations of motion can be

derived using Hamilton’s principle

d
Z t2

t1

ðP � EÞdt ¼ 0; ð9Þ

where t is the time, E is the total kinetic energy of the
system and P is the potential energy of the system,

including both strain energy and potential of conserva-

tive external forces. For the ideal case in which the

system has no damping and no external forcing func-
tion, the mathematical statement of Hamilton’s princi-

ple can be written asZ t2

t1

ðdU � dEÞdt ¼ 0; ð10Þ

where dU and dE are the first variation of the strain
energy and the kinetic energy respectively. Using the

standard finite element technique, the total domain is

discretized into NE sub-domains or elements such that
Z t2

t1

XNE
i¼1

ðdU e � dEeÞ ¼ 0: ð11Þ

The first variation of the strain energy dU e and ki-

netic energy dEe for an element can be written in matrix
form as

dUe ¼ ddteK
ede and dEe ¼ �ddteM

ede; ð12Þ

in which Ke is the stiffness matrix for an element �e’
which includes membrane, flexure and the transverse

shear effects and Me is the element mass matrix, which

are given by

Ke ¼
Z
A
BtDBdA and Me ¼

Z
A
NtmNdA: ð13Þ

The element stiffness matrix and mass matrix can be

obtained by using the standard relation

Ke
ij ¼

Z 1

�1

Z 1

�1
BtiDBj Jj jdndg ð14Þ
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and

Me
ij ¼

Z 1

�1

Z 1

�1
NtimNj Jj jdndg; ð15Þ

where jJj is the determinant of the standard Jacobian
matrix, D is the rigidity matrix and m is the inertia
matrix, which is defined in Appendix B.

Before assembly, the stiffness matrix and mass matrix

are transformed to the global co-ordinate system

ðX ; Y ; ZÞ by the simple transformation rules as described
in Zienkiewicz and Taylor [51]. The displacements of a

node are transformed from the global to the local system

by a matrix Lg giving

di ¼ Lgd
g
i ; ð16Þ

in which matrix Lg is defined in Appendix C and d
g
i is the

displacement vector in the global co-ordinate system

corresponding to node i defined as

dgi ¼ ðug0; v
g
0;w

g
0; h

g
x ; h

g
y ; u

�g
0 ; v

�g
0 ; h

�g
x ; h

�g
y ; hgz Þ; ð17Þ

superscript �g’ indicates the components in the global co-
ordinate system. As the element is a flat shell element,

which does not have rotational degree of freedom about

the normal, initially at element level formulation only

nine degrees of freedom are there. In the global co-
ordinate system the rotation about the global z-direc-
tion, i.e. the rotational degree of freedom (Zienkiewicz

and Taylor [51] and Cook [60]) is introduced with zero

value to facilitate the desired transformation to global

co-ordinate system where rotation about global z-
direction exists. For the whole set of displacements on

nodes of an element, Eq. (16) can therefore be expressed

as

de ¼ Tgd
g
e : ð18Þ

By the rules of orthogonal transformation the stiff-

ness matrix of an element in the global co-ordinate be-

comes

Kge ¼ TtgK
eTg; ð19Þ

in both the above equations Tg is given by

Tg ¼

Lg 0 0 � � �
0 Lg 0

0 0 Lg

..

.

2
6664

3
7775; ð20Þ

a diagonal matrix built of Lg matrices in a number equal
to that of the nodes in the element. Knowing the element

stiffness matrix and the element mass matrix in the

common global co-ordinate system, they are assembled

to represent a particular geometry with prescribed

boundary conditions, in the global co-ordinate system.

The governing equation is obtained by substituting

Eq. (12) in Eq. (11), resulting in:
Z t2

t1

XNE
e¼1

ddte½Kede þMe€de
dt ¼ 0: ð21Þ

This relation is valid for every virtual displacement in

an arbitrary time interval t1 and t2, we have

XNE
e¼1

Kede þ
XNE
e¼1

Me€de ¼ 0: ð22Þ

The global discrete equation for free vibration in
matrix form can be written as

KdþM€d ¼ 0; ð23Þ
where K and M are the global stiffness and mass

matrices, respectively for the structure, d is the nodal

displacement vector and €d is the second derivative of the
displacements of the structure with respect to time.
To find natural modes and frequencies, we assume

that the field variables can be expressed as

d ¼ �deixt; ð24Þ
where �d is the vector of unknown amplitudes at time t ¼
0 at the nodes, and x is the circular natural frequency of
the system. Substituting Eq. (25) in Eq. (24), we get

ðK� x2MÞ�d ¼ 0: ð25Þ
The above equation can be solved after imposing

boundary conditions of the problem, by any standard

eigenvalue problem solving technique.

The subspace iteration method is used here to obtain
the numerical solution of the eigenvalue problems. Al-

though all the eigenvalues and eigenvectors can be

computed by this method for each deformation mode m
and n, the dominant eigenvalues that correspond to the
lower natural frequencies are of most concern.
4. Numerical results and discussion

A computer program has been developed, based on

the foregoing theoretical formulation, for the free
vibration analysis of laminated composite and sandwich

plates and shells. An 8 · 8 mesh and a 16 · 16 mesh of
nine-noded Lagrangian higher-order faceted shell ele-

ments have been used in the computations for plates and

shells respectively. This scheme is arrived at on the basis

of a convergence study in which the fundamental natu-

ral frequency converges monotonically from a higher

value. The details of the convergence study are not
presented for the sake of brevity. The full integration

scheme (3 · 3) is used. A parallel computer code was also
developed based on the Reissner–Mindlin’s first-order

shear deformation theory (FOST) in order to compare

its results with those of higher-order shear deformation

theory (HOST). A shear correction factor of 5/6 is used

with this theory.
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To demonstrate the efficiency and versatility of the

present formulation, a considerable number of exam-

ples, including isotropic, laminated composite and

sandwich plates and shells with simply supported
boundary conditions are investigated. The following

simply supported boundary condition is used:

u0 ¼ w0 ¼ hy ¼ u�0 ¼ h�
y ¼ 0; at x ¼ 0; a;

v0 ¼ w0 ¼ hx ¼ v�0 ¼ h�
x ¼ 0; at y ¼ 0; b:

Results have been validated by comparing them with

those of 3-D elasticity theory in addition to analytical and

finite element analysis results available in the literature.
4.1. Thick isotropic plate

The non-dimensional natural frequencies of a thick

isotropic square plate with a side-to-thickness ratio of 10

were first obtained to check the numerical accuracy of

the present finite element formulation and results are

listed in Table 1. The non-dimensional natural fre-

quencies obtained by present FOST and HOST is found

to be in excellent agreement with the exact solutions of
the linear three-dimensional theory of elasticity. Classi-

cal plate theory over-predicts the natural frequencies.
4.2. Cross-ply (0�/90�)s laminated composite plate

Simply supported cross-ply laminates having anti-
symmetric laminations are considered here for free

vibration analysis. The laminates are square in plan

form with a=h ¼ 5. The non-dimensional fundamental
Table 1

Non-dimensionalized natural frequencies �x ¼ xðqh2=GÞ1=2 of a square simp
Mode 3-D elasticity

theory [31]

Present FOST P

m n

1 1 0.0932 0.09305

()0.16) (

2 1 0.2226 0.22231

()0.13) (

2 2 0.3421 0.34105

()0.31) (

1 3 0.4171 0.41727

(0.04)

2 3 0.5239 0.52257

()0.25) (

1 4 – 0.66030

3 3 0.6889 0.68621

()0.39) (

2 4 0.7511 0.75198

(0.12)

3 4 – 0.89669

1 5 0.9268 0.93937

(1.36)

2 5 – 0.99479

4 4 1.0889 1.08618

()0.25) (

Numbers in parentheses are the percentage error with respect to three-dimen
frequencies, for various degree of orthotropy of indi-

vidual layers (E1=E2 ¼ 3, 10, 20, 30, 40) are obtained by
the present higher-order and first-order finite element

formulations. The number of layers of antisymmetric
cross-ply (0/90)s is varied from 2 to 10. The results are

presented in Table 2 along with those obtained by 3-D

elasticity results of Noor [7] and finite element results

using a higher-order plate formulation given by Putcha

and Reddy [21]. The corresponding classical lamination

plate theory (CPT) results given by Putcha and Reddy

[21] are also included. The orthotropic material prop-

erties in all the above laminates considered are E1=E2 ¼
open, E2 ¼ E3, G12 ¼ G13 ¼ 0:6E2, G23 ¼ 0:5E2, m12 ¼
m13 ¼ m23 ¼ 0:25.
For all the laminate types considered, the results of

the present higher order theory show excellent agree-

ment with the 3-D elasticity solutions. The present re-

sults are much closer to elasticity solutions than those

obtained by Putcha and Reddy [21] and present first-

order theory. It is observed that the fundamental fre-
quency increases with the increase in number of layers as

well as increase of degree of orthotropy. The Classical

lamination plate theory, as observed earlier, over-pre-

dicts the fundamental frequency and the effect of

transverse shear deformation is seen to increase with

increasing degree of material orthotropy.

4.3. Antisymmetric angle-ply (45�/)45�/45�/)45�) lami-

nated composite plate

The effect of aspect ratio and side to thickness ratio

on the non-dimensional fundamental frequency for a
ly supported plate, m ¼ 0:3, a/h ¼ 10

resent HOST Reddy and Phan [18]

FSDPT HSDPT CPT

0.09306 0.0930 0.0931 0.0955

)0.15) ()0.21) ()0.11) (2.47)

0.22236 0.2219 0.2222 0.2360

)0.11) ()0.31) ()0.18) (6.02)

0.34116 0.3406 0.3411 0.3732

)0.27) ()0.44) ()0.29) (9.09)

0.41759 0.4149 0.4158 0.4629

(0.12) ()0.53) ()0.31) (10.98)

0.52298 0.5206 0.5221 0.5951

)0.17) ()0.63) ()0.34) (13.59)

0.66150 0.6520 0.6545 0.7668

0.68697 0.6834 0.6862 0.8090

)0.28) ()0.80) ()0.39) (17.43)

0.75119 0.7446 0.7481 0.8926

(0.01) ()0.86) ()0.40) (18.84)

0.89845 0.8896 0.8949 1.0965

0.94267 0.9174 0.9230 1.1365

(1.71) ()1.01) ()0.41) (22.63)

0.99479 0.9984 1.0053 1.2549

1.08900 1.0764 1.0847 1.3716

)0.00) ()1.15) ()0.38) (25.96)

sional elasticity values of Srinivas et al. [31].



Table 2

Non-dimensionalized fundamental frequencies �x ¼ xðqh2=E2Þ1=2 of a simply supported cross-ply square laminated plate with a=h ¼ 5
Lamination and

number of layers

Source E1=E2

3 10 20 30 40

(0/90)1 Noor [7] 0.25031 0.27938 0.30698 0.32705 0.34250

Present FOST 0.24837 0.27759 0.30826 0.33287 0.35335

()0.77) ()0.64) ()0.42) (1.78) (3.17)

Present HOST 0.24869 0.27843 0.30810 0.33069 0.34870

()0.65) ()0.34) (0.36) (1.11) (1.81)

Putcha and Reddy [21] 0.24868 0.27955 0.31284 0.34020 0.36348

()0.65) (0.06) (1.91) (4.02) (6.12)

CPT 0.27082 0.30968 0.35422 0.39335 0.42884

(8.19) (10.84) (15.39) (20.27) (25.21)

(0/90)2 Noor [7] 0.26182 0.32578 0.37622 0.40660 0.42719

Present FOST 0.26019 0.32900 0.38756 0.42481 0.45085

()0.62) (0.99) (3.01) (4.48) (5.54)

Present HOST 0.25985 0.32514 0.37794 0.41023 0.43225

()0.75) ()0.20) (0.46) (0.89) (1.18)

Putcha and Reddy [21] 0.26003 0.32782 0.38506 0.42139 0.44686

()0.68) (0.63) (2.35) (3.64) (4.60)

CPT 0.28676 0.38877 0.49907 0.58900 0.66690

(9.52) (19.33) (32.65) (44.86) (56.11)

(0/90)3 Noor [7] 0.26440 0.33657 0.39359 0.42783 0.45091

Present FOST 0.26222 0.33666 0.39764 0.43525 0.46100

()0.82) (0.03) (1.03) (1.73) (2.24)

Present HOST 0.26204 0.33459 0.39260 0.42775 0.45158

)0.89 ()0.59) ()0.25) ()0.02) (0.15)

Putcha and Reddy [21] 0.26223 0.33621 0.39672 0.43419 0.46005

()0.82) ()0.11) (0.79) (1.49) (2.03)

CPT 0.28966 0.40215 0.52234 0.61963 0.70359

(9.55) (19.48) (32.71) (44.83) (56.04)

(0/90)5 Noor [7] 0.26583 0.34250 0.40337 0.44011 0.46498

Present FOST 0.26337 0.34055 0.40257 0.44025 0.46579

()0.92) ()0.57) ()0.20) (0.03) (0.17)

Present HOST 0.26334 0.33990 0.40106 0.43819 0.46345

()0.94) ()0.76) ()0.57) ()0.44) ()0.33)
Putcha and Reddy [21] 0.26337 0.34050 0.40270 0.44079 0.46692

()0.92) ()0.58) ()0.17) (0.15) (0.42)

CPT 0.29115 0.40888 0.53397 0.63489 0.72184

(9.52) (19.38) (32.37) (44.25) (55.24)

Numbers in parentheses are the percentage error with respect to three-dimensional elasticity results of Noor [7].
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45� antisymmetric laminated composite simply sup-
ported plate is presented in Table 3. The orthotropic

material properties for the antisymmetric angle ply

laminates considered are E1=E2 ¼ 40, G12 ¼ 0:6E2,
G13 ¼ G23 ¼ 0:5E2, m12 ¼ 0:25. Results of HOST are in
good agreement with the closed form solution of Bert

and Chen [8] and finite element solutions using higher-

order shear deformation theory given by Shankara and
Iyengar [41], but the results of the FOST and finite

element results of Reddy [9] using laminated anisotropic

plate theory of Yong et al. [3] are much higher.
4.4. Rectangular honeycomb sandwich plate

The natural frequencies of a 72 in. long by 48 in. wide

simply supported sandwich plate are presented in Table
4. The plate has two identical aluminium faceplates,

0.016 in. thick, and an aluminium honeycomb core,

0.25 in. thick. The physical properties for the face-

plates are

E ¼ 1:00� 107 lb=in2; G ¼ 3:76� 106 lb=in2;
m ¼ 0:33; q ¼ 2:59� 10�4 lb s2=in4

and for the core

Gyz ¼ 7500 lb=in2; Gxz ¼ 19500 lb=in2;
q ¼ 1:14� 10�5 lb s2=in4:

To be consistent with the simple representation of

core behaviour of Ref. [52], it is assumed that core in-

plane direct and shear stiffnesses are zero. The results of

present theories are in good agreement with those of



Table 5

Non-dimensionalized fundamental frequencies �x ¼ xa2=hðq=E2Þ1=2f of a simply supported antisymmetric (0�/90�/core/0�/90�) sandwich plate with
a=b ¼ 1 and tc=tf ¼ 10

a=h Present FOST Present HOST Kant and Swaminathan [56] Reddy [17]a Whiteny and

Pagano [57]aModel-1 Model-2

02 4.5076 1.1938 1.1941 1.1734 1.6252 5.2017

04 9.0160 2.1334 2.1036 2.0913 3.1013 9.0312

10 13.9939 4.9522 4.8594 4.8519 7.0473 13.8694

20 15.6078 8.7303 8.5955 8.5838 11.2664 15.5295

30 15.9816 11.2250 11.0981 11.0788 13.6640 15.9155

40 16.1232 12.7874 12.6821 12.6555 14.4390 16.0577

50 16.1921 13.7764 13.6899 13.6577 15.0323 16.1264

60 16.2364 14.4226 14.3497 14.3133 15.3868 16.1612

70 16.2664 14.8582 14.7977 14.7583 15.6134 16.1845

80 16.2760 15.1539 15.1119 15.0702 15.7660 16.1991

90 16.2984 15.3793 15.3380 15.2946 15.8724 16.2077

100 16.3093 15.5421 15.5093 15.4647 15.9522 16.2175

aResults of these theories are as given by Kant and Swaminathan [56].

Table 3

Non-dimensionalized fundamental frequencies �x ¼ xa2ðq=E2h2Þ1=2 of a simply supported antisymmetric angle-ply laminate [45�/)45�/45�/)45�]
a=h Source Aspect ratio (a=b)

0.2 0.6 0.8 1.0 1.2 1.6 2.0

10 Reddy [9] 8.724 12.965 15.712 18.609 21.567 27.736 34.247

Bert and Chen [8] 8.664 12.82 15.54 18.46 21.51 27.95 34.87

Shankara [41] 8.5557 12.5588 15.1802 17.9735 20.8797 26.9916 33.5534

Present FOST 8.9601 13.0028 15.6867 18.5627 21.5347 27.8101 34.5742

Present HOST 8.7898 12.3692 14.7843 17.4136 20.1811 26.1788 32.7950

20 Reddy [9] 9.475 14.896 18.557 22.584 26.857 36.249 46.789

Bert and Chen [8] 9.300 14.45 17.97 21.87 26.12 35.56 46.26

Shankara [41] 9.3011 14.3856 17.8458 21.6808 25.8363 35.0421 45.4096

Present FOST 9.7382 14.9123 18.4897 22.4810 26.7672 36.2992 47.1127

Present HOST 9.6614 14.5341 17.8993 21.6564 25.6981 34.7466 45.1144

30 Reddy [9] 9.667 15.385 19.304 23.676 28.381 38.940 51.132

Bert and Chen [8] 9.436 14.84 18.56 22.74 27.35 37.82 49.98

Shankara [41] 9.4880 14.8427 18.5390 22.6911 27.2555 37.5907 49.5474

Present FOST 9.9205 15.3890 19.2213 23.5546 28.2727 38.9952 51.4993

Present HOST 9.8792 15.1665 18.8622 23.0340 27.5692 37.8867 49.9614

40 Reddy [9] 9.759 15.853 19.604 24.118 29.003 40.071 53.012

Bert and Chen [8] 9.485 14.98 18.78 23.08 27.83 38.72 51.52

Shankara [41] 9.5724 15.0248 18.8134 23.0940 27.8286 38.6523 51.3324

Present FOST 9.9769 15.5495 19.4762 23.9405 28.8290 40.0441 53.2926

Present HOST 9.9514 15.4074 19.2434 23.5965 28.3534 39.2591 52.1559

50 Reddy [9] 9.816 15.689 19.759 24.343 29.321 40.653 53.989

Bert and Chen [8] 9.507 15.04 18.89 23.24 28.06 39.17 52.29

Shankara [41] 9.6216 15.1177 18.9510 23.2956 28.1168 39.1932 52.2539

Present FOST 10.0105 15.6350 19.6094 24.1400 29.1150 40.5835 54.2223

Present HOST 9.9932 15.5375 19.4485 23.8997 28.7779 40.0099 53.3680

Table 4

Natural frequencies (Hz) of a simply supported rectangular honeycomb sandwich plate

Mode Present FOST Present HOST Raville [52] Zhou and Li [53] Yuan and Dawe [54] Bardell et al. [55]

1 23.5994 23.4841 23 23.29 23.41 23.05

2 45.4641 44.9546 44 44.47 44.64 43.91

3 73.7553 72.4881 71 71.15 71.50 71.06

4 82.6571 80.5639 80 78.78 79.26 78.37

5 95.2236 93.4366 91 91.57 92.19 90.85

6 131.7518 128.2182 126 125.10 125.94 123.82
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analytical results of Raville and Veng [52], spline finite

point method results of Zhou and Li [53], spline finite

strip method result of Yuan and Dawe [54] and finite

element method results of Bardell et al. [55].
4.5. Antisymmetric (0�/90�/core/0�/90�) sandwich plate

The variation of fundamental frequency with respect
to the side-to-thickness ratio (a=h) of a five-layer square
sandwich plate with antisymmetric cross-ply face-

sheets is given in Table 5. The thickness of the core

to thickness of the flange (tc=tfÞ ratio is taken equal
to 10. The physical properties for the face sheets

are
Table 6

Natural frequencies xmn (rad/s) of isotropic cylindrical and spherical shell p

Panels Mode 3D Elasticity

[36]

P

m n

Cylindrical 1 1 0.28016

2 1 0.29214

(

1 2 0.49846

2 2 0.50971

(

3 1 0.54862

1 3 0.72361

3 2 0.72931

(

2 3 0.79998

(

4 1 0.92680

3 3 1.01875

(

Spherical 1 1 0.52543

(

2 1 0.58420

(

1 2 0.58487

(

2 2 0.67676

(

3 1 0.75219

(

1 3 0.75220

(

3 2 0.87811

(

2 3 0.87804

(

4 1 1.06018

1 4 1.06234

Numbers in parentheses are the percentage error with respect to three-dimen
E1 ¼ 19� 106 lb=in2; E2 ¼ 1:5� 106 lb=in2; E2 ¼ E3;

G12 ¼ G23 ¼ 1� 106 lb=in2; G13 ¼ 0:90� 106 lb=in2;
m12 ¼ m13 ¼ 0:22; m23 ¼ 0:49; q ¼ 0:057 lb=in3

and for the core

E1 ¼ E2 ¼ E3 ¼ 1000 lb=in2;
G12 ¼ G23 ¼ G13 ¼ 500 lb=in2;
m12 ¼ m13 ¼ m23 ¼ 0; q ¼ 0:003403 lb=in3:

The fundamental frequencies obtained by the present

HOST are in good agreement with the analytical solu-

tions given by the Kant and Swaminathan [56] using two
anels

resent FOST Present HOST Shen and Wan

[58]

Geannakakes

and Wang [59]

0.28046 0.28055 0.28285 0.28220

(0.11) (0.14) (0.96) (0.73)

0.29197 0.29234 0.30285 0.31593

)0.06) (0.07) (3.66) (8.14)

0.49969 0.49991 0.50551 0.49745

(0.25) (0.29) (1.41) ()0.20)
0.50706 0.50790 0.52489 0.51843

)0.52) ()0.35) (2.98) (1.71)

0.55309 0.55358 0.57185 0.58479

(0.81) (0.90) (4.23) (6.59)

0.72570 0.72608 0.73930 0.71976

(0.29) (0.34) (2.17) ()0.53)
0.72638 0.72773 0.75758 0.75347

)0.40) ()0.22) (3.88) (3.31)

0.79629 0.79752 0.82441 0.80075

)0.46) ()0.31) (3.05) (0.10)

0.94051 0.94121 0.96993 0.97587

(1.48) (1.55) (4.65) (5.29)

1.01109 1.01323 1.05842 1.05203

)0.75) ()0.54) (3.89) (3.27)

0.50211 0.50223 0.52835 0.53146

)4.44) ()4.41) (0.55) (1.14)

0.56247 0.56276 0.59151 0.59114

)3.72) ()3.66) (1.25) (1.19)

0.56248 0.56277 0.59253 0.59641

)3.83) ()3.78) (1.31) (1.97)

0.65706 0.65788 0.69040 0.68980

)2.91) ()2.79) (2.01) (1.93)

0.73915 0.73966 0.77070 0.76283

)1.73) ()1.66) (2.46) (1.41)

0.74035 0.74081 0.77307 0.77390

)1.57) ()1.51) (2.77) (2.88)

0.86359 0.86493 0.90372 0.89397

)1.65) ()1.50) (2.92) (1.81)

0.86360 0.86494 0.90744 0.89940

)1.64) ()1.49) (3.35) (2.43)

1.06310 1.06383 1.10283 1.09537

(0.27) (0.34) (4.02) (3.32)

1.06310 1.06384 1.15263 1.13240

(0.07) (0.14) (8.50) (6.59)

sional elasticity results of Chern and Chao [36].
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higher-order displacement models having 12 and 9 de-

grees of freedom respectively and using Reddy’s [17]

higher-order theory for laminated composite plates.

Present FOST and the Whitney–Pagano’s [57] first-or-
der theory predict much higher frequencies, particularly

for the lower a=h ratios.
4.6. Isotropic cylindrical and spherical panels

Natural frequencies of the first ten modes of the

isotropic cylindrical and spherical panels of square

planform are given in Table 6. The following physical

and geometric properties are considered.

Curved lengths of shell panels ða; bÞ ¼ 1:0118,
Thickness of shell panels ðhÞ ¼ 0:0191, Radius ðRÞ ¼
1:91, E ¼ 1, m ¼ 0:3, q ¼ 1.
The natural frequencies of cylindrical and spherical

panels obtained by the present FOST and HOST are

compared with those of the 3-D elasticity results of

Chern and Chao [36], B-spline function results of Shen

and Wan [58] and the B3-spline finite strips results of
Geannakakes and Wang [59]. The natural frequencies
for all modes obtained by present FOST and HOST are

found to be in good agreement with the exact solutions

of the three-dimensional elasticity theory.
Table 7

Non-dimensionalized fundamental frequencies �x ¼ xaðq=E2Þ1=2 of orthotrop
R=a h=a Present FOST Present HOST B

3

1 0.05 0.78567 0.78627 0

0.10 1.04062 1.04357 1

0.15 1.29578 1.30351 1

2 0.05 0.56568 0.56684 0

0.10 0.91367 0.91801 0

0.15 1.22101 1.23107 1

3 0.05 0.51084 0.51224 0

0.10 0.88528 0.88993 0

0.15 1.20295 1.21344 1

4 0.05 0.48994 0.49141 0

0.10 0.87452 0.87942 0

0.15 1.19547 1.20629 1

5 0.05 0.47978 0.48128 0

0.10 0.86919 0.87402 0

0.15 1.19147 1.20216 1

10 0.05 0.46566 0.46722 0

0.10 0.86115 0.86603 0

0.15 1.18452 1.19525 1

20 0.05 0.46190 0.46348 0

0.10 0.85852 0.86340 0

0.15 1.18166 1.19238 1

1 0.05 0.47374 0.47448 0

0.10 0.89001 0.89493 0

0.15 1.22349 1.23625 1
4.7. Cross-ply (0�/90�) orthotropic cylindrical and spher-

ical panels

The non-dimensional fundamental frequencies for
shallow cross-ply orthotropic cylindrical and spherical

shells obtained by the present theories has been given in

Tables 7, 8 along with the frequencies given by the three-

dimensional elasticity theory of Bhimaraddi [35], para-

bolic shear deformation theory (PSD), constant shear

deformation theory (CSD) and thin shell theory (TST).

The orthotropic material properties correspond to:

E1 ¼ 25E2; E2 ¼ E3; G12 ¼ G13 ¼ 0:5E2;
G23 ¼ 0:2E2; m12 ¼ 0:25; m13 ¼ 0:03; m23 ¼ 0:40:

The non-dimensional fundamental frequencies ob-
tained by present FOST and HOST is found to be in

good agreement with the exact solutions of the three-

dimensional theory of elasticity except in the case of R=a
ratio as 1 in orthotropic cross-ply spherical shell. The

differences in the results of spherical shells are due to the

inclined boundary conditions considered in the three-

dimensional elasticity solutions, while boundary condi-

tions considered in present finite element solutions of
FOST and HOST are in global directions. In cylindri-

cal shells a transformation is applied for inclined

boundary conditions thereby getting excellent agree-
ic cross-ply cylindrical shell.

himaraddi [35]

-D PSD CSD TST

.78683 0.79993 0.79798 0.80580

.04085 1.09189 1.07475 1.14313

.29099 1.38174 1.33274 1.54124

.57252 0.58000 0.57733 0.58723

.93627 0.95664 0.93653 1.01398

.25377 1.28933 1.23527 1.45781

.52073 0.52516 0.52222 0.53294

.91442 0.92642 0.90563 0.98505

.24500 1.20563 1.21316 1.43751

.50110 0.50415 0.50109 0.51217

.90613 0.91506 0.89403 0.97408

.24090 1.25977 1.20454 1.42910

.49167 0.49402 0.49091 0.50216

.90200 0.90953 0.88840 0.96870

.23849 1.25551 1.20020 1.42464

.47859 0.47997 0.47677 0.48827

.89564 0.90150 0.88026 0.96074

.23374 1.24875 1.19342 1.41709

.47509 0.47625 0.47304 0.48459

.89341 0.89904 0.87779 0.95819

.23140 1.24626 1.19100 1.41400

.47365 0.47483 0.47161 0.48317

.89179 0.89761 0.87640 0.95661

.22905 1.24437 1.18923 1.41139



Table 8

Non-dimensionalized fundamental frequencies �x ¼ xaðq=E2Þ1=2 of orthotropic cross-ply spherical shell
R=a h=a Present FOST Present HOST Bhimaraddi [35]

3-D PSD CSD TST

1 0.05 1.20901 1.20915 1.29835 1.32595 1.32483 1.33000

0.10 1.42129 1.42323 1.39974 1.49075 1.48008 1.52391

0.15 1.64689 1.65369 1.51936 1.68141 1.64797 1.78940

2 0.05 0.79140 0.79172 0.79577 0.81059 0.80870 0.81618

0.10 1.08551 1.08886 1.05528 1.09708 1.08054 1.14507

0.15 1.36643 1.37633 1.31111 1.38083 1.33375 1.52705

3 0.05 0.64333 0.64379 0.64044 0.64949 0.64713 0.65602

0.10 0.98501 0.98900 0.96917 0.99330 0.97455 1.04657

0.15 1.28989 1.30102 1.26650 1.30815 1.25698 1.46512

4 0.05 0.57653 0.57708 0.57419 0.58038 0.57775 0.58749

0.10 0.94350 0.94778 0.93637 0.95306 0.93332 1.00862

0.15 1.25914 1.27077 1.25032 1.28092 1.22810 1.44211

5 0.05 0.54091 0.54151 0.54039 0.54500 0.54219 0.55247

0.10 0.92202 0.92644 0.92065 0.93361 0.91338 0.99034

0.15 1.24310 1.25495 1.24272 1.26797 1.21434 1.43120

10 0.05 0.48706 0.48776 0.49127 0.49341 0.49031 0.50149

0.10 0.88986 0.89445 0.89912 0.90679 0.88584 0.96519

0.15 1.21845 1.23053 1.23249 1.25034 1.19559 1.41639

20 0.05 0.46995 0.47070 0.47812 0.47955 0.47636 0.48782

0.10 0.87685 0.88140 0.89363 0.89992 0.87877 0.95876

0.15 1.20639 1.21832 1.22992 1.24586 1.19083 1.41264

1 0.05 0.47374 0.47448 0.47365 0.47483 0.47161 0.48317

0.10 0.89001 0.89493 0.89179 0.89761 0.87640 0.95661

0.15 1.22349 1.23625 1.22905 1.24437 1.18923 1.41139
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ment in three-dimensional and finite element solutions.

It is observed that PSD and TST consistently over-pre-

dict the frequency as compared to the three-dimensional

theory of elasticity.
5. Conclusions

A simple C0 isoparametric finite element formulation
based on the higher-order shear deformation theory

using a higher-order facet shell element is presented for
the free vibration analysis of fibre reinforced composite

and sandwich laminates. The accuracy of the present

formulation is evaluated by obtaining the solutions to a

wide range of problems and comparing them with the

available three-dimensional closed-form and finite ele-

ment solutions alongwith the solutions obtained using

first-order shear deformation theory. The parametric

effects of degree of orthotropy, length-to-thickness ratio,
plate aspect ratio, number of layers and fibre orientation

upon the frequencies and mode shapes are discussed.

The results show that the difference in predictions of

FOST and HOST are small for composite laminates.

However, for sandwich panels, in comparison to HOST,

FOST over-predicts the natural frequency by a signifi-

cant margin and the margin increases as the thickness of
laminate increases. It is shown that the element has

fairly good accuracy and is promising for further engi-

neering applications.
Appendix A. Rigidity matrices

Assuming, Hi ¼ ðziLþ1 � ziLÞ=i, where i takes an integer
value from 1–7, the elements of the submatrices of the

rigidity matrix can be readily obtained in the following

forms:

Dm ¼
XNL
L¼1

Q11H1 Q12H1 Q13H1 Q11H3 Q12H3 Q13H3
Q22H1 Q23H1 Q12H3 Q22H3 Q23H3

Q33H1 Q13H3 Q23H3 Q33H3
Q11H5 Q12H5 Q13H5

Symm: Q22H5 Q23H5
Q33H5

2
6666664

3
7777775
;

Ds ¼
XNL
L¼1

Q44H1 Q45H1 Q44H3 Q45H3 Q44H2 Q45H2
Q55H1 Q45H3 Q55H3 Q45H2 Q55H2

Q44H5 Q45H5 Q44H4 Q45H4
Q55H5 Q45H4 Q55H4

Symm: Q44H3 Q45H3
Q55H3

2
6666664

3
7777775
:

The elements of the Dc and Db matrices are obtained by

replacing (H1, H3 and H5) by (H2, H4 and H6) and (H3, H5
and H7) respectively in the Dm matrix.
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Appendix B. Inertia matrix

The inertia matrix m for the present higher order

theory is given by

m ¼

I1 0 0 0 I2 I3 0 0 I4
0 I1 0 �I2 0 0 I3 �I4 0

0 0 I1 0 0 0 0 0 0

0 �I2 0 I3 0 0 �I4 I5 0

I2 0 0 0 I3 I4 0 0 I5
I3 0 0 0 I4 I5 0 0 I6
0 I3 0 �I4 0 0 I5 �I6 0
0 �I4 0 I5 0 0 �I6 I7 0

I4 0 0 0 I5 I6 0 0 I7

2
6666666666664

3
7777777777775

:

The parameters I1, I2 and ðI5; I7Þ are linear inertia,
rotary inertia and higher-order inertia terms respec-
tively. The parameters, I2, I4 and I6 are the coupling
inertia terms. They are defined as follows:

ðI1; I2; I3; I4; I5; I6; I7Þ ¼
XNL
L¼1

Z ZLþ1

ZL

ð1; z; z2; z3; z4; z5; z6ÞqL dz;

where qL is the material density of the Lth layer.
Appendix C. Matrix Lg

Matrix Lg for the transformation of nodal displace-

ment may be defined using a matrix k, a 3 · 3 matrix of
direction cosines of the angles formed between the two
sets of axes i.e.,

k ¼
kxX kxY kxZ

kyX kyY kyZ

kzX kzY kzZ

2
4

3
5;

in which kxX ¼ cosine of angle between x (local) and X
(global) axes etc.
The matrix Lg is then given by,

Lg ¼

kxX kxY kxZ 0 0 0 0 0 0 0

kyX kyY kyZ 0 0 0 0 0 0 0

kzX kzY kzZ 0 0 0 0 0 0 0

0 0 0 kxX kxY 0 0 0 0 kxZ

0 0 0 kyX kyY 0 0 0 0 kyZ

0 0 0 0 0 kxX kxY 0 0 0

0 0 0 0 0 kyX kyY 0 0 0

0 0 0 0 0 0 0 kxX kxY 0

0 0 0 0 0 0 0 kyX kyY 0

0 0 0 kzX kzY 0 0 0 0 kzZ

2
666666666666664

3
777777777777775

:

Element stiffness sub-matrix for each node has the
size of 10 · 10 with 10th row and column as zero, but
when the elements are coplanar, provision is made in the

computer programme to modify the element stiffness

matrix, introducing the drilling degree of freedom con-

cept [60].
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