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A New Partial Finite Element Model for
Statics of Sandwich Plates

TARUN KANT,* SANDEEP S. PENDHARI AND YOGESH M. DESAI

Department of Civil Engineering, Indian Institute of Technology Bombay
Powai, Mumbai — 400 076, India

ABSTRACT: A new partial discretization formulation with four-noded bi-linear
finite elements (FEs) has been developed in this study for flexural analysis of
sandwich plates. Partial discretization results in solution of a two-point boundary
value problem (BVP) governed by a system of coupled first-order ordinary
differential equations (ODEs). Mixed degrees of freedom, displacements (u, v, w),
and transverse stresses (7., T,., 0-) are the dependent variables and thus continuity of
transverse stresses and displacements are implicitly enforced in the present
formulation. Numerical investigations on symmetric and unsymmetric sandwich
plates are performed and presented, involving both validation and solution of new
problems.

KEY WORDS: sandwich, partial finite element, boundary value problem, numerical
integration algorithm.

INTRODUCTION

ANDWICHES, BASICALLY SPECIAL forms of fiber reinforced polymer

composite (FRPC) material composed of two thin, strong stiff layers
(face sheets) and thick flexible core, are very useful for weight sensitive
engineering applications. The main function of face sheets is to resist
bending, bonded to a relatively thicker and less dense layer (core) which is
provided to resist shear stress. The face sheets are usually prepared from
unidirectional FRPC and the core is a thick layer of a low density material
made up of foam polymer or honeycomb material. Owing to large difference
in the face sheets and core material stiffnesses, an accurate analysis of the
sandwich laminates is difficult to achieve.
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An accurate estimation of interlaminar stresses plays a key role in
predicating the delamination and matrix cracking of sandwich panels.
The main requirements in the analysis of sandwich panels are that the
transverse normal and the transverse shear strains as well as their variations
through the thickness must be considered. In addition to these, elasticity
solutions of layered components [1,2] indicate that the interlaminar
continuity of transverse normal and shear fields as well as displacement
fields through the thickness of a laminate is an essential requirement for
their accurate analysis.

The simplifying assumptions made in the classical laminate plate theory
(CLPT), first-order shear deformation theory (FOST), and higher-order
shear deformation theory (HOST) are reflected by the deficiencies in the
results of sandwich plates. All these simplified theories are termed as
equivalent single layer (ESL) theories. Moreover, the transverse interlaminar
stresses are most commonly estimated using a post-processing technique by
integration of 3D equilibrium equations of elasticity along the laminate
thickness in ESL theories and there are serious limitations. The estimates are
not only inaccurate but the methods are unreliable and the whole
methodology lacks robustness. Furthermore, continuity of transverse
stresses could not be maintained at the laminae interfaces and thus a need
is obvious to develop layerwise theories to take into account the continuity
requirements.

Various displacement based layerwise theories have been proposed by
Reddy [3], Soldatos [4], Wu and Kuo [5], Wu and Hsu [6], and others. These
displacement based layerwise theories have been reported to provide
satisfactory results for global values (deflections, flexural stresses) for thin
and thick laminates. However, only continuity of displacement field through
the thickness of a laminate could be satisfied in the displacement based
layerwise models and continuity of transverse stresses at the laminae
interfaces could not be enforced. To overcome this, a layerwise model with
displacements and transverse stresses as primary variables, is proposed by
various researchers. A group of researchers including Spilker [7], Wu and
Lin [8], Shin and Chen [9], Ramtekkar et al. [10,11] have worked on
development of layerwise mixed FE models. Such models satisfy the
continuity requirements of displacements and transverse stresses at the
laminae interfaces.

The various simple analytical/ FE models developed in the past are based
on the assumed variations over the global/element domain in all considered
directions in space. An attempt is made here to present a general method
starting from the fundamentals, that is, the exact three-dimensional (3D)
partial differential equation (PDE) system of sandwich plate. A novel mixed
partial FE model is developed for static analyses of sandwich plates based
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on the solution of a two-point BVP governed by a system of first-order
ordinary differential equations (ODEs),

0 = AGYE) + ) n
z

in the interval —h/2 <z<h/2 with any half of the dependent variables
prescribed at the edges z==+h/2. The solution vector y(z) consists of a set of
primary variables whose number equals the order of PDE system times the
number of discrete FE mesh nodes. Availability of efficient, accurate and
above all proven robust ODE numerical integrators for initial value prob-
lems (IVPs) helps in obtaining the set of primary variables at all nodal points
through the thickness. Ingenuity lies here in transforming the boundary value
problem (BVP) into a set of IVPs [12]. Once the fundamental set is known,
the auxiliary set of dependent variables over the entire nodal set is simply
computed by substitution of the values of the fundamental set of variables on
the right-hand side of algebraic expressions node-by-node. The accuracy of
the model is verified against the literature values for laminated sandwich
plates. New results are presented for the clamped supported sandwich plates
using the standard material properties available in the literature.

PARTIAL FINITE ELEMENT FORMULATION

An anisotropic sandwich laminate consisting of isotropic/orthotropic face
sheets and flexible core with a plan dimension « x b and total thickness
h (hgy + he + hy) 1s considered (Figure 1). Here /g, and /g are the thicknesses
of face sheets at the bottom and top of a laminate, respectively and /. is the
thickness of core material. The top surface of the laminate is loaded with
transversely distributed load.

The constitutive relations for a typical ith lamina with reference to the
principal material coordinate axes (1,2,3) and with the consideration of
each lamina to be in a 3D state of stress are written as:

E; Ey L5
(v L v
(82)—( E101+E20"2 E303>
. (2
i (s V3 -
(53)—< E° E202+E3U3>

i T12 ' i 713 ' j 23 i
=(==); '=(==); and '=(==).
(v12) (G12> (13) (GIB) (v23) (Gza>
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/ Typical lamina

X

(a) Lamina reference axes (1, 2, 3)

(b) Sandwich plate reference axes (x, y, z)

Figure 1. Sandwich plate geometry with positive set of lamina/plate reference axes and fiber
orientation.

These can also be written as:

¢ = C¢ 3)
where {U}iz 010203712713 723]lT and {E}iz [e1&283v12713 st]iT are the
stress and strain vectors with reference to the lamina coordinates 1, 2, and 3.

C,ms (m, n=1,...,6) are elasticity constants of the ith lamina defined in
Appendix 1.
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The stress—strain relations for the ith lamina in reference coordinates
(x, y, z) can be written as:

o= Qe 4)

Here, {0} =[0,0,0.7,, T.. ry:]T and {e} =[ec &, 8. Vyp Vs yyz]T are the stress
and strain vectors with respect to laminate axes and

0 O;] 0 i,j=1,2,3,4
- 0 le l’ m = 5’ 6
are the transformed 3D elasticity constants for the ith lamina
with respect to the laminate reference axes (Figure 1) defined in Appendix I.

From the linear theory of elasticity, the general 3D linear
strain—displacement relations are:

du av aw
E&x=— & =7 & =—
YT Y ey 7T oz
(5)
_8u+8v _ 8u+8w v Ow
Yoy = dy  ox Vez = 9z = Ox Vyz = 9z oy’
Further, the 3D differential equations of equilibrium are:
doy 0T, 0T
- - B, =0
0x ay + 0z + B
0Ty, do, 0t
— B, =0 6
ax + ay + dz T 5 ©
0ty 0Ty, 00
= -+ B, =0.
ox Oy + 0z +

Here, B,, B,, and B. are components of body force per unit volume in the x-,
y-, and z-directions, respectively.

Equations (4)—-(6) have a total of fifteen unknowns, six stresses
(04,0, 02, Ty, Ty, Typz),  SIX Strains  (&y, €, €2, ¥xy Vxzo ¥Vyz), and  three
displacements (u,v,w) in fifteen equations. It is to be noted that
transverse stresses and the displacements (Figure 2) are to be continuous
at the laminae interfaces for the accurate analysis [1,2]. These conditions
are naturally enforced in the present formulation. Through a simple
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¥x
Figure 2. 3D domain subjected to transverse loading.

algebraic manipulation, PDEs in terms of only six particular dependent

variables u, v, w, .., 7,., and o. are obtained as:

- 1 aw
5~ Os0n — On0e) | 2050+ Quome] =50
- : aw
0z m (0557 — Os6Te:] — @

aw : |: Q31 Q"44 Q32 Q34 :|

z Q3
0Ty Q1%Q31 01303 03031 &u
0z _< Qut 033 )3‘62 <_Q41 Qut o 033 * O3 )8x8y
043034 Pu
+(—Q44+ Oss >8_y2
013034 01303 | 043034\ 0y
+(_Ql4 O3 >3X2 ( Qo= Qut=p5 = 033 * O3 >8x8y
05030\ v (013 d0. (04 do-
+( Qo t 033 ) a2 (Qn) 0x (sz) — B
Q43Q11 023031 | 04303\ Fu
( Qu 033 )3)62 ( On = Qut=5 033 * 033 )3x8y
023034 04034 &v
+( Que + 033 >3y <_Q44+ 033 )ﬁ
Q23Q34 0303\ v 02103
+< 004 — Opp +—F— On Os; )8‘(8}/ ( O» + On )0}’2
(Q43>E_ <%) do- B
033/ ox 033/ oy !
807:—E—&—B:.
oz ox ay
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Figure 3. Bi-linear plate element with dependent variables.

This set of dependent variables is called a ‘primary set’ which is naturally
defined at a plane z =a constant, and the secondary variables o, o,, and 7.,
can simply be expressed as a function of the primary set of variables as:

_ 013031 ou 013034\ (Ou v
Gx_<Q“_ 033 >_+<Ql4_ 033 )(5+5>

0130 013
- <Q12 03 ) ady T 0n 03 o

_ 023031 ou 023034\ (Ou v
= <Q21 0 >5+ <Q24 0% )(@jLa)

02303 Q23
* <Q22 033 ) dy T 0n Q%3

_ Q43031 043034\ (Ou | v
o <Q41 033 > <Q44 033 ><8y + 8x)

045303 Q43
* <Q22 033 ) dy T 0n Q32

(®)

The primary set of variables u, v, w, 7., 7,., and o. is a function of
independent coordinates x, y, and z. It is proposed here to carryout FE
discretization in the x- and p-directions only, such that the discrete
dependent vector y(z) will be a function of independent coordinate z and
a system of coupled discrete first-order ODEs connecting all FE nodes
results. This new formulation is described here with reference to a four-
noded bi-linear elements in x- and y-directions with a mixed set of primary
variables as nodal degrees of freedom (Figure 3).
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The approximate variation of the displacement field over the element
domain in the x—y plane can be written as:

4

u>~ix,y,z)= Z ui(z)Ni(x, y)

i=1
4

V= {}(xaya Z) = Z V,'(Z)N,‘(x, y) (9)

i=1

4
W~ w(x,p,z) = Z wi(2)Ni(x, ).

i=1

Further, from the basic 3D elasticity relations, it can be shown that,
T 2 Te(X,0,2) = Z T ((2)Ni(x, )
Ty & (X, 0, 2) = Z T7,:i(2)Ni(x, y) (10)

4
0.~ 6:(x,3,2) = Y _ 0-i(z)Ni(x, y)

i=1

where,

X y Xy X ud
N =1 N I
1(x. ) ol Il 26y == y

N3(x,y) =

Xy y Xy
N4 X, = —
Ty M) =mm

and /.y, [,, are the length and width of element in the x- and y- directions,
respectively.

Substituting Equations (9) and (10) into Equation (7), the domain
residuals are obtained as:

ii(x, , ) 1 R -
9z (Q55Q66 — Q56Q65) [Q6ST}>Z(X: Vs Z) - Q66sz(xa Vs Z)]

ow(x,y,z
$ LD Ry (i
X
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n(x, y,z) 1 N N
— T:(x,5,2) + Tz(X, 0, 2
P (00m — QSéQéS)[ Oss57y:(X, 3. 2) + Os6T=(x, . 2)|
w(x, v,z
+ 7(3 22 Ryp(e, ) (12)
Y
R au(x,y,z ou(x, y, z
dicry,n 1 | DO (3xy ' ox n :
gty 1 ) . Y =Rty (13)
0z 033 av(x,y,z) av(x,y,z)
—03 3 — Os4 -
)y ox

Txz(x, 9, 2) + (Qn _ Q13Q31> Fa(x, y, z) N (Q44 B Q43Q34> Fi(x, ,2)

0z 03 dx? 033 ay?
04031 013034 i, y, 2)
- <Q41 O 033 a 033 ) axay
013034\ #0(x,,2)
+ <Q14 ~on ) e
04303 Fi(x,p,2) 01303 Os3034

+ <Q42 On ) P + (Qu + Ou 0n  0n )

*9(x, y,2)

axay

Q13 B&Z(x,y,z) Q43 35:(«‘%%2) D _

+ 0n x + 0n oy + By(x,y,2) = Rap(x,y) (14)

afvz(x’y’ Z) + <Q41 _ Q43Q31) Bzﬁ(x,y, Z) + (Q24 _ Q23Q34> azﬁ(x’yv Z)

0z 033 dx? 033 ay?
0253031 Os3034 Pi(x, y, 2)
" <Q21 +Qu 033 O3 ) dxdy
043034 3*9(x,y,2)
+ <Q44 " om ) a2 as
_ O02303%» Fi(x, p,2) ( ~ Q0s03n Q23Q34>

* <Q22 033 ) 9y? Qe+ 0n 03 033

(X, v, 2)
 TNX ), 2)

axady

Q43 00-(x,,2) | 02396:(x,p,2) | 4 B :

+ Q33 I + Q33 ay + B}‘(xa ) Z) - RSD(“\’ y)

00-(x,9,2)  0T(x,v,2)  0T,-(x, 7,z
A(y)Jr ._(y)+_1(y)

B.(x,7,2) = Rep(x, ). 16
= = 5B = Rao(e ). (16)
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Further, with the help of Equations (11)—(16) the strong Bubnov—Galerkin
weighted residual statements [13] can be written as:

/ ’ Ni(&)’)(

1

di(x,y,z) A PN
(055066 — 056065) [Q65 Ty2(X, 1, 2) — Q6 Taz (X, 1, Z)]

9z

+—3‘2’(§f’2)> d4=0 (17)
- n(x,y,2) 1 P A
/[4 NI(A:y)< 9z (Q55Q66 — Q56Q65)[ QSST}‘Z(X3y’Z)+QS(‘»TXZ(“\a.y’Z)]
+_aw();,yy : 2)) d4=0 (18)
8u(x ¥,2) u(x,y,z)
// . am(x y,z) s 6-(x,9,2) — Q31 — 03 P
[ Q33 BV(X»)’:Z) Bv(x,y,z)
—03 oy — 0O o
xdA=0 (19)
/ Ni(-x7y)
4
0Te=(x,,2) 013031\ 3*ii(x,y,2) 043034\ 0% il(x, 1, 2)
oz (Q“ 0% ) . (Q44 0% ) ay?
043031 0130x Fi(x,y,z) 01303 Fi(x,y,2)
+<Q4l +Qu 033 033 ) oxay * (QM 033 ) dx? A4 =0
04303\ Pi(x, )%Z) 01303 Os3034 P(x,p,2)
<Q4 033 ) ay? (Q12+Q4 033 033 ) 0xdy
Qn 90.(x, y,z) Q4300.(x,y,2) =~ ,
Q?% o Q33 ay +Bx(x=}32)
(20)
/ Ni(x»y)
A
07,-(x,y,2) 043031\ i(x,y,2) 023034\ Pii(x,y,2)
= (Q41 © 0% ) o (Q24_ 03 ) ay?
05051 0403 di(x,p,2) ( B Q43Q34) ¥ i(x,,2)
+<Q21 +Qu 03 033 ) dxdy +{Qu 033 dx? dA =0
0203 #9(x,»,2) _040% 02103\ #i(x,0,2)
+<Q22 033 ) a2 (Q o+ 0o 033 03 ) dxdy
| 04300:(x,),2) | 02390:(x,,2)  »
"0y ax +Q33 ay By(x.7.2)
(21
//A Nf(x,y)<aa"(z’zy’ z) +8rxz(g);y, 2) +8ryz(g;y, z) + By, Z)) dA=0. (2
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Equations (20) and (21) which contain second-order derivatives of # and 7,
are replaced by their weak forms as:

0T (x, y,k) 013 95.(x,,2) Q4; 30.(x,,2)
f Nitx.y [ 0z Q3x ox Q33 ay ]dA

/ / dn; (x ) ( Oui— Q4Q3 3(334) dﬁ(zivy»Z) N ( Oun— Q4Q3 gaz) dﬁ(zyyy,Z)} A

[ 013031\ dii(x,y,2) 043031 013034\ dil(x,1,2)

//dN (x.y) (Qll 0w )7dx + (Q41 +0us Ons O ) dy y
010, 40(x,1,2) ~0130% 04303\ di(x,),2)

_+(Q14 On: >—d <Q12+Q On 0ns ) dy
fN(x y)|:<Q1| Q13Q31) du(;xy,z) (Q41 +0u ——Qg%] ——Q5§34>
du(x > )n i|ds

y

ygN,(x y)[( Q43Q;4> du(;yy :2) y+ (le + Qs — Qgin Qgg“) dv(zyy -2) i|ds

+ f Ni(%}’)[(QM - %) %nx + <Q4z —%) dﬁ('Z’;’Z)ny]ds

[ f Ni(x,)B.(x,y,2)d4 =0 (23)

/ Nix,y |:371 -(x, y,z) 013 86-(x,y, Z)+Q433<T (x,, Z)}dA

0z Q%} ay O3 ox
// “i

Q43Q31) dii(x, y,2) n <Q44 _ Q43Q%4) di(x, y, ):|

( 033 dx 033 dx
dN f(x, y){( Qggz;\du(‘f 3.2 | <Q o+ O Qzngsl B Q2§34> dft(z;y,z)
( Orr— Q23Q32> di(x, y,Z) Ori+ 0r — Q2Q33Q334 B Qgisz) dﬁ(-:iaxyaz)]dA
y{ N, y)[(Q i - Qgi“ dar2), <Q21 +0u- Qgi“ - ng”) dite ’Z)ny]ds
yg Ni(x. y)[( QZQ”> du(fiy} S <Q24 +0n— Qgg” Qgg”) dv(:i - %) },]ds
vt (oa-L5Q) 0, (o, 0a05)dns, |
+ / A/ Ni(x, 1) By (x,,2)d4 =0. (24)
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On substitution of discrete relations from Equations (9) and (10), the
twenty-four coupled first-order ODEs are obtained and can be written as:

[AG] [AG] [AG] [AG] yi(@)

[AL] [AG] [AG] [AG] d ¥,(2)

[AG] [A%] [AG] [A%] |42 | »G)

[A%] [AG] [AL] [AG] NG
[Bgl] [B(e)z] [B83] [BS4] ) P

_ [BSS] [Bf)s] [B87] [ng] Yi(2) N P, 25)
[Bi] [Bio] [Bii] [Bi] |]»@ P,
[Bi;] [Bi,] [Bis] [Bis] ¥ P,

in which vectors y§(z) and p§(x, y, z) are:
t
Y6 = [ 5 W) T2, (2, 050)
e e e el
pi(xaya Z) - [Oa Oa 0»]’,‘4:1’,’5»171‘6]
where, i=1-4. The coefficients of individual submatrices and vectors are

defined in Appendix II.
Equation (25) can be written in a compact form as:

d
C(x,y) $y"(2) = D(x,y,2)y(2) + p°(x, », 2). (26)

When the total plan area is discretized with n, finite elements in the
x-direction and n, finite elements in the y-direction (Figure 4), then the
semi-discrete system of equations for the entire domain turns out to be:

n ) d n n X
D C@n) ) =) Dy 2 () + Y p(x..2)
k=1

k=1 k=1

or

d
C(x,y) &y(Z) = D(x,y,2)y(2) + p(x, y, 2). (27)
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Multiplication of Equation (27) by [C(x,)]”! on both sides results in,
d
&y(z) = K(x’y’ Z)y(Z) +.f(-x9y9 Z) (28)

where, K(x, 7,2) = [C(x,»)] 'D(x,5,2) and f(x,y,2) =[C(x,»)] ' p(x,y,2).

Equation (28) defines the governing equations of a two-point BVP in
ODE:s in the domain —//2<z<Ah/2. y(z) is an m-dimensional (m=no. of
nodes x 6) vector of dependent variables, K(x, y,z) is an m x m coefficient
matrix (which is a function of element geometry along in-plane directions,
x and y material properties variation all in x-, y-, and z- directions) and
f(x,y,2) is an m-dimensional vector of non-homogeneous (loading) terms.
Any m/2 elements of y(z) are prescribed at the two ends, z=—//2 and //2 as
boundary conditions. It is clearly seen that mixed and/or non-homogeneous
boundary conditions are easily admitted in this formulation.

The basic approach to the numerical integration of the BVP defined by
Equation (28) is to transform the given BVP into a set of [VPs — one particular
(nonhomogeneous) and m/2 complimentary (homogeneous). Clearly the
reason behind this is the availability of a number of successful and well-tested
algorithms for numerical solution of IVPs in ODEs. The solution of the
original BVP defined by Equation (28) is obtained by forming a linear
combination of one nonhomogeneous and /2 homogeneous solutions to
satisfy the boundary conditions at z=//2. This gives rise to a system of n1/2
linear algebraic equations, the solution of which determines the unknown
m/2 components of the vector of initial values y(z). Then a final numerical
integration of Equation (28) with completely known initial vector of
dependent variables y(z) produces the desired results. It is intended here to
extend the applicability of this procedure, which is documented by Kant and
Ramesh [12] and applied in its original form by Kant and Setlur [14], Ramesh
et al. [15], Kant [16,17], and Kant and Hinton [18] for a class of two
dimensions (2D) BVPs of plates and shells.

NUMERICAL INVESTIGATIONS

A computer code is developed in FORTRAN 90 by incorporating the
foregoing partial FE formulation, for the static analyses of laminated
composite and sandwich plates. A 10 x 10 full mesh of the four-noded
bi-linear plate elements has been used in the computation. This scheme is
arrived at on the basis of a convergence study in which mid-plane transverse
displacement and transverse shear stress converge monotonically.
The details of convergence studies are not presented here for the sake of
brevity.
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Table 1. Boundary conditions (BCs).

Description Edge BCs on displacement field BCs on stress field
Nodes along x=0and a v=w=0 ox=0 (true)
simple support
y=0and b u=w=0 oy, =0 (true)
Nodes along x=0and a u=v=w=0 -
clamped support
y=0andb u=v=w=0 -
For all nodes z=h/2 - Te=T,=0and o, =po(X,y)
z=—h/2 - fxz:Tyz:UZZO

‘-’ indicates no BCs.

To demonstrate the efficiency and versatility of the present formulation,
symmetric and unsymmetric sandwich plates with simple (diaphragm)
support end conditions on all four edges are investigated first. Results have
been validated by comparing them with those of the 3D elasticity [2] and
2D/3D FE solutions [5,11,19-21] available in the literature. Further, new
solutions are presented for clamped support conditions on all four edges for
future reference. The boundary conditions used in the present work have been
tabulated in Table 1 and the material properties are presented in Table 2.

Non-dimensionalized displacements and stresses reported in all tables and
figures are defined by:

S_g_ P Eu ﬂy_l()OEzh3w_ - _o:
h’ hpos’” poa’* 1’ T m ()
(O_—x; 6—y; .Exy) = m (O’x; U}f; txy); (fxz; 'Eyz) = ﬁ (fxz; r}’-’)

for proper comparison of results in which bar over the variable defines its
normalized value. Here E, is the modulus of elasticity of face sheet material
presented in Table 2, along the lamina coordinate axis 2 (Figure 1(a)).
Further, the intensity of bi-directional sinusoidal loading considered in the
examples has been expressed as:

L TX . T
p(x,y) = posin " sin Fy (30)

where py is the peak intensity of disturbed load.
Illustrative numerical examples considered in the present work are
discussed next.
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Table 2. Material properties.

Set Source Property

| Pagano [2] Face sheet
E1 =172.4 GPa Vig = 0.25 G12 = 3.45 GPa

E2 = 6.89 GPa Vi3 = 0.25 G13 = 3.45 GPa
E; =6.89 GPa 1,3 =0.25 Go3 = 1.378 GPa

Core sheet

E1 =0.276 GPa Vig = 0.25 G12 =0.1104 GPa
E, =0.276 GPa vz =025 Gi3 =0.414 GPa
E3 = 3.450 GPa V3o = 0.25 G23 =0.414 GPa

I Rao and Meyer- Piening [19] Face sheet

E; =172.4GPa v =0.25 Gi» = 3.45 GPa
E2 =6.89 GPa Vi3 = 0.25 G13 =3.45 GPa
E3 = 6.89 GPa Vo3 = 0.25 G23 = 1.378 GPa

Core sheet

E1 =0.100 GPa v = 0.25 G12 = 0.040 GPa
E2 =0.100 GPa v31 = 0.25 G13 = 0.040 GPa
E3 =0.100 GPa V3o = 0.25 G23 = 0.040 GPa

Example 1

A symmetric, square, three-layered (0°/core/0°) sandwich plate, supported
on simple supports (Table 1) on all the four edges and subjected to
bi-directional sinusoidal transverse load (Equation (30)) on its top surface
has been considered here for validation. The material properties of face
sheets and core are presented in Table 2(I). The thickness of each face sheet
is 1/10. The numerical results of normalized in-plane normal stresses (o, 7,),
transverse shear stresses (7., 7,-), and transverse displacement (w) for aspect
ratios, s=4, 10, 20, and 50 are tabulated in Table 3 and compared with the
3D elasticity solution given by Pagano [2] as well as 2D/3D FE solutions
presented by various authors [5,11,20,21]. Moreover, through thickness
variations of in-plane normal stress (oy), transverse normal stress (o),
transverse shear stress (7y.), and in-plane displacement (i) for an aspect ratio
of 4 have been shown in Figure 5. The results obtained through the
present investigation have been found to be in good agreement with the 3D
elasticity solution.
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Figure 5. Variation of normalized (a) in-plane normal stress oy, (b) transverse normal stress
0z, (c) in-plane displacement u, and (d) transverse shear stress 1y, through thickness of a
simply supported, symmetric sandwich plate (0°/90°/0°) subjected to bidirectional
sinusoidal load.

Example 2

A square, unsymmetric sandwich plate consisting of angle-ply face sheets
and flexible core (—45°/core/45°) with simple support end conditions on all
four edges (Table 1) and bi-directional sinusoidal load (Equation (30)) on
its top surface has been considered next for numerical investigation.
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Table 4. Maximum stresses and transverse displacement (oy, Ty, Txz, and w)
of unsymmetric (—45°/core/45°) square sandwich plates under transverse
loading simply supported on all four edges.

_{ab h _ h _ b _(a b
s Source Ox (E 1 + E) Tyy <0,0, + 5) Txz <0, > ,0) w<§ '3 ,0)

4 Partial FEM 2.7746 —2.3294 —4.1390 0.7818 0.1166 0.6770 (0.44) 41.6800
10 Partial FEM 0.9622 —-0.9529 -0.8256 0.7678 0.1684 0.2097 (0.44) 10.7694
20 Partial FEM 0.6201 —0.6205 —0.5613 0.5100 0.1933 5.0595
50 Partial FEM 0.5075 —0.5077 —0.4145 0.3941 0.2084 3.3118

Number within ()’ indicates the position in the thickness dimension where the stress is maximum.

The thickness of each face sheets is 2/10. The material properties are presented
in Table 2(I1). The ratio of shear modulus of the face sheet material with that
of the core material is as high as 86.20 in the present example. Normalized in-
plane normal stress (o,), transverse shear stress (7,.), and transverse
displacement (w) for aspect ratios, 4, 10, 20, and 50 are tabulated in Table
4. Through thickness variations of normalized in-plane normal stress (ay), in-
plane shear stress (ty,), transverse shear stress (7,:), and transverse
displacement (w) have been shown graphically in Figure 6 for an aspect
ratio of 4. The graphical results presented by Rao and Meyer-Piening [19] and
Ramtekkar et al. [11] have been used for proper comparison. It is observed
that though there is good agreement in the through thickness variation
of numerical results for all quantities in the core region of the plate, there
are small discrepancies in the face sheet regions (top as well as bottom
face sheets).

Example 3

Clamped (Table 1) (a) symmetric (0°/core/0°) and (b) unsymmetric
(—45°/core/45°) sandwich plates, subjected to bi-directional sinusoidal load
(Equation (30)) on the top surface are considered here to show the ability of
the present formulation to handle problems with general boundary
conditions and high stress gradients. All geometrical and materials details
are kept the same as in Examples 1 and 2. The numerical results of normalized
in-plane normal stress (o), transverse shear stress (7y.), and transverse
displacement (w) for different aspect ratios are documented in Table 5.
Through thickness variations of normalized in-plane stress (o) and
transverse shear stress (t7,.) for an aspect ratio of 4 are presented in
Figures 7 and 8 for 0°/core/0° symmetric sandwich plate and —45°/core/45°
unsymmetric sandwich plate, respectively. These results should serve as
benchmark solutions for future reference.
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Figure 6. Variation of normalized (a) in-plane normal stress &y, (b) transverse displacement
W, (c) in-plane shear stress ty, and (d) transverse shear stress t,, through thickness of a
simply supported, unsymmetric sandwich plate (—45°/90°/45°) subjected to bidirectional
sinusoidal load.

CONCLUSIONS

A novel, mixed partial FE formulation resulting in a solution of two-point
BVP governed by a system of coupled first-order ODEs through thickness of
plate is presented for the static analyses of sandwich plates for the first time.
The present formulation is seen to be unique in its approach. The accuracy of
the present model is evaluated by obtaining the solutions and comparing them
with the available 3D solutions. Further, numerical investigation has also
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Table 5. Normalized in-plane normal stress (sy), transverse shear stresses
(7x2), and transverse displacement (w) of symmetric and unsymmetric
clamped supported square sandwich plates subjected to
bi-directional sinusoidal load.

0°/core/0° unsymmetric sandwich plate

_(ab h _ b h _(a b
s Source 6"(5’5’ iE) sz(O,Es ﬂ:§> W(§’§’0>
4 Partial FEM 0.6590 —0.6305 0.9433 0.9239 5.5864
10 Partial FEM 0.3954 —0.3932 1.0912 1.0941 1.2993
20 Partial FEM 0.3737 —0.3732 1.2667 1.2678 0.4935
50 Partial FEM +0.3656 1.3408 1.3409 0.2142

—45°/core/45° unsymmetric sandwich plate

_f{fab h _ b h _(a b
s Source Oy (5,5, ii) Txz (O’E’ + 5) w(§,§,0>
4 Partial FEM 1.9791 —1.6403 2.3597 1.7668 32.3627
10 Partial FEM 0.6346 —0.6468 0.8536 0.8444 8.0303
20 Partial FEM 0.3920 —0.3917 0.6687 0.6710 2.8666
50 Partial FEM +0.2915 0.6686 0.6692 1.3117
Partial FEM
0.50 Z/ 0.50 //
1 ah=4 ]
a/h=4
0.25 0.25
G, (a/2,b/2,z) T, (0,b/2,2)
L e e S D 1 e S B S
-1.0 -0.5 0[0 0.5 1.0 000 [025 050 075 1.00
—0.25 —-0.25
—050 —0.50] \

(@) (b)

Figure 7. Variation of normalized (a) in-plane normal stress oy and (b) transverse shear
stress 1y, through thickness of a clamped supported, symmetric sandwich plate (0°/90°/0°)
subjected to bidirectional sinusoidal load.
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Figure 8. Variation of normalized (a) in-plane normal stress o, and (b) transverse shear
stress 1, through thickness of a clamped supported, unsymmetric sandwich plate (—45°/
90°/45°) subjected to bidirectional sinusoidal load.

been carried out to show the generality of the formulation to handle different
boundary conditions. The main advantage lies in the proposed model that
both displacements and interlaminar stresses are evaluated simultaneously
at a finite node with the same degree of accuracy through the numerical
integration process. Post-processing module, which is required in other ESL
models for the calculation of transverse stresses from in-plane stresses is
altogether eliminated.

It is to be emphasized here, very clearly, that the semi-discrete form of
Equation (27) is unique as long as all but one independent coordinates
(z here) are discretized in a BVP. From this viewpoint also the proposed
methodology can be considered as a novel and standard (modular) one.

APPENDIX I

Coefficients of [C] Matrix

_ E(I = vyv) _ EiQar +vsive) _k (v31 + v21v32)

C ;o C ; C ;
11 A 12 A 13 A
Cp =0 zvivs) o Bntvov) o B —vov),
A A A

Ciu=Gr; Css =Gy Cee =03
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where

A= (1 — Vi2V21 — V23V32 — V31V13 — 2‘)121)23‘}31)

2] V12 V3] V13 V32 V23
and —_ = —_— = = =,
E, E By E Ey  E

Coefficients of [Q] Matrix

011 = Cic* 4+ 2(Ciy + 2Cy)c*s* + Cops®

Q12 = Cia(* + 5% + (C11 + Coy — 4Ca)°s

013 = Ci3¢ + Coss”

Q14 = (C11 — C1a — 2C44)*s + (Ca — Coy + 2Cas)cs’
00 = Conc* +2(Ca + 2Caa)c*s* + Crys*

05 = Co3c® + (1387

024 = (Cia — Cp +2Caa)*s + (C1y — Cry — 2Cyg)cs’
03 =Cx

O34 = (C31 — Cxp)es

Qus = (C) —2C1p + Coy — 2Cug)c*s* + Cag(c* + 5%
Oss = Cssc® + Cps”

Os6 = (Cs5 — Ceg)cs

> P
Qs = Csss” + Cgsc
where

¢ =CO0Ss«ux

s =sina

and « is the angle between the fiber axis 1 and reference axis x (Figure 1(a)).
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APPENDIX II

Coefficients of Vector, pi(x,y,z)

B (Q“ QlSQSl)fN( du(x’y’z)nxds—i- <Q44_Q43Q34> 7

0 dx 03
x ¢ Ni(x,y du(Tf/’Z)nyds
+<Q14 Q5Q34)f NG, dV(X;:Z) ds+ (Q42 B QZ3Q332>
Pia=— x ¢ Ni(x, 7dv();yy, Z)ny
+<Q14 + Qa1 — Qgi“ - Qg?m) $, Nilx, y)%yy’@nxds
+<Q12 +Ou— Qggn QSQM) § N, dv(xd,;}, Z)nxds

L+ Ni(x, »)By(x, y,z)dA4 ]

B <Q41 Q43Q31>56N( du(x’y’z)nxds—i- <Q24 _Q34Q23) 7

0 dx 033
x ¢ Ni(x,y %yy’z)n},ds

013034 dV(X »,2) 02303
+<Q44 O )f Ni(x, 4)( nyds + (sz T 0n )

Pis == $, Ni(x, ) %;’Z)nyds
023031 043034 du(x,y, z)
+<Q12 + Qu — 0w On > §, Ni(x, y Tn ,ds
+<Qz4 +Op— 023034 Q43Q32> § N, dv(x »,2) n,ds
033 dx

—+ff,4 Ni(an’)By(X,y, Z)dA |

p?ﬁ = _/ NI(X’J’)Bz(X,ya Z)dA
A

where, n,, n,, and n. are the direction cosine of the outward normal.
Coefficients of Diagonal Submatrices [A{] (for s =1-3)

Ay = 2A0, = 4AG;
Apy = a1
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where, aj; = (lexley/36) and 1'is 6 x 6 identity matrix.

Coefficients of Submatrices [B;] (for j=1-16)
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00—k Ky ki 0
0 0 Ky —ky ki 0
B, = —ki ki 0 0 0 ks
Ko Ky 0 00—k
Ko K 00 0 kg
0 0 0 ki ki, O |
T 0 0 -2k, kS, 2k, O
0 0 -k, —2k% 2k 0
B, = —ksg  —k% 0 0 0 2K
kS kS, 0 0 0 —kSy
Koo ks 000k
0 0 0 2k —ki 0
T 0 0 2k, Ak,  —4ky 0
0 0 -2k, -4k, 4kis 0
B, = —k3s  —k56 0 0 0 4k
ks kg 0 0 0 —hss
kS k5o 0 0 0 —kSs
0 0 0 2kG =2k, 0
where,
e _ Loy
0= 15
Koy = 118_5
ke, = Loxley ( Qso )
36 \ Q55066 — Q56065
ke, = Loxley ( Oss )
36 \QOss066 — Os6Q6s
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k. — lexley < QSS )
07 36 \ Q55066 — Q56065
Ie} Q?l Zex Q34

e
k06

603 605

o Lex Q30 Loy O34

ke, = o Cu
776 033 60n

lLoxloy (1
ke — extey [ 1
® 36 <Q33>

koo = fy <Q11 - Q13Q31) +%(Q14 + Q41 — Q130 _ Q43Q3]>

3lex O3 033 033

043034
3l€L (Q44 a Q33 >

013034 1 01303 04303
0= 3le’c<Q4_ 033 )+Z<Q12+Q44_ 01 Q33>

04303
31@ (Q42_ 033 )

p 043034 1 023034 04303
ki = 31m<Q4_ 033 )+4<Q24+Q42_ 0n  Osn )

02303
<Q22 Oxs >

31@

kizz_@&_i_luQM

6 03 12033
e __ Zex Q32 lgy Q34

BT1205 6 0%

Ko, = — lg}'} (Qu _ Q13Q31> %(Qm +On— 01303 Q43Q31)

3oy O3 O3 033
Lex 043034
" Oley <Q44 05 )

e ley _ 1 01303 O430x
kis = 3. (Ql4 On ) +t3 (le + Qua “0n 0w )
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L |
k{g=— 3l:\— <Q14 Q53Q334) 7 (le + Q44 — Qg}Q:z - Qg3Q334>
Lex Q43Q32)
+ _
6ley <Q42 033
. Ley 2 1 ‘ ‘
k{7 =— 31;x <Q44 - QZ3Q;4> ~1 (Q24 + 0 — ngm - Q23Q332>
lex _ Q23 Q32>
" 6ley 0 033
b o Ou 1w
' 12053 12033
b _l0n 1y 0
19 12 Q33 12 Q33
ey 1
ky = — 611; (Qu - Q53Q331> ~2 (Q14 + 041 — 7Q53Q334 - ng3l>
lex ( B Q43Q34>
6l \ 71 053
K5y == 612\ <Q14 - Qgi.%) - % (le + Qu — Qgizz - Qgi%)
lox 04303
i (02-5527)
kyy =~ 61;; <Q44 - Q23Q334> - i (Q24 + 0w — % - %)
ZFX Q23Q32
~g(02-%52)
IOy L0
271205 603
v Ol O
24 6 033 1203
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kSS = é;—i (Qll _M> _%(Q14 + Q41 _ Q|3Q34 . Q43Q31>

033 033 033
Lox 03034
-5 (00 =552
o _ Loy 013034\ 1 01300 Os30x
k3 = 6l <Q14 Ons ) 1 (le + Qu Ons On )
Lox O30
-5t (02 =557
e _ Loy 013034\ | 1 _0130n  Qs3034
ky; = 61” <Q14 O ) + 7 <Q12 + Ou 0w On )
04303
31(1 <Q42 033 )
e _ Loy 043034\ | 1 _0530u  Os0n
kyg = ol <Q44 O ) + I <Q24 + O 0w On )
Lex 0303
3, (Q” " 0w )
K — ley Q31 | lex O34
2760y 1203
o _le0n 10w
V1205 0 6 03
Lo, 303
k) =— 31; <Q11 - Q5%1> <Q14 + Qu — 7Q5g34 - 7Q4Q}3Q;1)
Lox 04303
+ 6l <Q44 ~on )
Loy 1 303
ks = — 31; <Q‘4 - QHQ334> <Q12 + Q44 — Qgg? - Q23Q334)
lex Q43Q32
+ 6ley <Q42 B 3 )
Loy 1 3
kS = — 31; (Q14 - QHQ}“) +- <Q12 + Q44 — Qggzz - 7@5?}34)
lex Q43Q32
+ 6ley <Q42 B 3 )
Loy 1 3
K, = — 31; (Q44 _ Q4%Q334> +Z <Q24 4 On— Q2Q3g%4 _ Q23Q332)
Lox 02303
+ 6l <Q22 )
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e Ley O3 Lox
k§5 — _7}@_{_ O

603 603
- lex Q32 ley Q34

¥ 605 605
ks = 31% <Q11 — %) _ % <Q14 04 — 013034 Q43Q31>

033 033 033
#ai (00 -%52%)
e Ml Q13034 Q1303 O0s3034
K = 3lox <Q14 033 ) <Q|2 +Qu = 033 033 )
[m <Q4z B Qgin)
e o Q0403 1 02303 Q40
K = 3lox <Q44 033 ) <Q24 Q= 033 033 )
6[(,‘ <Q22 B Q2Q3§32>
o O L0
0T 1205 6 03
o On 0
U760y 1204
e _ ey Q1031 | 1 Q13034 Qu0s
ki = 6l.x (Qll On ) + 4 <Q14 +Ox —Q33 Oss )
l(f‘C » 3
-~ (e -552")
e _ e Q13034 | 1 Q1303 Qs30x
kiz = 6. (Q14 0w ) 3 (le + Qua 0n  0n )
l(fx » 3
—5(e=-52")
e _ o Q13034 1 0130 Os303
ks = o (Q14 T0n ) 1 (le + Qua 0n 0w )
l('x
-5 (0= -52")
o _ dey. 0603 1 _0530u  O430n
kys = o, <Q44 Ons ) 1 <Q24 + Qxn On Ors )
l@x Q23Q32
B 3ley (Q22 B Q33 )
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e _ ley Q31 lex Q34

71205 1205
e _lexQn 1oy Qs

YT 120n 120%
¢ = _ Ly (Qn _QL%“> _,_% <Q14 + 0w — Q13034 Q43Q31)

6/ex 0s 033 033
Lex Q43034
6ley <Q Q33 )
e Ly 013034\ , | 01303 04303
T <Q14 T on > +7 (le + Ous Ons On )
 lex _ O40n
6ley <Q Q33 )
e Ly 03034\ 1 02303 04303
0= Tl (Q44 Ons ) +Z <Q24 + O — R >
 lex ( _ Q23Q32>
6Iey 2 Q33 ’
ACKNOWLEDGMENTS

The partial support of USIF Indo-US Collaborative Sponsored Research
Project IND104 (951U001) is gratefully acknowledged. Constructive
comments of the reviewer are also gratefully acknowledged in enhancing
the quality of the manuscript.

REFERENCES

1. Pagano, N.J. (1969). Exact Solution for Composite Laminates in Cylindrical Bending,
Journal of Composite Materials, 3: 398-411.

2. Pagano, N.J. (1970). Exact Solution of Rectangular Bidirectional Composites and Sandwich
Plates, Journal of Composite Materials, 4: 20-34.

3. Reddy, J.N. (1987). A Generalization of Two-dimensional Theories of Laminated
Composite Plates, Communication in Applied Numerical Methods, 3: 173-180.

4. Soldatos, K.P.A. (1992). A General Laminated Plate Theory Accounting for Continuity of
Displacement and Transverse Shear Stresses at Material Interfaces, Composite Structures,
20(4): 195-211.

5. Wu, C.P. and Kuo. H.C. (1993). An Interlaminar Stress Mixed Finite Element Method for
the Analysis of Thick Laminated Composite Plates, Composite Structures, 24(1): 29-42.

6. Wu, C.P. and Hsu, C.S. (1993). A New Local High-order Laminate Theory, Composite
Structures, 25(1): 439-448.

Downloaded from http://ism.sagepub.com by Sandeep Pendhari on November 6, 2007
© 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://jsm.sagepub.com

520 T. KANT ET AL.

7.

20.

21.

Spilker, R.L. (1984). An Invariant Eight-node Hybrid-Stress Element for Thin and Thick
Multilayer Laminated Plates, International Journal Numerical Methods of Engineering,
20: 573-587.

. Wu, C.P. and Lin, C.C. (1993). Analysis of Sandwich Plates Using Mixed Finite Element,

Composite Structures, 25(1): 397-405.

. Shin, Y.B. and Chen, H.R. (1992). A Mixed Finite Element for Interlaminar Stress

Computation, Composite Structures, 20(3): 127-136.

. Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2002). Mixed Finite Element Model for

Thick Composite Laminated Plates, Mechanics of Advanced Material and Structures,
9: 133-156.

. Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2003). Application of a Three-dimensional

Mixed Finite Element Model to the Flexure of Sandwich Plate, Computers and Structures,
81: 2183-2198.

. Kant, T. and Ramesh, C.K. (1981). Numerical Integration of Linear Boundary Value

Problems in Solid Mechanics by Segmentation Method, International Journal for Numerical
Methods in Engineering, 17: 1233-1256.

. Zienkiewich, O.C. (1977). The Finite Element Method, 3rd edn, pp. 60-61, McGraw-Hill,

London.

. Kant, T. and Setlur, A.V. (1973). Computer Analysis of Clamped-Clamped and

Clamped-Supported Cylindrical Shells, Journal of Aeronautical Society of India, 25(2):
7-55.

. Ramesh, C.K., Kant, T. and Jadhav, V.B. (1974). Elastic Analysis of Cylindrical Pressure

Vessels with Various End Closures, International Journal of Pressure Vessels and Piping,
2: 143-154.

. Kant, T. (1981). Numerical Analysis of Elastic Plates with Two Opposite Simply Supported

Ends by Segmentation Method, Computer and Structure, 14(3-4): 195-203.

. Kant, T. (1982). Numerical Analysis of Thick Plates, Computer Methods in Applied

Mechanics and Engineering, 31: 1-18.

. Kant, T. and Hinton, E. (1983). Mindlin Plate Analysis by Segmentation Method,

ASCE Journal of Engineering Mechanics, 109(2): 537-556.

. Rao, K.M. and Meyer-Piening, H.R. (1991). Analysis of Sandwich Plates Using

Hybrid-Stress Finite Element, AIAA Journal, 29(9): 1498-1506.

Pandya, B.N. and Kant, T. (1988). Higher-order Shear Deformation Theories for Flexure
of Sandwich Plates - Finite Element Evaluations, International Journal of Solids and
Structures, 24(12): 1267-1286.

Manjunatha, B.S. and Kant, T. (1993). On Evaluation of Transverse Stresses in Layered
Symmetric Composite and Sandwich Laminates under Flexure, Engineering Computation,
10: 499-518.

Downloaded from http://ism.sagepub.com by Sandeep Pendhari on November 6, 2007
© 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://jsm.sagepub.com

