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Abstract

A higher-order refined model with seven degrees of freedom per node is presented in this paper for the free vibration

analysis of composite and sandwich arches. The strain field is modeled through cubic axial, cubic transverse shear and

linear transverse normal strain components. As the cross-sectional warping is accurately modeled by this theory, it does

not require any shear correction factor. The stress–strain relationship is derived from an orthotropic lamina in a three-

dimensional state of stress. The proposed higher-order formulation is validated, in this first part, through arches with

various curvatures, aspect ratios, boundary conditions and materials.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite and sandwich arches or curved beams are being used in various automotive, aero
space, energy, medical and sports applications, to name a few, due to their high strength to weight ratio.
Developing predictive capabilities to assess their vibration characteristics, a priori, is a key aspect of design of
components with such materials.

Ahmed [1] evaluated the vibration characteristics of curved sandwich beams using finite elements with three
to five degrees of freedom per node. He studied effects of factors such as core–face density ratio, core rigidity,
core–face thickness and subtended angle on the arch frequency. Similarly, Petyt and Fleischer [2] adopted
finite element models for the radial vibrations of a curved beam. They ascertained the role of subtended angle
on the frequencies, for various end conditions. Veletsos et al. [3] studied the free vibrations of circular arches in
their own plane and their mode shapes, through an iterative numerical procedure. Based on the modal and
strain energy distribution patterns, they classified modes as flexural, axial or coupled. They extended their
study later [4] by including rotatory inertia and shear deformation.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Singh and Singh [5] studied the in plane vibrations of rotating rings and sectors, with shear deformation
through finite element method. Balasubramanian and Prathap [6] explored the locking and field-consistency
aspects of a shear flexible curved beam element for the vibration of stepped arches.

Heppler [7] developed Timoshenko beam elements, using trigonometric basis functions, for studying the
vibration of curved beams. Qatu [8,9] developed an exact as well as Ritz method-based approximate solutions
for the vibration of laminated composite arches. His book [10] elaborates the theoretical basis of composite
arch vibrations, in detail.

Auciello and De Rosa [11] studied the vibrations of classical arches through Galerkin, Ritz and finite
element methods. They examined the influence of cross-sectional variations and of flexible supports on the
vibration of arches. Krishnan and Suresh [12] developed a cubic element to study the effects of curvature,
shear deformation and rotary inertia on the fundamental frequency of curved beams. Krishnan et al. [13]
explored the role of subtended angle on the fundamental frequency of arches, with various end conditions.
Sakiyama et al. [14] studied the free vibrations of sandwich arches with elastic or visco elastic core, various
axis shapes and end conditions, through Green functions. Tseng et al. [15,16] studied the vibrations of first-
order shear deformable arches with variable curvature, using dynamic stiffness method. Kang et al. [17,18]
studied the vibrations of shear deformable circular arches using differential quadrature method. Many authors
[19–22] explored the influence of axial extension, rotatory inertia and shear deformation on the vibrations of
arches, in the past.

Khdeir and Reddy [23] developed a third-order theory for the vibration studies of shallow composite arches.
Raveendranath et al. studied the performance of a curved beam element with coupled polynomial
distributions [24] and also developed a two-noded shear deformable curved element [25] for arch vibrations.
Patel et al. [26] developed a B-spline-based curved element for vibration analysis of composite structures.

It can be observed from these studies, that the arch vibration problem had been studied either through
classical theory or first-order shear deformable theory of Timoshenko [27]. Also, most of the reported work
had been on cross-ply configuration.

The classical theory would be adequate only for thin sections. While the first-order theory can handle deeper
sections, it has serious limitations such as the need for a shear correction factor [28], inability to model the
cross-sectional warping—a key factor for sandwich constructions with stiff facings and weak cores. Also, it
cannot model the variation of transverse displacement across the thickness or in other words the transverse
normal strain. The third-order theory, though more realistic, has been solved through analytical solutions.

Thus, one can see the need for a theory capable of accurately modeling and analyzing deep composite and
sandwich arches. This paper presents a higher-order formulation, precisely fulfilling that need.

This higher-order theory models the cross-sectional warping through cubic axial strain. It considers the
variation of transverse displacement across the thickness through a linearly varying transverse normal strain.
Also, it incorporates transverse shear strain, varying cubically across the cross-section. This theory does not
require any shear correction factor and employs standard isoparametric elements. Its elasticity matrix had
been derived, from an orthotropic lamina assumed to be in a three-dimensional state of stress, in such a way
that even angle ply laminations can be studied using one-dimensional elements.

Through the free vibration analyses of shallow to deep and thin to thick laminated arches with various
boundary conditions, the proposed higher-order formulation is validated in this paper.

2. Theoretical formulation

The higher-order displacement model, based on Taylor’s series expansion [29], can be expressed, for an
arch, as follows (Fig. 1):

u ¼ u0 þ zyx þ z2u�0 þ z3y�x, (1)

w ¼ w0 þ zyz þ z2w�0, (2)

where z is the distance from the neutral axis to any point of interest along the depth of the arch, u0 and w0 are
axial and transverse displacements in x–z plane, yx is the face rotation about y-axis and u�0; y

�
x; yz; w�0 are the

higher-order terms arising out of Taylor’s series expansion and defined at the neutral axis.
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Fig. 1. Arch geometry with displacement components.
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The Lagrangian function, in the absence of external and damping forces can be given as

L ¼ T �U , (3)

where T is the kinetic energy and U is the internal strain energy. The same can be expressed as

L ¼
1

2

Z
_u
�

tr _u
�
dv�

1

2

Z
�tsdv, (4)

where

u
�
¼ ½u w�t; u

�

�
¼ ½ _u _w�t; � ¼ ½�x �z gxz�

t; s ¼ ½sx sz txz�
t. (4a)

The field variables can be expressed in terms of nodal degrees of freedom as

u
�
¼ Zdd, (5)

where

d ¼ ½u0 w0 yx u�0 y�x yz w�0�
t, (5a)

= (5b)

The strain field for an arch [10,16] can be expressed as

�x ¼
1

ð1þ z=RÞ
ðu;x þ w=RÞ, (6a)

�z ¼ w;z, (6b)

gxz ¼ w;x þ u;z � u=R, (6c)

where R is the radius of curvature.
Applying the displacement field from Eqs. (1) and (2) in the above equations, one gets

�x ¼ �x0 þ z2��x0 þ zkx þ z3k�x, (7a)

�z ¼ �z0 þ zkz, (7b)

gxz ¼ fþ z2f� þ zwxz þ z3w�xz (7c)
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and can be expressed in matrix form as

�x ¼ Zt
a�a þ Zt

b�b, (8)

�z ¼ Zt
t�t, (9)

gxz ¼ Zt
sgs, (10)

where

�a ¼ ½�x0 �
�
x0�

t ¼ ½ðu0;x þ w0=RÞ ðu�0;x þ w�0=RÞ�t, (11a)

�b ¼ ½kx k�x�
t ¼ ½ðyx;x þ yz=RÞ ðy�x;xÞ�

t, (11b)

�t ¼ ½�z0 kz�
t ¼ ½yz 2w�0�

t, (11c)

gs ¼ ½f f� wxz w
�
xz�

t

¼ ½ðw0;x þ yx � u0=RÞ ðw�0;x þ 3y�x � u�0=RÞ ðyz;x þ 2u�0 � yx=RÞ ð�y�x=RÞ�t, ð11dÞ

Za ¼
1

ð1þ z=RÞ

z2

ð1þ z=RÞ

" #t
, (11e)

Zb ¼
z

ð1þ z=RÞ

z3

ð1þ z=RÞ

" #t
, (11f)

Zt ¼ ½1 z�t, (11g)

Zs ¼ ½1 z2 z z3�t. (11h)

The strains of Eqs. (8)–(10) can be rewritten in a combined matrix form as

� ¼ Z̄�̄, (12)

where

(12a)

�̄ ¼ ½�a �b �t gs�
t. (12b)

The stress–strain relationship of an orthotropic lamina in a three-dimensional state of stress can be
expressed as [30]

so ¼ Q�o, (13)

where

so ¼ ½sx; sy; sz; txy; tyz; txz�
t, (13a)

�o ¼ ½�x; �y; �z; gxy; gyz; gxz�
t (13b)

and Q is given by Eqs. (A.17)–(A.29), in Appendix A.
By setting sy; txy; tyz equal to zero in Eq. (13) and deriving the remaining stress components from the same

equation [31], one gets the stress–strain relationship as

s ¼ C�, (14)
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where

s ¼ ½sx; sz; txz�
t, (14a)

(14b)

and the expressions for various C matrix elements are given by Eqs. (B.1)–(B.6), in Appendix B.
The internal strain energy can be evaluated using Eqs. (12) and (14) as

U ¼
1

2

Z
�tsdv ¼

1

2

Z
�̄tD̄�̄dx, (15)

where

D̄ ¼ b

Z
Z̄

t
CZ̄ dz (15a)

(15b)

(15c)

and the expansions of various D matrices are given by Eqs. (C.3)–(C.11), in Appendix C.
The kinetic energy can be expressed using Eq. (5) as

T ¼
1

2

Z
ð _d

t
m̄ _dÞdx, (16)

where

m̄ ¼ b
XNL

l¼1

Z
ðztdrlzdÞdz, (17)

where rl is the mass density of a layer and m̄ is given by Eqn. (C.12) in Appendix C.
The Lagrangian function can be re-stated with Eqs. (15) and (16) as

L ¼
1

2

Z
ð _d

t
m̄ _dÞdx�

1

2

Z
ð�̄tD̄�̄Þdx. (18)
3. Finite element modeling

The displacements within an element can be expressed in terms of its nodal displacements in isoparametric
formulations as

d ¼ Nae, (19)

where ae is a vector containing nodal displacement vectors of an element with n nodes and can be expressed as

ae ¼ ½d
t
1; dt

2; . . . ; d t
n�
t. (20)
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Similarly, the strains with in an element can be written through Eqs (5a) and (12b) as

�̄ ¼

Ba

Bb

Bt

Bs

2
6664

3
7775ae ¼ B̄ae, (21)

where, for a given node n, the strain displacement matrix can be computed as

(22)

(23)

(24)

Bs ¼

�N=R N ;x N 0 0 0 0

0 0 0 �N=R 3N 0 N ;x

0 0 �N=R 2N 0 N ;x 0

0 0 0 0 �N=R 0 0

2
66664

3
77775

n

. (25)

By substituting Eqs. (19) and (21) in Eq. (18), one gets

L ¼
1

2
_at

e

Z
N tm̄N dx _ae �

1

2
at

e

Z
B̄
t
D̄B̄dxae. (26)

Applying Hamilton’s principle on L, we get the governing equation of motion as

M €d þ Kd ¼ 0, (27)

where

M ¼

Z
N tm̄N dx (27a)

and

K ¼

Z
B̄
t
D̄B̄dx. (27b)

This equation of motion can be solved by expressing the displacement vector as

d ¼ d̄eiot ¼ d̄ðcos otþ i sin otÞ, (28)

where d̄ is the modal vector and o the natural frequency. Substituting Eq. (28) into Eq. (27), one gets

ðK � o2MÞd̄ ¼ 0. (29)

By solving Eq. (29), using standard eigenvalue solvers [32], after applying suitable boundary conditions, the
natural frequencies and corresponding mode shapes are directly obtained.

4. Numerical experiments

Numerical experiments have been carried out to study the performance of the proposed higher-order model.
This model is validated by comparing its results with those available in the literature. Details such as material
properties, lamination scheme and end conditions of every problem solved, are given in Table 1.
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Table 1

Data for numerical experiments

1.1. Nomenclature

S—arc length of the arch

t—thickness of cross-section

R—radius of curvature

S/t—aspect ratio

b( ¼ S/R)—subtended angle of an arch

r—radius of gyration of beam cross-section:

ffiffiffiffi
I

A

r
¼ 0:2887t

FNP—frequency normalizing parameter

BC—boundary condition

1.2. Boundary conditions for different supports

Support type at x ¼ 0 at x ¼ S

Simply supported (SS) u0 ¼ u�0 ¼ 0 u0 ¼ u�0 ¼ 0

w0 ¼ yz ¼ w�0 ¼ 0 w0 ¼ yz ¼ w�0 ¼ 0

Simply supported (SS1) u0 ¼ 0 u0 ¼ u�0 ¼ 0

w0 ¼ yz ¼ w�0 ¼ 0 w0 ¼ yz ¼ w�0 ¼ 0

Roller–simply support (RS) u0 ¼ u�0 ¼ 0

w0 ¼ yz ¼ w�0 ¼ 0 w0 ¼ yz ¼ w�0 ¼ 0

Clamped–clamped (CC) u0 ¼ u�0 ¼ yx ¼ y�x ¼ 0 u0 ¼ u�0 ¼ yx ¼ y�x ¼ 0

w0 ¼ yz ¼ w�0 ¼ 0 w0 ¼ yz ¼ w�0 ¼ 0

Clamped–free (CF) u0 ¼ u�0 ¼ yx ¼ y�x ¼ 0 All free

w0 ¼ yz ¼ w�0 ¼ 0

1.3. Material data

No. Details Ref.

Data-1 [26]
E1

E2
¼ 15; E2 ¼ E3;

G12

E2
¼ 0:5;

G23

E2
¼ 0:5;

G13

E2
¼ 0:5

n ¼ 0:25, r ¼ 1; b ¼ 1; t ¼ 1

FNP : S2

ffiffiffiffiffiffiffiffiffiffi
12r
E1t2

r
Lamination scheme: 0/90

No. of elements: 30 cubic

BC:RS

Data-2 [10]
E1

E2
¼ 15; 40

S/R ¼ 1.0

Rest are same as Data-1

Data-3 [6,24]

E1 ¼ E2 ¼ E3 ¼ 17,850N/cm2

G12 ¼ G23 ¼ G13 ¼ 7140N/cm2

R ¼ 43.18 cm

S ¼ 67.8270 cm, b ¼ 901

Mass/unit length ¼ 29.57� 10�4N s2/cm2

n ¼ 0:25, b ¼ 1 cm

r ¼ 0.00049426N s2/cm4, t ¼ 5.9827 cm (for R/r ¼ 25)

r ¼ 0.002767856N s2/cm4, t ¼ 1.0683 cm (for R/r ¼ 140)

FNP : S2

ffiffiffiffiffiffiffiffiffiffi
12r
E1t2

r
No. of elements: 30 cubic
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Table 1 (continued )

1.3. Material data

No. Details Ref.

BC:SS

Data-4 [9,25]
E1

E2
¼ 15; E2 ¼ E3;

G12

E2
¼ 0:6;

G23

E2
¼ 0:6;

G13

E2
¼ 0:6

n ¼ 0:25; r ¼ 1; b ¼ 1; t ¼ 1

S/t ¼ 100

Lamination scheme: 0/90

FNP : S2

ffiffiffiffiffiffiffiffiffiffi
12r
E1t2

r
No. of elements: 15 cubic

BC:CC

Data-5 [7,13]

E1 ¼ E2 ¼ E3 ¼ 3.04� 107 lb/in2

G12 ¼ G23 ¼ G13 ¼ 1.16923� 107 lb/in2

R ¼ 12 in

n ¼ 0:3
r ¼ 0.02763 lb s2/in4, b ¼ 1 in, t ¼ 0.25 in

No. of elements: 30 cubic

BC:SS1

Data-6 [18]
E1

E2
¼ 1; E2 ¼ E3;

G12

E2
¼ 0:5;

G23

E2
¼ 0:5;

G13

E2
¼ 0:5

n ¼ 0:25; r ¼ 1; b ¼ 1; t ¼ 1

S ¼ 20

FNP : R2

ffiffiffiffiffiffiffiffiffiffi
12r
E1t2

r
No. of elements: 15 cubic

BC: SS, CC

Data-7 [1]

S ¼ 28 in, R ¼ 168.06

Face sheet:

Ex ¼ Ey ¼ Ez ¼ 1.0� 107 lb/in2

n ¼ 0:3
r ¼ 2.5098� 10�4 lb s2/in4

bf ¼ 1 in

tf (top, bot) ¼ 0.018 in

Core:

Gxy ¼ Gyz ¼ Gxz ¼ 12.0� 103 lb/in2

n ¼ 0:3
r ¼ 3.0717� 10�6 lb s2/in4

bc ¼ 1 in

tc ¼ 0.5 in

No. of elements: 30 cubic

BC:SS, CC, CF
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A laminated cross-ply arch modeled by a spline function and first-order shear theory [26] is analyzed using
the present higher-order model (Table 2). One can observe close agreement between the results of present
formulation and of spline functions. When the subtended angle is 1801, the first mode of vibration is axial,
which is not reported in Ref. [26]. The remaining flexural modes compare well between the two.

Next, a cross-ply arch with varying aspect ratios and orthotropy is studied (Table 3). Flexural frequencies
of thicker as well as thinner sections, predicted by the present theory match quite well with those of
Ref. [10].
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Table 2

Normalized natural frequencies of cross-ply laminated arch (Data-1)

b (deg) Mode S/t ¼ 20 S/t ¼ 100

Ref. [26] Present Ref. [26] Present

5.72958 1 4.6463 4.6558 4.6981 4.6927

2 17.9626 18.0615 18.8138 18.7805

3 38.4482 38.6491 42.339 42.1740

4 64.5268 63.3820 75.2691 74.7454

57.2958 1 4.0568 3.7680 4.0422 3.7203

2 17.6089 17.5318 18.1587 17.8247

3 38.4293 38.7940 41.6581 41.3503

4 64.8491 65.5431 74.4162 74.1199

180 1 – 0.1563(a) – 0.0723 (a)

2 12.7163 11.6498 12.743 11.6111

3 34.2522 33.3266 36.0239 34.6083

4 61.7930 61.2770 68.9281 67.4113

(a) Axial frequency.

Table 3

Normalized natural frequencies of cross-ply laminated arch (Data-2)

Flexural modes S/t ¼ 5 S/t ¼ 10 S/t ¼ 20 S/t ¼ 50 S/t ¼ 100

Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10] Present Ref. [10] Present

E1/E2 ¼ 15

1 3.3312 3.5242 3.7419 3.7551 3.9109 3.7680 3.9885 3.7369 4.0094 3.7203

2 11.8080 12.5238 15.3290 16.1191 17.0890 17.5318 17.8390 17.8429 18.0000 17.8247

3 21.4810 22.1833 31.3000 32.4565 37.6670 38.7940 40.6810 41.1215 41.2860 41.3503

4 31.2950 31.8372 49.4520 50.8358 64.0410 65.5431 72.0950 73.0511 73.7380 74.1199

E1/E2 ¼ 40

1 2.5935 2.6735 3.0814 3.0938 3.2932 3.1891 3.3871 3.1834 3.4108 3.1703

2 8.3979 8.4724 11.9640 12.2814 14.1110 14.4203 15.0930 15.1237 15.2980 15.1708

3 14.4460 14.3109 23.1800 23.1838 30.2830 30.7355 35.2200 34.5691 35.0340 35.1184

4 20.4250 20.0287 35.1180 34.5143 50.0170 50.0287 60.1780 60.7508 62.4380 62.7629
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A 901 isotropic arch with different R/r ratios is studied (Table 4) and results are compared with earlier
investigations. In the case of deep arch, current results match well with those of a field consistent formulation
incorporating shear deformation and rotatory inertia [6]. As the formulations of Veletsos et al. [3] and
Raveendranath et al. [24] do not consider transverse shear, their systems are stiffer predicting higher
frequencies than those of current higher-order model and Ref. [6], for deep sections. The fourth and fifth
frequencies of higher-order model turn out to be coupled modes, wherein the axial and flexural displacements
are predominant, as shown in Figs. 2 and 3, while the seventh mode is a pure axial mode (Fig. 4).

In the case of shallow and thin arches, the results of present model and those of Refs. [3,24] can be seen to be
in good agreement, for all modes. It is interesting to see the fifth vibration mode of current model, which is
flexural, where in the entire transverse displacement being on the positive y-axis (Fig. 5).

Another cross-ply clamped arch is analyzed for various internal angles—zero to P radians (Table 5). For all
the internal angles, close agreement between the present model and earlier works can be observed.

In Table 6, natural frequencies of a simply supported circular arch, reported by Heppler [7], Krishnan et al.
[13] and Tufekci [19] are compared with those of present higher-order theory. One can observe that the
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Table 4

Normalized natural frequencies of hinged circular arch (Data-3)

Mode R/r ¼ 25 R/r ¼ 140

Ref. [24] Ref. [3] Ref. [6] Present Ref. [24] Ref. [3] Ref. [6] Present

1 33.6 33.76 32.04 32.5483 33.95 33.96 33.88 33.8933

2 53.42 53.41 52.44 52.6887 79.73 79.65 79.36 79.3554

3 88.25 88 80.82 80.7580 152.68 152.1 151.96 151.0825

4 130.72 130.3 121.7 123.83 (c) 235.77 233.8 234.24 231.6069

5 160.28 158.9 144.22 142.28 (c) 338.44 337.6 338.39 336.8383

6 239.16 237.6 192.47 193.6482 355.52 349.3 360.86 344.1158

7 – 258.4 251.79 252.82 (a) – 481.4 515.59 474.0753

8 – 348.9 266.95 262.0879 – 623.9 710.2 607.9076

(a) Axial frequency.

(c) Coupled mode.

Fig. 2. Axial–flexural coupled mode.

Fig. 3. Axial–flexural coupled mode.

S.R. Marur, T. Kant / Journal of Sound and Vibration 310 (2008) 91–109100
prediction of the current formulation being quite closer to those of an exact solution [19] for the entire range of
subtended angles. Similarly, close agreement between the finite element results [13] and the present theory can
be seen, for the fundamental mode. However, the considerable difference between the results of Heppler [7]
and the rest, at higher internal angles and in higher modes can be attributed [19] to the adoption of a constant
number of (eight) straight beam elements to model the arch by Heppler. As the arc length increases with the
increase in subtended angle, employing constant number of elements would be inadequate to model the arch
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Fig. 4. Pure axial mode.

Fig. 5. Pure flexural mode.

Table 5

Normalized natural frequencies of cross-ply laminated arch (Data-4)

b Ref. [25] Ref. [9] Present

Beam 10.66 10.661 10.6507

0.01 10.86 10.866 10.8559

0.02 11.46 11.459 11.4492

0.05 14.95 14.941 14.9364

0.1 23.33 23.265 23.2665

0.2 29.52 29.311 29.2704

0.3 29.47 29.236 29.2179

0.4 29.39 29.137 29.1409

0.5 29.3 29.015 29.0398

0.8 28.86 28.513 28.5972

1 28.46 28.074 28.1931

2 25.44 24.936 25.1595

3.14 20.94 20.441 20.6711
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accurately, resulting in errors. It can be seen that the fundamental mode of vibration becomes axial, as the
internal angle reaches 1801 or more; for the rest it remains flexural. This is an ideal example for the validation
of the current model, possibly for the widest range of internal angles from 101 to 3501.
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Table 6

Natural frequencies (rad/s) of hinged circular arch (Data-5)

b (deg) o1 o2 o3 o4

10 Ref. [7] 5849.90 19852.00 41173.00 50054.00

Ref. [13] 5874.30 – – –

Present 5770.90 19781.84 41003.16 47936.1 (a)

20 Ref. [7] 2830.20 5248.30 11642.00 20149.00

Ref. [13] 2823.1 – – –

Ref. [19] 2827.48 5246.73 11587.2 19825.8

Present 2780.82 5225.06 11538.92 19762.23

30 Ref. [7] 2339.70 2528.30 5385.40 9438.10

Ref. [13] 2345.20 – – –

Present 2328.92 2495.36 5317.66 9161.29

60 Ref. [7] 560.24 1246.1 2456.7 2642.4

Ref. [13] 561.2 – – –

Ref. [19] 560.074 1226.61 2339.14 2627.75

Present 557.60 1221.73 2329.03 2606.59

90 Ref. [7] 229.77 553.63 1102.30 1786.70

Ref. [13] 230.4 – – –

Ref. [19] 229.591 538.332 1024.89 1583.23

Present 228.5753 536.0288 1020.37 1576.60

120 Ref. [7] 115.64 307.39 630.97 1060.80

Ref. [13] 116.3 – – –

Ref. [19] 115.609 291.549 562.463 887.37

Present 115.0986 290.2717 559.9642 883.4933

150 Ref. [7] 64.44 196.66 422.55 732.19

Ref. [13] 64.93 – – –

Ref. [19] 64.4161 177.256 348.716 559.208

Present 64.1331 176.4696 347.1570 556.7321

180 Ref. [7] 37.865 139.94 318.18 568.26

Ref. [13] 38.24 – – –

Ref. [19] 37.8485 115.541 233.152 380.269

Present 37.684 (a) 115.0254 232.1072 378.5670

210 Ref. [7] 22.77 108.63 261.71 480.28

Ref. [13] 23.05 – – –

Ref. [19] 22.7629 78.7429 163.964 272.348

Present 22.6663 (a) 78.3909 163.2276 271.1246

240 Ref. [7] 13.67 90.37 229.03 429.69

Ref. [13] 13.87 – – –

Ref. [19] 13.6592 55.252 119.464 202.425

Present 13.604 (a) 55.0052 118.9269 201.5166

270 Ref. [7] 7.9246 79.1120 208.6300 398.2100

Ref. [13] 8.06 – – –

Ref. [19] 7.9204 39.5021 89.2883 154.649

Present 7.8922 (a) 39.3263 88.8871 153.9523

300 Ref. [7] 4.1855 71.6810 194.7800 376.8200

Ref. [13] 4.27 – – –

Ref. [19] 4.184 28.5533 67.9828 120.633

Present 4.1749 (a) 28.4273 67.6777 120.0914

330 Ref. [7] 1.6922 66.3930 184.5400 360.9000

Ref. [13] 1.73 – – –

Ref. [19] 1.6918 20.7348 52.4561 95.6193

Present 1.701 (a) 20.6446 52.2222 95.1927
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Table 6 (continued )

b (deg) o1 o2 o3 o4

350 Ref. [7] 0.2440 63.5870 178.9000 352.1000

Ref. [13] 0.5000 – – –

Present 0.5354 (a) 16.6763 44.1700 82.1122

(a) Axial frequency.

Table 7

Normalized natural frequencies of clamped arch (Data-6)

b SS b CC

Ref. [18] Present Ref. [18] Present

pi/3 33.63 33.2042 Pi 4.3844 4.2466

pi/2 13.762 13.6061 13pi/10 2.1335 2.0715

pi 2.2669 2.2574 3pi/2 1.3948 1.3577

4pi/3 0.818 0.8235 9pi/5 0.7885 0.7713

3pi/2 0.4742 0.4837 2pi 0.5662 0.5563

Table 8

Natural frequencies (Hz) of sandwich arch (Data-7)

Mode Ref. [1] Ref. [33] Ref. [14] Present

CC

1 264.2 240.0 244.6 243.2431

2 522.0 474.0 485.6 477.4111

3 889.0 843.0 859.8 839.3961

4 1312.0 1253.0 1276.0 1237.50

5 1767.0 1697.0 1725.0 1664.37

6 – – 2190.0 2103.31

7 – – 2668.0 2550.20

8 – – 3151.0 2998.08

Mode Ref. [1] Ref. [14] Present

SS

1 199.5 182.7 182.2877

2 394.0 351.4 348.2241

3 746.0 726.1 714.3247

4 1175.0 1162.0 1135.0752

5 1639.0 1633.0 1585.4760

6 – 2118.0 2044.8443

7 – 2611.0 2506.7768

8 – 3104.0 2966.0851

Mode Ref. [1] Ref. [14] Present

CF

1 179.0 33.8 33.74

2 266.0 198.5 197.04

3 546.0 513.0 505.07

4 934.0 910.0 889.61

5 1379.0 1356.0 1317.20

6 – 1657.0 1655.70 (a)

7 – 1831.0 1768.83

8 – 2316.0 2225.18

(a) Axial frequency.
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Another isotropic arch with SS and CC end conditions and various internal angles, up to 3601, is analyzed
and compared with the results of ref. [18]. Close agreement between the two can be observed in Table 7.

Next, a sandwich arch analyzed earlier by Ahmed [1,33] and later by Sakiyama et al. [14] is studied using the
present model (Table 8). As the first work of Ahmed [1] did not capture the transverse shear deformation, its
frequency predictions have been quite high compared with other works, for all types of end conditions;
while his subsequent work [33] on shear deformable sandwich beam agrees closely with the present model and
Ref. [14], for clamped–clamped condition. The magnitude of frequencies of higher-order theory can be seen to
be closer to those of first-order theory with a constant shear strain approximation [14], as the arch is a thin one
with a S/t ratio of 52. As the current model employs additional higher-order degrees of freedom, it becomes
more flexible than the rest.

These examples had been carefully chosen in order to capture the variation in curvature, aspect ratio and
degree of orthotropy, on the vibration characteristics. The accuracy and adequacy of the higher-order model
are validated, through the good agreement observed between the present model and the earlier works.

5. Conclusions

A higher-order model with transverse shear and normal strain components is formulated for studying the
free vibrations of laminated arches. The proposed model can study shallow to deep and thin to thick arch
geometries quite effectively. Through the constitutive relationship, adapted from the three-dimensional
stress–strain relationship of an orthotropic lamina, even angle-ply laminates can be analyzed using one-
dimensional elements. The proposed higher-order model is validated, in the first part of this paper, through
the correlation of isotropic, orthotropic, composite and sandwich arch vibration characteristics with those of
earlier investigations. In the second part of this paper, frequency spectrums of the higher-order model are
identified and studied in greater detail.
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Appendix A

The stress–strain relationship at a point of an orthotropic lamina in a three dimensional state of stress/strain
can be expressed, along the lamina axes, as [30] (Fig. 6)

s0 ¼ D�0, (A.1)

where

s0 ¼ s1 s2 s3 t12 t23 t13
� �

, (A.2)
x

y

z, 3

1

2

�

�

Fig. 6. x, y, z: laminate axes; 1, 2, 3: lamina axes.
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�0 ¼ �1 �2 �3 g12 g23 g13
h i

, (A.3)

(A.4)

D ¼ ð1� n12n21 � n23n32 � n31n13 � 2n12n23n31Þ. (A.5)

The relation between engineering and tensor strain vectors, along lamina and laminate axes, can be given as

�0 ¼ R�0ts, (A.6)

�� ¼ R��ts, (A.7)

where

R ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

2
666666664

3
777777775
. (A.8)

If the angle between lamina and laminate axes can be defined as a, then the lamina to laminate axis
transformation is given by

(A.9)

where

c ¼ cos a,

s ¼ sin a ðA:10Þ

and the stress and strain along the lamina and laminate axes can be equated as

s0 ¼ Tso, (A.11)

�0ts ¼ T�ots. (A.12)

By making use of Eqs. (A.6)–(A.12), one can get the laminate stress–strain relationship as

so ¼ Q�o, (A.13)

where

Q ¼ T�1DðT�1Þt, (A.14)

ðT�1Þt ¼ RTR�1, (A.15)
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(A.16)

Q11 ¼ D11c4 þ 2ðD12 þ 2D44Þs
2c2 þD22s4, (A.17)

Q12 ¼ D12ðs
4 þ c4Þ þ ðD11 þD22 � 4D44Þs

2c2, (A.18)

Q13 ¼ D31c2 þD32s2, (A.19)

Q14 ¼ ðD11 �D12 � 2D44Þsc3 þ ðD12 �D22 þ 2D44Þs
3c, (A.20)

Q22 ¼ D11s4 þ 2ðD12 þ 2D44Þs
2c2 þD22c4, (A.21)

Q23 ¼ D13s2 þD23c2, (A.22)

Q24 ¼ ðD11 �D12 � 2D44Þs
3cþ ðD12 �D22 þ 2D44Þsc3, (A.23)

Q33 ¼ D33, (A.24)

Q34 ¼ ðD13 �D23Þsc, (A.25)

Q44 ¼ ðD11 � 2D12 þD22 � 2D44Þs
2c2 þD44ðc

4 þ s4Þ, (A.26)

Q55 ¼ D55c2 þD66s2, (A.27)

Q56 ¼ ðD66 �D55Þsc, (A.28)

Q66 ¼ D55s2 þD66c2. (A.29)

Appendix B

F ¼ ðQ22Q44 �Q2
24Þ, (B.1)

C11 ¼ Q11 þ
Q12

F
ðQ14Q24 �Q12Q44Þ þ

Q14

F
ðQ12Q24 �Q14Q22Þ, (B.2)

C12 ¼ Q13 þ
Q12

F
ðQ24Q34 �Q23Q44Þ þ

Q14

F
ðQ23Q24 �Q22Q34Þ, (B.3)

C21 ¼ Q13 þ
Q23

F
ðQ14Q24 �Q12Q44Þ þ

Q34

F
ðQ12Q24 �Q14Q22Þ, (B.4)

C22 ¼ Q33 þ
Q23

F
ðQ24Q34 �Q23Q44Þ þ

Q34

F
ðQ23Q24 �Q22Q34Þ, (B.5)

C33 ¼ Q66 �
Q2

56

Q55

. (B.6)
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Appendix C

Using Binomial series, the following terms can be expanded as

1

ð1þ z=RÞ
¼ 1�

z

R
þ

z2

R2
�

z3

R3
, (C.1)

1

ð1þ z=RÞ2
¼ 1�

2z

R
þ

3z2

R2
�

4z3

R3
, (C.2)

which are used in the evaluation of various D matrices:

Daa ¼ b

Z
ZaC11Zt

a dz ¼ (C.3)

Dab ¼ b

Z
ZaC11Zt

b dz ¼ (C.4)

Dba ¼ Dab,

Dbb ¼ b

Z
ZbC11Zt

b dz ¼ (C.5)

Dat ¼ b

Z
ZaC12Zt

t dz ¼ (C.6)

Dbt ¼ b

Z
ZbC12Zt

tdz ¼ (C.7)

Dta ¼ b

Z
ZtC21Zt

a dz ¼ (C.8)

Dtb ¼ b

Z
ZtC21Zt

b dz ¼ (C.9)

Dtt ¼ b

Z
ZtC22Zt

t dz ¼ b
XNL

l¼1

C22

H1 H2

H2 H3

" #
, (C.10)

Dss ¼ b

Z
ZsC33Zt

sdz ¼ b
XNL

l¼1

C33

H1 H3 H2 H4

H5 H4 H6

H3 H5

Sym H7

2
66664

3
77775, (C.11)
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m̄ ¼ b
XNL

l¼1

rl

H1 0 H2 H3 H4 0 0

H1 0 0 0 H2 H3

H3 H4 H5 0 0

H5 H6 0 0

H7 0 0

Sym H3 H4

H5

2
666666666664

3
777777777775
. (C.12)

In Eqs. (C.3)–(C.12), for a given layer l,

Hk ¼
1

k
ðhk

l � hk
l�1Þ, (C.13)

where NL is the total number of layers of a cross-section, k the constant varying from 1 to 10, hl the distance
from the neutral axis to the top of a layer, l, hl�1 the distance from the neutral axis to the top of layer l�1 or
bottom of layer l.
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