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Abstract: A higher-order arch model with seven degrees of freedom per node is proposed to study the deep, shallow, thick, and thin
composite and sandwich arches under static loads. The strain field is modeled through cubic axial, cubic transverse shear, and linear
transverse normal strain components. As the cross-sectional warping is accurately modeled by this theory, it does not require any shear
correction factor. The stress-strain relationship is derived from an orthotropic lamina in a three-dimensional state of stress. The proposed
formulation is validated through models with various curvatures, aspect ratios, boundary conditions, materials, and loading conditions.
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Introduction

Arches and curved beams made of laminated composite and sand-
wich materials are being employed extensively in various indus-
tries such as automotive, aerospace, energy, medicine, sports, etc.,
due to their high stiffness to weight ratio, impact strength, etc.
Systematic study of composite arches under various static loading
conditions is a key to the development of design framework for
such structures.

Some of the earlier curved element formulations were based
on classical theories, which neglected the transverse shear defor-
mation. Lee �1969� formulated a three-dimensional arch element
with six degrees of freedom per node using Castigliano’s theo-
rem. Dawe �1974a,b� developed various arch element models by
using different orders of polynomial such as cubic, quintic, etc.,
for tangential and radial displacements and compared the relative
merits of these elements. Prathap studied the arch element with
linearly interpolated tangential displacement and cubically inter-
polated radial displacement for field consistency to address mem-
brane locking �Prathap 1985� and variational correctness �Prathap
and Shashirekha 1993�.

Many elements based on the shear deformable theory of
Timoshenko �1921� have been reported in the open literature.
Saleeb and Chang �1987� developed a linear and quadratic iso-
parametric elements based on hybrid-mixed formulation to study
arch problems. Mode decomposition technique had been used for
developing a locking free isoparametric curved beam element by
Stolarski and Chiang �1989�. Choi and Lim �1995� developed
two- and three-noded curved beam elements based on assumed
strain fields and Timoshenko beam theory. Krishnan and Suresh
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�1998� formulated a shear deformable curved beam element, with
four degrees of freedom per node.

Stolarski and Belytschko �1982� studied the role of reduced
integration in removing membrane locking in curved beam ele-
ments. Also, they investigated �1983� the shear and membrane
locking phenomena in isoparametric finite elements, which are
based on displacement, hybrid-stress, and mixed formulations.
Babu and Prathap �1986� and Prathap and Babu �1986, 1987�
offered key insights as well as the solution to the locking problem
for curved beams by introducing field-consistent shear and mem-
brane strain interpolations; also they provided a priori error mod-
els for locking errors and stress oscillations and confirmed the
same through numerical experimentation. Lee and Sin �1994� re-
ported a locking free curved beam element by choosing curva-
tures as nodal parameters instead of displacements, and by
incorporating shear and membrane strains into the total potential
energy by the force equilibrium equation.

Balasubramanian and Prathap �1989� developed a field consis-
tent higher-order �wherein cubic polynomial was used for tangen-
tial, radial, as well as cross-sectional rotational degrees of
freedom� curved beam element based on Timoshenko’s theory for
the analysis of stepped circular arches. Litewka and Rakowski
�1998� employed analytical shape functions using algebraic-
trigonometric functions to develop an exact stiffness matrix for
studying curved beams with constant curvature.

Ganapathi et al. �1999� developed a cubic B-spline based field
consistent element for the analysis laminated curved beams.
Raveendranath et al. �2000� proposed a Timoshenko’s theory
based field consistent two-noded curved composite beam element,
which incorporates flexural, axial, and shear loadings in the plane
of the beam. Matsunaga �2003� reported a global higher-order
arch theory by taking transverse shear and normal stress compo-
nents into account. By expanding the displacements through
power series, he derived the fundamental equilibrium equations
through the principle of virtual work, for laminated circular
arches.

Malekzadeh �2009� studied thick laminated composite circular
arches under static loads using Differential Quadrature Method.
Cevik �2007� analyzed a steel fiber reinforced aluminum metal-
matrix laminated composite arch under thermal loads to ex-

plore the effects of lay up angle, number of layers, stacking
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sequence, etc., on the residual stresses. Kim and Chaudhuri
�2009� studied the large deflection behavior of symmetrically
laminated thin shallow circular arch under a central concentrated
load using Rayleigh–Ritz finite element method with C1 continu-
ity for the radial deformation and C0 continuity for the tangential
displacement.

A perusal of earlier works would reveal that the arch formula-
tions for static loading conditions had been made either with clas-
sical theory or first-order shear deformable theory of Timoshenko.
It is quite well known that the classical theory would be adequate
only for thin sections. While first-order theory can handle rela-
tively thick sections, it has serious limitations such as the need for
a shear correction factor �Cowper 1966�, inability to model the
cross sectional warping—a key factor for sandwich constructions
with stiff facings and weak cores. Also, it cannot model the varia-
tion of transverse displacement across the thickness, or in other
words, the transverse normal strain.

Thus, the need for a theory capable of accurately modeling and
analyzing deep composite and sandwich arches is quite evident.
This paper presents a Higher-Order Arch Model �HOAM�, pre-
cisely fulfilling that need.

The HOAM models the cross-sectional warping through a
cubic axial strain; considers the variation of transverse displace-
ment across the thickness through a linearly varying transverse
normal strain; it also incorporates transverse shear strain, varying
cubically across the cross section. This theory does not require
any shear correction factor and employs standard isoparametric
elements. Its elasticity matrix had been derived from an orthotro-
pic lamina assumed to be in a three-dimensional state of stress,
in such a way that even angle ply laminations can be studied
using one-dimensional elements.

The HOAM is validated through the static analyses of shallow
to deep and thin to thick laminated arches, with various boundary
conditions. The role of curvature, aspect ratio, and end conditions
on the transverse deformations of a sandwich and composite arch
are investigated through parametric studies and suitable conclu-
sions are drawn.

Theoretical Formulation

The Higher-Order Arch Model �HOAM�, based on Taylor’s series
expansion �Lo et al. 1977�, can be expressed, for an arch, as
follows:

u = u0 + z�x + z2u
0
* + z3�

x
* �1�

w = w0 + z�z + z2w
0
* �2�

where z�distance from the neutral axis to any point of interest
along the depth of the arch; u0 and w0�axial and transverse dis-
placements in x-z plane; �x�face rotation about the y-axis, as
shown in Fig. 1; and u

0
* ,�

x
* ,�z ,w

0
*�higher-order terms arising out

of Taylor’s series expansion and defined at the neutral axis.
The total potential energy of a system can be given as

� = U − W �3�

where U�internal strain energy; and W is the work done by the
external forces. The same can be expressed as

U = 1
�t� dv �4a�
2 �

JO
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W = b� u> tp
>

dx �4b�

where

u> = �u w�t, � = ��x �z �xz�t, � = ��x �z �xz�t,

p
>

= �px pz�t �4c�

The field variables can be expressed in terms of nodal degrees of
freedom as

u> = Zdd �5a�

where

d = �u0 w0 �x u
0
* �

x
* �z w

0
*�t �5b�

Zd = �1 0 z z2 z3 0 0

0 1 0 0 0 z z2 � �5c�

The strain field for an arch �Qatu 2004� can be expressed as

�x =
1

�1 + z/R�
�u,x + w/R� �6a�

�z = w,z �6b�

�xz = w,x + u,z − u/R �6c�

where R�radius of curvature.
Applying the displacement field from Eqs. �1� and �2� in the

above equations, one gets

�x = �x0 + z2�
x0
* + z�x + z3�

x
* �7a�

Fig. 1. Arch geometry with displacement components
�z = �z0 + z�z �7b�
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�xz = 	 + z2	* + z
xz + z3

xz
* �7c�

and can be expressed in matrix form as

�x = Za
t �a + Zb

t �b �8�

�z = Zt
t�t �9�

�xz = Zs
t�s �10�

where

�a = ��x0 �
x0
* �t = ��u0,x + w0/R� �u

0,x
* + w

0
*/R��t �11a�

�b = ��x �
x
*�t = ���x,x + �z/R� ��

x,x
* ��t �11b�

�t = ��z0 �z�t = ��z 2w
0
*�t �11c�

�s = �	 	* 
xz 

xz
* �t = ��w0,x + �x − u0/R�

�w
0,x
* + 3�

x
* − u

0
*/R� ��z,x + 2u

0
* − �x/R� �− �

x
*/R��t

�11d�

Za = � 1

�1 + z/R�
z2

�1 + z/R��t

�11e�

Zb = � z

�1 + z/R�
z3

�1 + z/R��t

�11f�

Zt = �1 z�t �11g�

Zs = �1 z2 z z3�t �11h�

The strains of Eqs. �8�–�11� can be rewritten in a combined matrix
form as

� = Z̄�̄ �12a�

where

Z̄ = �Za
t Zb

t 0 0

0 0 Zt
t 0

0 0 0 Zs
t 	 �12b�

�̄ = ��a �b �t �s�t �12c�

The stress-strain relationship of an orthotropic lamina in a
three-dimensional state of stress can be expressed as �Jones 1975�

�o = Q�o �13a�

where

�o = ��x �y �z �xy �yz �xz�t �13b�

�o = ��x �y �z �xy �yz �xz�t �13c�

and Q is given by Eqs. �45�–�57� in Appendix I.
By setting �y ,�xy ,�yz equal to zero in Eq. �13a� and deriv-

ing the remaining stress components from the same equation
�Vinayak et al. 1996�, one gets the stress strain relationship as

� = C� �14a�
where
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� = ��x �z �xz�t �14b�

C = �C11 C12 0

C21 C22 0

0 0 C33
	 �14c�

and the expressions for various C matrix elements are given by
Eqs. �58�–�63� in Appendix II.

The internal strain energy can be evaluated using Eqs.
�12a�–�12c� and �14a�–�14c� as

U = 1
2 � �t�dv = 1

2 � �̄tD̄�̄dx �15a�

where

D̄ = b� Z̄tCZ̄dz �15b�

=b� �
ZaC11Za

t ZaC11Zb
t ZaC12Zt

t 0

ZbC11Za
t ZbC11Zb

t ZbC12Zt
t 0

ZtC21Za
t ZtC21Zb

t ZtC22Zt
t 0

0 0 0 ZsC33Zs
t
	dz

�15c�

=�
Daa Dab Dat 0

Dba Dbb Dbt 0

Dta Dtb Dtt 0

0 0 0 Dss

	 �15d�

and the expansions of various D matrices are given by Eqs.
�66�–�75�, in Appendix III.

The external work done of Eq. �4b� can be modified with
Eq. �5a� as

W = dt� P> dx �16a�

where

P> = bZd
t p
>

�16b�

=b�px pz zpx z2px z3px zpz z2pz�t �16c�

This vector can now be expressed as

P> = �px0 pz0 mx0 p
x0
* m

x0
* mz0 p

z0
* �t �17�

Now, the total potential energy can be restated with Eqs. �15a�
and �16a� as

� = 1
2 � ��̄tD̄�̄�dx − dt� P> dx �18�

Finite-Element Modeling

The displacements within an element can be expressed in terms of

its nodal displacements in isoparametric formulations as
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d = Nae �19�

where N�shape function vector �Appendix IV�; and ae�vector
containing nodal displacement vectors of an element with n nodes
and can be expressed as

ae = �d1
t d2

t . . . dn
t �t �20�

Similarly, the strains with in an element can be written through
Eqs. �5b� and �12c� as

�̄ = �
Ba

Bb

Bt

Bs

	ae = B̄ae �21�

where, for a given node n, the strain displacement matrix can be
computed as

Ba = �N,x N/R 0 0 0 0 0

0 0 0 N,x 0 0 N/R �n

�22�

Bb = �0 0 N,x 0 0 N/R 0

0 0 0 0 N/R 0 0
�

n

�23�

Bt = �0 0 0 0 0 N 0

0 0 0 0 0 0 2N
�

n

�24�

Bs = �
− N/R N,x N 0 0 0 0

0 0 0 − N/R 3N 0 N,x

0 0 − N/R 2N 0 N,x 0

0 0 0 0 − N/R 0 0
	

n

�25�

By substituting Eqs. �19� and �21� in Eq. �18�, one gets

� = 1
2ae

t � B̄tD̄B̄dxae − ae
t�PC +� NtP> dx� �26�

where PC�vector of nodal concentrated loads of an element.
Minimizing the total potential energy of Eq. �26� with respect

to nodal degrees of freedom, we get the static equilibrium equa-
tion as

Kae = F �27a�

where

K =� B̄tD̄B̄ dx �27b�

F = PC +� NtP> dx �27c�

The external force vector of Eq. �27c� can be expressed as

F = PC + �wgNtP> 
J
 �28a�

where

P> = b�0 pz 0 0 0
t

2
pz

t2

4
pz� �28b�

and pz can either be the uniformly distributed transverse load or

the central amplitude of the sinusoidal load.
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Assembling the stiffness and force vectors of all elements,
given by Eq. �27a�, one gets the global static equilibrium of the
structure, which can be solved by using any standard solver for
static equilibrium equations �Bathe 1982�, after applying suitable
boundary conditions, and the deformations of the structure can be
estimated.

Numerical Experiments

Numerical experiments have been carried out to study the perfor-
mance of the HOAM. This model is first validated by comparing
its results with those available in the literature, and subsequently
its performance has been carefully studied for various material
and geometric conditions. Details such as material properties,
lamination scheme and end conditions of every problem solved,
are given in Table 1.

Validation Experiments

First, a standard beam problem is analyzed using HOAM. Results
of a beam of length 10, Young’s modulus of 1.05�107, v of 0.25,
cross-section depth of 0.125 and width of 1.2, and applied load of
10 �both concentrated and uniformly distributed� are given in
Table 2, where in HOAM can be seen to predict results quite
close to analytical solutions of Gere and Weaver �1965�.

A clamped-free �CF� arch with tip load �Fig. 2� and a pinched
ring �PR� �Fig. 3� are analyzed with HOAM, and its results are
presented in Table 3. One can observe close correlation with exact
solutions and field consistent finite element results �Balasubrama-
nian and Prathap 1989�.

Next, a 90° circular ring under pure bending �Fig. 4� is studied
and the normalized displacements with exact solutions for differ-
ent R / t ratios are presented in Table 4. Also, a circular arch with
central concentrated load �Fig. 5� is analyzed with HOAM. The
predictions of HOAM are compared with exact results in Table 5.
In both cases, the HOAM computes results quite closer to exact
solutions.

A quarter ring with a radial load at the tip �Fig. 6� and a
pinched ring �Fig. 3� solved by Lee and Sin �1994� are modeled
with HOAM for various R / t and S / t ratios—from thin to thick
arch cross sections—and the results normalized with analytical
solutions are given in Tables 6 and 7. The results of HOAM agree
very well with those of analytical solutions. However, the normal-
ized deformations vary as the arch becomes thicker, primarily
because the analytical solutions considered are based on first-
order shear deformation theory �FOST� of Timoshenko �1921�,
which does not capture the cross-sectional warping of deeper
cross sections as well as the transverse normal strains, while
HOAM incorporates both of them.

Three arch problems �Figs. 7�a and b�, Fig. 3� analyzed by
Ganapathi et al. �1999� are studied by HOAM, and the results are
shown in Table 8. Close correlation with the earlier studies can be
observed in this problem as well. Next, a laminated arch sector
subjected to sinusoidal load �Fig. 8� is studied for various R / t
ratios, where the close correlation of HOAM results with the
spline based element and elasticity solution can be observed
�Table 9�. The pinched ring �Fig. 3� of Kulikov and Plotnikova
�2004� is modeled with HOAM and one can observe the perfect
match between HOAM and this reference, for various R / t ratios,
in Table 10.
Matsunaga’s arch sector �2003� subjected to sinusoidal load
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Table 1. Data for Numerical Experiments

Boundary conditions for different supports

Support type at x=0 at x=S

Simply supported �SS� u0=u
0
*=0 u0=u

0
*=0

w0=�z=w
0
*=0 w0=�z=w

0
*=0

Roller-simply supported �RS� — u0=u
0
*=0

w0=�z=w
0
*=0 w0=�z=w

0
*=0

Clamped-clamped �CC� u0=u
0
*=�x=�

x
*=0 u0=u

0
*=�x=�

x
*=0

w0=�z=w
0
*=0 w0=�z=w

0
*=0

Clamped-free �CF� u0=u
0
*=�x=�

0
*=0 All free

w0=�z=w
0
*=0 —

Pinched-ring �PR� u0=u
0
*=�x=�

x
*=0 u0=u

0
*=�x=�

x
*=0

No. Material data details Ref.

Data-1 �Balasubramanian and Prathap 1989�

Data-1a �Fig. 2�

E1=E2=E3=6.8948 GPa �1�106 lb / in.2�
G12=G23=G13=2.6519 GPa �3.8462�105 lb / in.2�
R=254 mm �10 in.�
S=254 mm �10 in.�, =57.2958°

v=0.3, b=25.4 mm �1 in.�, t=0.27823 mm �0.010954 in.�
PC=0.048726 N �0.010954 lb�
BC: CF

Data-1b �Fig. 3�

E1=E2=E3=72.395 GPa �1.05�107 lb / in.2�
G12=G23=G13=47.5092 GPa �6.890625�106 lb / in.2�
R=125.81 mm �4.953 in.�
S �of quarter ring�=197.62 mm �7.7802 in.�, =90°

v=0.3125, b=25.4 mm �1 in.�, t=2.3876 mm �0.094 in.�
PC=444.82 N �100 lb�, Load on quarter ring=222.41 N �50 lb�
BC: PR

Data-2 �Fig. 4� �Stolarski and Chiang 1989�

E1=E2=E3=72.395 GPa �1.05�107 lb / in.2�
G12=G23=G13=28.958 GPa �4.2�106 lb / in.2�
=90°

v=0.25, b=30.48 mm �1.2 in.�
M0=0.11298 N·m �1 lb· in.�
BC: CF

Exact values:

u=
MR2

EI ��

2
−1�

w=
MR2

EI

�=
�MR

2EI

Data-3 �Fig. 5� �Stolarski and Chiang 1989�

E1=E2=E3=72.395 GPa �1.05�107 lb / in.2�
G12=G23=G13=27.845 GPa �4.0385�106 lb / in.2�
=315°

v=0.3, b=30.48 mm �1.2 in.�, t=3.175 mm �0.125 in.�
R=74.549 mm �2.935 in.�, S=409.85 mm �16.136 in.�
PC=4.4482 N �1 lb�
BC: CC
618 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2009
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Table 1. �Continued.�

No. Material data details Ref.

Data-4 �Lee and Sin 1994�

Data-4a �Fig. 6�

E1=E2=E3=72.395 GPa �1.05�107 lb / in.2�
G12=G23=G13=36.1975 GPa �5.25�106 lb / in.2�
=90°

v=0, b=25.4 mm �1 in.�
PC=222.41 N �50 lb�
BC: CF

Analytical:

u= PR3 /2EI− PR /2kGA− PR /2EA

w=�PR3 /4EI+�PR /4kGA+�PR /4EA

�= PR2 /EI

Data-4b �Fig. 3�

PC=444.82 N �100 lb�, Load on quarter ring=222.41 N �50 lb�
BC: PR

Rest are the same as Data-4a

Analytical:

w1= ��−4�PR3 /2�EI− PR /2kGA+ PR /2EA

w2= ��2−8�PR3 /4�EI+�PR /4kGA+�PR /4EA

Data-5 �Ganapathi et al. 1999�

Data-5a �Figs. 7�a and b��

E1=E2=E3=82.73709 KPa �12 lb / in.2�
G12=G23=G13=33.09484 KPa �4.8 lb / in.2�
R=2540 mm �100 in.�
S=7979.6 mm �314.1593 in.�, =180°

v=0.25, b=25.4 mm �1 in.�
PC=4.4482 N �1 lb�
S / t=10,100

BC: CC, CF

NDP: w*EI / PCR3

Data-5b �Fig. 3�

S �of quarter ring�=3989.8 mm �157.0796 in.�, =90°

PC=4.4482 N �1 lb�, Load on quarter ring=2.2241 N �0.5 lb�
BC: PR

NDP: w*2EI / PCR3

Rest are the same as Data-5a

Data-6 �Fig. 8� �Ganapathi et al. 1999�

E1=172.3689 KPa �25 lb / in.2�, E2=E3=6.894757 KPa
�1 lb / in.2�
G12=3.4474 KPa �0.5 lb / in.2�, G23=1.379 KPa �0.2 lb / in.2�
G13=3.4474 KPa �0.5 lb / in.2�
R=2540 mm �100 in.�
S=2659.9 mm �104.7198 in.�, =60°

v=0.25, b=25.4 mm �1 in.�
PS=6.8948 KPa �1 lb / in.2�
BC: RS

NDP: w*10E1t3 / PSR4

Lamination: �0 /90 /0�

Data-7 �Fig. 3� �Kulikov and Plotnikova 2004�

E1=E2=E3=68.9476 GPa �1�107 lb / in.2�
G12=G23=G13=44.816 GPa �6.5�106 lb / in.2�
R=2540 mm �100 in.�
v=0.3, b=25.4 mm �1 in.�
S �of quarter ring�=3989.8 mm �157.0796 in.�, =90°
JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2009 / 619
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Table 1. �Continued.�

No. Material data details Ref.

PC=444.82 N �100 lb�, load on quarter ring=222.41 N �50 lb�
BC: PR

Exact: w=0.8927PCR3 /Et3

Data-8 �Fig. 8� �Matsunaga 2003�

E1=144.8 GPa, E2=E3=9.65 GPa

G12=4.14 GPa, G23=3.45 GPa, G13=3.45 GPa

S=100 m

v=0.3, b=1 m

PS=1 N /m2

BC: RS

NDP: w*E1t3 / PSS4

Lamination: �0 /90�, �0 /90 /0�

Material data—sandwich

Face: Graphite/Epoxy �Chen and Sun 1985�

Ex=120.11 GPa �0.1742�108 lb / in.2�
Ey =Ez=7.9083 GPa �0.1147�107 lb / in.2�
Gxy =Gyz=Gxz=5.5041 GPa �0.7983�106 lb / in.2�
kGxy =kGyz=kGxz=4.5871 GPa �0.6653�106 lb / in.2�
v f =0.3

Core: Aluminium honeycomb �0.25 in. cell size, 0.007 in. foil� �Allen 1969�

Ex=Ey =Ez=Gxy =vc=0

Gyz=70.395 MPa �0.1021�105 lb / in.2�
Gxz=140.79 MPa �0.2042�105 lb / in.2�
kGyz=58.661 MPa �0.8508�104 lb / in.2�
kGxz=117.35 MPa �0.1702�105 lb / in.2�
tc / tf =8

Material data—composite �Reddy 1982�

Ex=525.38 GPa �0.762�108 lb / in.2�
Ey =Ez=21.015 GPa �0.3048�107 lb / in.2�
Gxy =Gyz=Gxz=10.508 GPa �0.1524�107 lb / in.2�
kGxy =kGyz=kGxz=8.7563 GPa �0.127�107 lb / in.2�
v=0.25

Data-9 �Fig. 6�

Data-9a

Material data—composite

=90°

b=25.4 mm �1 in.�, t=25.4 mm �1 in.�
PC=222.41 N �50 lb�
BC: CF

Lamination: �30 /−30 /30�

Data-9b

Lamination: �0 /45 /−45 /90�
Rest are the same as Data-9a

Data-9c

Material data—sandwich

=90°

b=25.4 mm �1 in.�
tf �top,bot�=2.54 mm �0.1 in.�, tc=20.32 mm �0.8 in.�
PC=222.41 N �50 lb�
BC: CF

Lamination: �0 /30 /45 /60 /core /60 /45 /30 /0�
Data-9d

Lamination: �0 /90 /core /0 /90�
Rest are the same as Data-9c
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�Fig. 8� is modeled with HOAM for symmetric and unsymmetric
lamination schemes as in Table 11. The HOAM quite marginally
underpredicts for unsymmetric laminates and over predicts for the
symmetric laminates, compared to Matsunaga’s formulation.

These examples have been carefully chosen in order to capture
the variation in curvature, aspect ratio, and end conditions, on the
response of the arch to static loads. The accuracy and adequacy of

Table 1. �Continued.�

No. Material data deta

Data-10 �Fig. 3�

Data-10a

Material data—composite

=90°

b=25.4 mm �1 in.�, t=25.4 m

PC=444.82 N �100 lb�, load o

BC: PR

Lamination: �30 /−30 /30�
Data-10b

Lamination: �0 /45 /−45 /90�
Rest are the same as Data-10a

Data-10c

Material data—Sandwich

=90°

b=25.4 mm �1 in.�
tf �top,bot�=2.54 mm �0.1 in

PC=444.82 N �100 lb�, load o

BC: PR

Lamination: �0 /30 /45 /60 /cor

Data-10d

Lamination: �0 /90 /core /0 /90

Rest are the same as Data-10c

Data-11 �Fig. 9�

Data-11a

Material data—composite

=180°

R=2540 mm �100 in.�, S=797

b=25.4 mm �1 in.�, S / t=5

PC=222.41 N �50 lb�, M0=5.

PU=8.7563 KN /m �50 lb / in.�
Lamination: �30 /−30 /30�

Data-11b

Lamination: �0 /45 /−45 /90�
Rest are the same as Data-11a

Data-11c

Material data—sandwich

=180°

R=2540 mm �100 in.�, S=797

b=25.4 mm �1 in.�, S / t=5

tf �top,bot�=159.59 mm �6.28
�50.2655 in.�
PC=222.41 N �50 lb�, M0=5.

PU=8.7563 KN /m �50 lb / in.�
Lamination: �0 /30 /45 /60 /cor

Data-11d

Lamination: �0 /90 /core /0 /90

Rest are the same as Data-11c
HOAM are validated through the good agreement observed be-
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tween the HOAM and the earlier works, which were reported in
the literature.

HOAM Experiments

Now, different arch configurations such as quarter ring, pinched
ring, and a circular arch are studied using HOAM for different

Ref.

n.�
rter ring=222.41 N �50 lb�

0.32 mm �0.8 in.�
rter ring=222.41 N �50 lb�

5 /30 /0�

m �314.1593 in.�

·m �50 lb· in.�
44.74 KPa �50 lb / in.2�

m �314.1593 in.�

�, tc=1276.7 mm

·m �50 lb· in.�
44.74 KPa �50 lb / in.2�
5 /30 /0�
ils

m �1 i

n qua

.�, tc=2

n qua

e /60 /4

�

9.6 m

6492 N

, PS=3

9.6 m

32 in.

6492 N

, PS=3

e /60 /4

�

laminations, loading, and end conditions.
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First, a clamped-free arch with a tip load �Fig. 6� is studied for
various lamination schemes and aspect ratios, and the results are
presented in Table 12. In the case of symmetric and unsymmetric
composites, HOAM is more flexible compared to FOST. Simi-
larly, u0 and w0 predictions of HOAM for sandwich arches,
are higher �twice or more for deeper sections� than those of

Table 2. Performance Evaluation of a Beam with HOAM

Beam type Loading Respo

Simply supported Uniformly distributed Deflect

Rotati

Point load at center Deflect

Rotati

Cantilever Point load at free end Deflect

Table 3. Tip and Central Deflections �Data-1�

Source

Tip deflection of a
clamped-free arch

�Data-1a�

Exact �Kikuchi and Tanizawa 1984� 27.2676

Balasubramanian and Prathap �1989� 27.2676

HOAM 27.2586

Fig. 2. Clamped-free arch segment with a radial tip load

Fig. 3. Pinched ring and its quarter symmetry model
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FOST; however, the �x of HOAM is lower than that of FOST. The
unsymmetric configuration, for both composite and sandwich
arches, is stiffer compared to its symmetric counterpart, for this
problem.

Next, a laminated pinched ring �Fig. 3� is analyzed for various
aspect ratios and the transverse displacements at the point of load-
ing are given in Table 13. The HOAM is flexible for unsymmetric
composites and sandwiches compared to FOST. While HOAM is
stiffer for symmetric composites with the given angle ply lay up,
it becomes flexible as the lamination tends towards cross-ply con-
figuration. Also, the order of difference is quite significant in the
case of sandwiches—HOAM results are more than thrice of
FOST.

Transverse deformations at the central loading point of a deep
circular arch �Fig. 9� with four types of load cases and end con-
ditions are analyzed using HOAM and compared with those of
FOST in Table 14. As one can observe, the HOAM is flexible
compared to FOST and particularly for sandwiches, the order of
difference is quite substantial. In the case of symmetric compos-
ites with simply supported �SS� and clamped-clamped �CC� end
conditions, HOAM predicts stiffer results for the given angle ply
lay up and becomes flexible as the lamination tends towards
cross-ply configuration. Similarly, for clamped-free �CF� sand-
wich arches with central moment, we find HOAM to be stiffer
than FOST; however, as the location of application of moment
moves either towards the free end or the simply supported end,
HOAM becomes flexible compared to FOST. On comparing the
symmetric and unsymmetric laminates, one finds the unsymmet-
ric laminates to be stiffer. However, in the case of higher-order
composite arches with roller-simply supported �RS� end condi-
tion, symmetric laminates are stiffer.

The HOAM results of a circular arch under different types of
loading, laminations, and boundary conditions are given in Table
15. The CC end condition produces stiffer arch than SS end con-
dition. RS end condition produces perhaps the most flexible sys-
tem followed by CF condition.

Analytical
�Gere and Weaver

1965� HOAM
HOAM/

analytical

6.3492�10−1 0.6351 1.0003

2.0317�10−1 0.2031 0.9996

1.0159�10−1 0.1016 1.0001

3.0476�10−2 0.0305 0.9998

1.6254�100 1.6240 0.9991

Source

Central deflection
of a pinched ring

�Data-1b�

Babu and Prathap �1986� 1.2438

Balasubramanian and Prathap �1989� 1.2447

HOAM 1.24422
nse

ion

on

ion

on

ion
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Table 4. Normalized Free end Displacements of a Cantilever Arch under
Pure Bending �Data-2�

R / t

HOAM/exact
�Stolarski and Chiang 1989�

u w �

50 1.0000 0.9998 1.0127

100 0.9999 0.9999 1.0064

500 1.0001 1.0000 1.0012

1000 1.0001 0.9999 1.0005

10000 1.0000 0.9999 1.0000

100000 0.9996 0.9993 0.9994
Table 5. Central Deflection of a Circular Arch under Concentrated Force
�Data-3�

Source
Vertical displacement

at loading point

Stolarski and Belytschko �1983� 0.001061

Stolarski and Chiang �1989� 0.001061

HOAM 0.001062
JO
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Table 6. Normalized Tip Deformations of a Quarter Ring �Data-4a�

Aspect ratio
HOAM/analytical

�Lee and Sin 1994�

R / t S / t u w �

100,000 50000 pi 0.9931 0.9937 0.9944

10,000 5000 pi 0.9999 0.9998 1.0000

1,000 500 pi 1.0000 1.0000 1.0000

200 100 pi 1.0000 1.0000 1.0000

100 50 pi 1.0000 1.0000 1.0000

20 10 pi 1.0011 0.9995 0.9998

10 5 pi 1.0043 0.9979 0.9992

5 2.5 pi 1.0175 0.9916 0.9967

3.333 1.667 pi 1.0401 0.9817 0.9930

2.5 1.25 pi 1.0743 0.9699 0.9892

2 pi 1.1217 0.9568 0.9860
Table 7. Normalized Tip Deformations of a Pinched Ring �Data-4b�

Aspect ratio
HOAM/analytical

�Lee and Sin 1994�

R / t S / t w1 w2

1,000,000 500000 pi 0.9783 0.9846

100,000 50000 pi 0.9973 0.9973

10,000 5000 pi 0.9995 0.9994

1,000 500 pi 1.0000 1.0000

200 100 pi 1.0000 1.0000

100 50 pi 1.0000 1.0000

20 10 pi 0.9995 0.9995

10 5 pi 0.9979 0.9979

5 2.5 pi 0.9918 0.9924

3.333 1.667 pi 0.9825 0.9844

2.5 1.25 pi 0.9720 0.9760

2 pi 0.9613 0.9679
Fig. 4. Quarter ring with end moment
Fig. 5. Clamped-clamped arch with central load
Fig. 6. Quarter ring with a radial load at tip
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Parametric Studies

In order to study the influence of curvature, aspect ratio, and end
conditions on the deformations, a circular arch with a central
concentrated load �PC� with Data-11c for symmetric sandwich
and Data-11b for unsymmetric composite lamination, is taken up.

The transverse deformations at the center of a sandwich circu-
lar arch, where the concentrated load is applied for various S / t
ratios, are shown in Figs. 10–14. The CC end condition is the
stiffest, followed by SS and CF, as one would expect. The arch
with CC and SS end conditions demonstrates a similar response
pattern: it becomes stiffer with the increase in internal angle up to
180° and thereafter becomes softer, for the same applied load. In
the case of CF end condition, the structure becomes stiffer with
the increase in internal angle.

Table 10. Normalized Transverse Deformations at the Loading Point of
a Pinched Ring �Data-7�

R / t
HOAM/analytical �Kulikov

and Plotnikova 2004�

100 0.9995

500 0.9994

1000 0.9994

10000 0.9994

100000 0.9973

1000000 0.9706

Table 11. Normalized Transverse Deformations of a Laminated Arch
�Data-8�

S/t S /R HOAM
Matsunaga

�2003�

0 /90

5 0.5 0.7675 0.7829

1 0.8892 0.9768

10 0.5 0.6181 0.6338

1 0.7200 0.7612

0 /90 /0

5 0.5 0.3392 0.3292

1 0.4004 0.3965

10 0.5 0.1866 0.1834

1 0.2202 0.2178

Fig. 9. Circular arch with various end and load conditions
Table 8. Normalized Transverse Deformations at the Loading Points
�Data-5a, 5b�

S / t HOAM
Ganapathi et al.

�1999�

Clamped-clamped circular arch

10 0.026825 0.026860

100 0.011747 0.011800

1000000 0.011593 0.011590

Clamped-free circular arch

10 1.585010 1.623590

100 1.570180 1.571300

1000000 1.413940 1.435370

Pinched ring

10 0.154460 0.155390

100 0.148747 0.148840

1000000 0.150752 0.149420
Table 9. Normalized Transverse Central Deformations of a Laminated
Arch �Data-6�

R / t HOAM
Ganapathi et al.

�1999�

Elasticity
�Ganapathi et al.

�1999��

20 2.2741 2.3767 2.38

50 1.9961 2.0245 2.02

100 1.9597 1.9690 1.96

1000 1.9466 1.9452 —

10000 1.9465 1.9442 —
Fig. 7. �a� Circular clamped-clamped arch with central load. �b� Cir-
cular clamped-free arch with tip load
Fig. 8. Arch segment with sinusoidal load
ion subject to ASCE license or copyright. Visit http://www.ascelibrary.org



Table 12. Deformations at the Loading Point of a Quarter Ring �Data-9�

Aspect ratio u w �

DataR / t S / t HOAM FOST HOAM FOST HOAM FOST

2 pi −4.0326�10−4 −3.6457�10−4 6.2240�10−4 5.5583�10−4 −3.5914�10−4 −3.1984�10−4 Sym comp:
Data-9a2.5 1.25 pi −7.5596�10−4 −6.9382�10−4 1.1726�10−3 1.0686�10−3 −5.6018�10−4 −5.1027�10−4

3.3333 1.667 pi −1.7345�10−3 −1.6125�10−3 2.7035�10−3 2.5044�10−3 −9.9583�10−4 −9.2270�10−4

5 2.5 pi −5.7203�10−3 −5.3684�10−3 8.9517�10−3 8.3895�10−3 −2.2428�10−3 −2.1025�10−3

10 5 pi −4.5118�10−2 −4.2602�10−2 7.0802�10−2 6.6832�10−2 −8.9782�10−3 −8.4754�10−3

2 pi −3.6748�10−4 −2.7387�10−4 4.5872�10−4 3.2578�10−4 −2.9762�10−4 −2.0126�10−4 Unsym comp:
Data-9b2.5 1.25 pi −6.5999�10−4 −5.0964�10−4 8.4649�10−4 6.3301�10−4 −4.4720�10−4 −3.2568�10−4

3.3333 1.667 pi −1.4461�10−3 −1.1563�10−3 1.9264�10−3 1.5122�10−3 −7.6917�10−4 −5.9633�10−4

5 2.5 pi −4.5392�10−3 −3.7545�10−3 6.3432�10−3 5.2033�10−3 −1.6828�10−3 −1.3740�10−3

10 5 pi −3.4017�10−2 −2.9059�10−2 5.0269�10−2 4.2846�10−2 −6.5697�10−3 −5.5942�10−3

2 pi −2.5356�10−3 −1.0206�10−3 3.9505�10−3 1.4977�10−3 −1.8764�10−4 −6.4611�10−4 Sym sandwich:
Data-9c2.5 1.25 pi −3.7000�10−3 −1.7488�10−3 5.7509�10−3 2.6145�10−3 −6.0264�10−4 −1.0244�10−3

3.3333 1.667 pi −6.4444�10−3 −3.7026�10−3 1.0015�10−2 5.6380�10−3 −1.5014�10−3 −1.8467�10−3

5 2.5 pi −1.6103�10−2 −1.1444�10−2 2.5096�10−2 1.7707�10−2 −4.0692�10−3 −4.2025�10−3

10 5 pi −1.0153�10−1 −8.6543�10−2 1.5902�10−1 1.3540�10−1 −1.7924�10−2 −1.6933�10−2

2 pi −2.4924�10−3 −8.2033�10−4 3.8768�10−3 1.2052�10−3 6.9556�10−6 −4.5291�10−4 Unsym sandwich:
Data-9d2.5 1.25 pi −3.5078�10−3 −1.3644�10−3 5.4396�10−3 2.0323�10−3 −2.9095�10−4 −7.2236�10−4

3.3333 1.667 pi −5.7748�10−3 −2.8010�10−3 8.9455�10−3 4.2385�10−3 −9.3525�10−4 −1.3089�10−3

5 2.5 pi −1.3302�10−2 −8.4255�10−3 2.0644�10−2 1.2955�10−2 −2.7761�10−3 −2.9937�10−3

10 5 pi −7.6437�10−2 −6.2586�10−2 1.1930�10−1 9.7539�10−2 −1.2716�10−2 −1.2127�10−2
Table 13. Transverse Deformations at the Loading Point of a Pinched Ring �Data-10�

Aspect ratio w

DataR / t S / t HOAM FOST

2 pi 1.7930�10−4 1.7991�10−4 Sym comp:
Data-10a2.5 1.25pi 2.9888�10−4 3.0712�10−4

3.3333 1.667pi 6.1430�10−4 6.4659�10−4

5 2.5pi 1.8490�10−3 1.9868�10−3

10 5pi 1.3718�10−2 1.4957�10−2

2 pi 1.4146�10−4 1.1925�10−4 Unsym comp:
Data-10b2.5 1.25pi 2.2827�10−4 1.9657�10−4

3.3333 1.667pi 4.5525�10−4 4.0221�10−4

5 2.5pi 1.3371�10−3 1.2172�10−3

10 5pi 9.7959�10−3 9.2064�10−3

2 Pi 2.7631�10−3 7.7831�10−4 Sym sandwich:
Data-10c2.5 1.25pi 3.6418�10−3 1.1275�10−3

3.3333 1.667pi 5.3410�10−3 1.9459�10−3

5 2.5pi 9.9738�10−3 4.8106�10−3

10 5pi 4.0653�10−2 3.0029�10−2

2 Pi 2.9016�10−3 6.9786�10−4 Unsym sandwich:
Data-10d2.5 1.25pi 3.7919�10−3 9.7924�10−4

3.3333 1.667pi 5.4406�10−3 1.6131�10−3

5 2.5pi 9.6179�10−3 3.7399�10−3

10 5pi 3.4171�10−2 2.1789�10−2
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Table 14. Transverse Deformations at the Center of a Circular Arch �Data-11�

Load
type

SS CC CF RS

DataHOAM FOST HOAM FOST HOAM FOST HOAM FOST

Concen 3.1104�10−5 3.1541�10−5 3.0939�10−5 3.1518�10−5 3.3173�10−4 2.3831�10−4 1.1038�10−2 6.7106�10−4 Sym comp:
Data-11aMoment 0 0 0 0 −3.6000�10−6 −2.2566�10−6 1.0829�10−4 6.2116�10−6

udl 1.7611�10−3 2.1041�10−3 1.7584�10−3 2.0635�10−3 6.9888�10−2 4.3663�10−2 2.1969�100 1.3001�10−1

Sinusoidal 1.9252�10−3 2.2393�10−3 1.9107�10−3 2.2164�10−3 5.2125�10−2 3.4549�10−2 1.7284�100 1.0270�10−1

Concen 2.4474�10−5 2.1611�10−5 2.2627�10−5 1.9431�10−5 2.5111�10−4 1.48�10−4 1.2944�10−2 6.5456�10−4 Unsym comp:
Data-11bMoment 0 0 0 0 −3.0652�10−6 −1.4881�10−6 1.2727�10−4 6.0918�10−6

udl 1.1832�10−3 1.0466�10−3 6.7964�10−4 3.8720�10−4 5.1823�10−2 2.5570�10−2 2.5745�100 1.2764�10−1

Sinusoidal 1.3435�10−3 1.2286�10−3 9.6557�10−4 7.6613�10−4 3.8906�10−2 2.0588�10−2 2.0263�100 1.0065�10−1

Concen 6.3309�10−4 1.9224�10−4 5.9101�10−4 1.8276�10−4 2.7268�10−3 8.2239�10−4 3.4389�10−1 2.7392�10−3 Sym
sandwich:
Data-11c

Moment 0 0 0 0 −3.3361�10−6 −5.1568�10−6 3.2673�10−3 2.3267�10−5

udl 1.1098�10−2 1.1094�10−2 1.0329�10−2 8.4665�10−3 3.8653�10−1 1.2750�10−1 6.8584�101 5.2048�10−1

Sinusoidal 2.2829�10−2 1.2209�10−2 1.9982�10−2 1.0327�10−2 3.3603�10−1 1.0686�10−1 5.3943�101 4.1229�10−1

Concen 6.2929�10−4 1.6822�10−4 6.0239�10−4 1.6218�10−4 2.7369�10−3 7.0990�10−4 3.3217�10−1 2.7061�10−3 Unsym
sandwich:
Data-11d

Moment 0 0 0 0 −1.5318�10−6 −3.7954�10−6 3.1734�10−3 2.3214�10−5

udl 5.7458�10−3 6.9654�10−3 7.1689�10−3 5.3043�10−3 3.6859�10−1 1.0448�10−1 6.6234�101 5.1454�10−1

Sinusoidal 1.8892�10−2 8.8569�10−3 1.8050�10−2 7.6643�10−3 3.2804�10−1 8.9299�10−2 5.2094�101 4.0751�10−1
Table 15. Deformations at the Center of a Circular Arch �Data-11�

Load type
and BC

Sym Comp: Data-11a Unsym Comp: Data-11b

u w � u w �

SS-Con 0 3.1104�10−5 0 0 2.4474�10−5 0
SS-Mom 4.0026�10−9 0 2.2996�10−8 1.6022�10−7 0 2.2100�10−8

SS-udl 0 1.7611�10−3 0 0 1.1832�10−3 0
SS-Sin −1.3683�10−9 1.9252�10−3 0 0 1.3435�10−3 0
CC-Con 0 3.0939�10−5 0 0 2.2627�10−5 0
CC-Mom 4.7492�10−8 0 2.2886�10−8 1.9839�10−7 0.0000�100 2.1421�10−8

CC-udl 0 1.7584�10−3 0 0 6.7964�10−4 0
CC-Sin 0 1.9107�10−3 0 0 9.6557�10−4 0
CF-Con −2.1729�10−4 3.3173�10−4 −3.6000�10−6 −2.0812�10−4 2.5111�10−4 −3.0652�10−6

CF-Mom 2.4035�10−6 −3.6000�10−6 7.2193�10−8 2.8516�10−6 −3.0652�10−6 6.9495�10−8

CF-udl −4.3966�10−2 6.9888�10−2 −9.4740�10−4 −4.4127�10−2 5.1823�10−2 −8.1133�10−4

CF-Sin −3.4043�10−2 5.2125�10−2 −6.5574�10−4 −3.3491�10−2 3.8906�10−2 −5.6168�10−4

RS-Con 1.0753�10−2 1.1038�10−2 1.0830�10−4 1.2629�10−2 1.2944�10−2 1.2727�10−4

RS-Mom 1.0580�10−4 1.0829�10−4 1.0885�10−6 1.2457�10−4 1.2727�10−4 1.2760�10−6

RS-udl 2.1444�100 2.1969�100 2.1598�10−2 2.5154�100 2.5745�100 2.5351�10−2

RS-Sin 1.6866�100 1.7284�100 1.6987�10−2 1.9794�100 2.0263�100 1.9949�10−2

Sym. Sandwich: Data-11c Unsym. Sandwich: Data-11d

SS-Con 0 6.3309�10−4 0 0 6.2929�10−4 0
SS-Mom 1.3894�10−5 0 8.0188�10−7 1.0482�10−5 0 6.2327�10−7

SS-udl −2.1359�10−9 1.1098�10−2 0 0 5.7458�10−3 0
SS-Sin −2.4615�10−8 2.2829�10−2 0 −2.3732�10−8 1.8892�10−2 0
CC-Con 0 5.9101�10−4 0 0 6.0239�10−4 0
CC-Mom 9.5138�10−6 0.0000�100 6.3862�10−7 5.9565�10−6 0 4.4017�10−7

CC-udl −2.0325�10−9 1.0329�10−2 0 −1.3857�10−9 7.1689�10−3 0
CC-Sin −1.8368�10−8 1.9982�10−2 0 −1.8247�10−8 1.8050�10−2 0
CF-Con −1.7987�10−3 2.7268�10−3 −3.3361�10−6 −1.8129�10−3 2.7369�10−3 −1.5318�10−6

CF-Mom 1.2123�10−5 −3.3361�10−6 7.3287�10−7 7.1661�10−6 −1.5318�10−6 5.1689�10−7

CF-udl −2.5211�10−1 3.8653�10−1 −1.4621�10−3 −2.4085�10−1 3.6859�10−1 −9.6896�10−4

CF-Sin −2.3940�10−1 3.3603�10−1 −8.7745�10−4 −2.3587�10−1 3.2804�10−1 −5.4134�10−4

RS-Con 3.2795�10−1 3.4389�10−1 3.2673�10−3 3.1857�10−1 3.3217�10−1 3.1734�10−3

RS-Mom 3.1355�10−3 3.2673�10−3 3.1902�10−5 3.0597�10−3 3.1734�10−3 3.0998�10−5

RS-udl 6.5516�101 6.8584�101 6.5271�10−1 6.3637�101 6.6234�101 6.3391�10−1

RS-Sin 5.1516�101 5.3943�101 5.1324�10−1 5.0038�101 5.2094�101 4.9845�10−1
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Fig. 10. Sandwich arch with concen. load—S / t=5 �Data-11c�
Fig. 11. Sandwich arch with concen. load—S / t=10 �Data-11c�
Fig. 12. Sandwich arch with concen. load—S / t=15 �Data-11c�
Fig. 13. Sandwich arch with concen. load—S / t=25 �Data-11c�
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Downloaded 14 Mar 2011 to 59.162.23.4. Redistribut
Fig. 14. Sandwich arch with concen. load—S / t=50 �Data-11c�
Fig. 15. Composite arch with concen. load—S / t=5 �Data-11b�
Fig. 16. Composite arch with concen. load—S / t=10 �Data-11b�
Fig. 17. Composite arch with concen. load—S / t=15 �Data-11b�
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The responses of an unsymmetric composite arch are pre-
sented in Figs. 15–19. The arch with SS end condition turns stiff
quite steeply with the increase in the subtended angle. This inter-
nal angle at which the transition happens also changes with aspect
ratio. The CC arch, which is the stiffest, also follows a similar
pattern. The CF arch becomes stiffer with the increase in internal
angle.

Conclusions

A higher-order arch model �HOAM� with transverse shear

Fig. 18. Composite arch with concen. load—S / t=25 �Data-11b�

Fig. 19. Composite arch with concen. load—S / t=50 �Data-11b�
and normal strain components is formulated for studying the re-
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sponse of laminated arches under various static loading condi-
tions. The HOAM can study shallow to deep and thin to thick
arch geometries quite effectively. Through the constitutive re-
lationship, adapted from the three-dimensional stress-strain rela-
tionship of an orthotropic lamina, even angle-ply laminates can
be analyzed using one-dimensional elements. The HOAM is
validated through the results of earlier investigations. Subse-
quently, the response of HOAM for various materials, loading,
boundary, and geometric conditions are presented and also com-
pared with those of first-order shear deformation theory �FOST�
of Timoshenko. Parametric studies on symmetric sandwich and
unsymmetric composite arches have been carried out to study the
role of curvature, aspect ratio, and end conditions on the trans-
verse deformations.

Appendix I. Coefficients of Q-Matrix

The stress-strain relationship at a point of an orthotropic lamina in
a three dimensional state of stress/ strain can be expressed �Jones
1975�, along the lamina axes �Fig. 20� as

�� = D�� �29�

where

�� = ��1 �2 �3 �12 �23 �13� �30�

� = �� � � � � � � �31�

Fig. 20. Axis system—1,2,3: Lamina axes; x ,y ,z: laminate axes
� 1 2 3 12 23 13
D =
1

��
E1�1 − �23�32� E1��21 + �31�23� E1��31 + �21�32� 0 0 0

E2��12 + �13�32� E2�1 − �13�31� E2��32 + �12�31� 0 0 0

E3��13 + �12�23� E3��23 + �21�13� E3�1 − �12�21� 0 0 0

0 0 0 �G12 0 0

0 0 0 0 �G23 0

0 0 0 0 0 �G13

	 �32�
� = �1 − �12�21 − �23�32 − �31�13 − 2�12�23�31� �33�

The relation between engineering and tensor strain vectors, along
lamina and laminate axes, can be given as
�� = R�ts� �34�

�� = R�ts
� �35�
where
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R = �
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

	 �36�

If the angle between lamina and laminate axes can be defined as
�, then the lamina to laminate axis transformation is given by

T = �
c2 s2 0 2sc 0 0

s2 c2 0 − 2sc 0 0

0 0 1 0 0 0

− sc sc 0 �c2 − s2� 0 0

0 0 0 0 c − s

0 0 0 0 s c

	 �37�

where

c = cos �

s = sin � �38�

and the stress and strain along the lamina and laminate axes can
be equated as

�� = T�� �39�

�ts� = T�ts
� �40�

By making use of Eqs. �34�–�40�, one can get the laminate stress-
strain relationship as

�� = Q�� �41�

where

Q = T−1D�T−1�t �42�

�T−1�t = RTR−1 �43�

Q = �
Q11 Q12 Q13 Q14 0 0

Q21 Q22 Q23 Q24 0 0

Q31 Q32 Q33 Q34 0 0

Q41 Q42 Q43 Q44 0 0

0 0 0 0 Q55 Q56

0 0 0 0 Q65 Q66

	 �44�

Q11 = D11c
4 + 2�D12 + 2D44�s2c2 + D22s

4 �45�

Q12 = D12�s4 + c4� + �D11 + D22 − 4D44�s2c2 �46�

Q13 = D31c
2 + D32s

2 �47�

Q14 = �D11 − D12 − 2D44�sc3 + �D12 − D22 + 2D44�s3c �48�

Q22 = D11s
4 + 2�D12 + 2D44�s2c2 + D22c

4 �49�

2 2
Q23 = D13s + D23c �50�
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Q24 = �D11 − D12 − 2D44�s3c + �D12 − D22 + 2D44�sc3 �51�

Q33 = D33 �52�

Q34 = �D13 − D23�sc �53�

Q44 = �D11 − 2D12 + D22 − 2D44�s2c2 + D44�c4 + s4� �54�

Q55 = D55c
2 + D66s

2 �55�

Q56 = �D66 − D55�sc �56�

Q66 = D55s
2 + D66c

2 �57�

Appendix II. Coefficients of C-Matrix

� = �Q22Q44 − Q24
2 � �58�

C11 = Q11 +
Q12

�
�Q14Q24 − Q12Q44� +

Q14

�
�Q12Q24 − Q14Q22�

�59�

C12 = Q13 +
Q12

�
�Q24Q34 − Q23Q44� +

Q14

�
�Q23Q24 − Q22Q34�

�60�

C21 = Q13 +
Q23

�
�Q14Q24 − Q12Q44� +

Q34

�
�Q12Q24 − Q14Q22�

�61�

C22 = Q33 +
Q23

�
�Q24Q34 − Q23Q44� +

Q34

�
�Q23Q24 − Q22Q34�

�62�

C33 = Q66 −
Q56

2

Q55
�63�

Appendix III. Coefficients of D-Matrix

Using a binomial series, the following terms can be expanded as

1

�1 + z/R�
= 1 −

z

R
+

z2

R2 −
z3

R3 �64�

1

�1 + z/R�2 = 1 −
2z

R
+

3z2

R2 −
4z3

R3 �65�
which are used in the evaluation of various D matrices
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Daa = b� ZaC11Za
t dz = b�

l=1

NL

C11�H1 −
2

R
H2 +

3

R2H3 −
4

R3H4 H3 −
2

R
H4 +

3

R2H5 −
4

R3H6

H3 −
2

R
H4 +

3

R2H5 −
4

R3H6 H5 −
2

R
H6 +

3

R2H7 −
4

R3H8
	 �66�

Dab = b� ZaC11Zb
t dz = b�

l=1

NL

C11�H2 −
2

R
H3 +

3

R2H4 −
4

R3H5 H4 −
2

R
H5 +

3

R2H6 −
4

R3H7

H4 −
2

R
H5 +

3

R2H6 −
4

R3H7 H6 −
2

R
H7 +

3

R2H8 −
4

R3H9
	 �67�

Dba = Dab �68�

Dbb = b� ZbC11Zb
t dz = b�

l=1

NL

C11�H3 −
2

R
H4 +

3

R2H5 −
4

R3H6 H5 −
2

R
H6 +

3

R2H7 −
4

R3H8

H5 −
2

R
H6 +

3

R2H7 −
4

R3H8 H7 −
2

R
H8 +

3

R2H9 −
4

R3H10
	 �69�

Dat = b� ZaC12Zt
t dz = b�

l=1

NL

C12�H1 −
2

R
H2 +

3

R2H3 −
4

R3H4 H2 −
2

R
H3 +

3

R2H4 −
4

R3H5

H3 −
2

R
H4 +

3

R2H5 −
4

R3H6 H4 −
2

R
H5 +

3

R2H6 −
4

R3H7
	 �70�

Dbt = b� ZbC12Zt
t dz = b�

l=1

NL

C12�H2 −
2

R
H3 +

3

R2H4 −
4

R3H5 H3 −
2

R
H4 +

3

R2H5 −
4

R3H6

H4 −
2

R
H5 +

3

R2H6 −
4

R3H7 H5 −
2

R
H6 +

3

R2H7 −
4

R3H8
	 �71�

Dta = b� ZtC21Za
t dz = b�

l=1

NL

C21�H1 −
2

R
H2 +

3

R2H3 −
4

R3H4 H3 −
2

R
H4 +

3

R2H5 −
4

R3H6

H2 −
2

R
H3 +

3

R2H4 −
4

R3H5 H4 −
2

R
H5 +

3

R2H6 −
4

R3H7
	 �72�

Dtb = b� ZtC21Zb
t dz = b�

l=1

NL

C21�H2 −
2

R
H3 +

3

R2H4 −
4

R3H5 H4 −
2

R
H5 +

3

R2H6 −
4

R3H7

H3 −
2

R
H4 +

3

R2H5 −
4

R3H6 H5 −
2

R
H6 +

3

R2H7 −
4

R3H8
	 �73�
Dtt = b� ZtC22Zt
t dz = b�

l=1

NL

C22�H1 H2

H2 H3
� �74�

Dss = b� ZsC33Zs
t dz = b�

l=1

NL

C33�
H1 H3 H2 H4

H5 H4 H6

H3 H5

Sym H7

	 �75�

In Eqs. �66�–�75�, for a given layer l

Hp =
1

�hl
p − hl−1

p � �76�

p
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where NL�total number of layers of a cross section; p�constant
varying from 1 to 10; hl�distance from the neutral axis to the top
of a layer, l, and hl−1�distance from the neutral axis to the top of
layer l−1 or bottom of layer l.

Appendix IV. Shape Functions

The shape functions of isoparametric elements used in this study
are presented as follows.

Linear Element

N1 = �1.0 − ��/2 �77�
N2 = �1.0 + ��/2 �78�

ion subject to ASCE license or copyright. Visit http://www.ascelibrary.org



Quadratic Element

N1 = �− � + �2�/2 �79�

N2 = 1.0 − �2 �80�

N3 = �� + �2�/2 �81�

Cubic Element

N1 = �− 1.0 + � + 9.0�2 − 9.0�3�/16 �82�

N2 = 9.0�1.0 − 3.0� − �2 + 3.0�3�/16 �83�

N3 = 9.0�1.0 + 3.0� − �2 − 3.0�3�/16 �84�

N4 = �− 1.0 − � + 9.0�2 + 9.0�3�/16 �85�

Notation

The following symbols are used in this paper:
BC � boundary condition;

FOST � first-order shear deformation theory of
Timoshenko �1921�;

HOAM � higher-order arch model;
k � shear correction factor=5 /6;

M0 � moment applied on the structure;
NDP � nondimensionalizing parameter; and

PC � concentrated load;
PS � magnitude of sinusoidal load �PS sin��x /S��;
PU � uniformly applied load;

R � radius of curvature;
S � arc length of the arch;

S / t � aspect ratio;
t � thickness of cross section; and

��=S /R� � subtended angle of an arch.
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