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Abstract A simplified and accurate analytical cum

numerical model is presented here to investigate the

behavior of functionally graded (FG) cylinders of

finite length subjected to thermal load. A diaphragm

supported FG cylinder under symmetric thermal load

which is considered as a two dimensional (2D) plane

strain problem of thermoelasticity in (r, z) direction.

The boundary conditions are satisfied exactly in axial

direction (z) by taking an analytical expression in

terms of Fourier series expansion. Fundamental

(basic) dependent variables are chosen in the radial

coordinate of the cylinder. First order simultaneous

ordinary differential equations are obtained as math-

ematical model which are integrated through an

effective numerical integration technique by first

transforming the boundary value problem into a set

of initial value problems. For FG cylinders, the

material properties have power law dependence in

the radial coordinate. Effect of non homogeneity

parameters and orthotropy of the materials on the

stresses and displacements of FG cylinder are studied.

The numerical results obtained are also first validated

with existing literature for their accuracy. Stresses and

displacements in axial and radial directions in cylin-

ders having various l/ri and ro/ri ratios parameter are

presented for future reference.
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List of symbols

r, h, z Cylindrical coordinates

u, v, w Displacement components

rr, rh, rz Normal stress components on planes

normal to r, h, and z axis

szr Shearing stress component in cylindrical

coordinates

er, eh, ez Unit elongations (normal strain)

components in cylindrical coordinates

czr Shearing strain component in cylindrical

coordinates

Cij Material constants for orthotropic

materials

ai Coefficient of thermal expansion per degree

centigrade for orthotropic materials

T Temperature rise at any point in a cylinder

m Poisson’s ratio

ri Inner radius of the cylinder

ro Outer radius of the cylinder

l Length of the cylinder

Tm Initial reference temperature

�u; �w Nondimensionalized displacement

components

rr; rh; rz Nondimensionalized normal stress

components

srz Nondimensionalized shearing stress

component in cylindrical coordinates
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r Nondimensionalized radius

R Mean radius (ro/ri)/2

1 Introduction

The demand for improved structural efficiency in space

structures and nuclear reactors has resulted in the

development of a new class of materials, called

functionally graded materials (FGMs). FGMs have

become one of the major research topics in the

mechanics of materials community during the past

15 years. The concept of FGMs was proposed in 1984

by materials’ scientists in the Sendai (Japan) area as a

means of preparing thermal barrier materials (Koizumi

1997). Continuous changes in the composition, micro-

structure, porosity, etc. of these materials result in

gradients in properties such as mechanical strength and

thermal conductivity. Thus, FGMs are heterogeneous

materials, characterized by spatially variable micro-

structures, and thus spatially variable macroscopic

properties are introduced to enhance material or struc-

tural performance. Particularly, material properties can

be designed to vary continuously along structural

geometry to prevent delamination and stress concentra-

tion in traditional multilayered structures. The basic

concept is to mix ceramic and metal such that the

material properties continuously vary from one constit-

uent material to the other. The spatially variable material

properties make FGMs challenging to analyze. Before

these material devices are used in engineering design, it

is very important that these are analyzed very accu-

rately. For such a reason, present study focuses the

analysis of functionally graded (FG) cylinders using the

exact approach. The uniqueness of this approach is: it

first requires algebraic manipulation of basic elasticity

equations like equilibrium, strain displacement and

constitute equations. After this manipulation, this

becomes the two point boundary value problem (BVP)

which governs the behavior of finite length cylinder

which is plane strain two dimensional problem in r, z

plane and gives four first order simultaneous partial

differential equations. This can be explained by the

following equation (Kraus 1967; Goldberg et al. 1965).

y0ðrÞ ¼ AðrÞyðrÞ þ pðrÞ ð1Þ

In the domain, r1 B r B r2, where, y(r) is an n-dimen-

sional vector of dependent variables; dependent

variables in the present case can be described as

y ¼ u;w; rr; srzð Þt. Choice of dependent variables is an

important task. The variables which naturally appear

on r = constant are chosen as dependent variables;

such variables are called intrinsic variables. Remain-

ing variables are described as auxiliary dependent

variables which are dependent on intrinsic dependent

variables. A(r) is a coefficient matrix of partial

differential equations. p(r) is an n-dimensional vector

of non homogeneous (loading) terms. For boundary

conditions, any n/2 elements of y(r) are specified at the

two termini edges; mixed type of boundary conditions

can be specified in this type of formulation. Recently,

Desai and Kant (2011) have obtained accurate stresses

in laminated finite length cylinders subjected to

thermo elastic load using similar numerical model.

Research results obtained thus far have demonstrated

that FGMs have great potential for improving mate-

rial/structural performance in many engineering appli-

cations precisely because of their spatially graded

heterogeneous microstructure. Some of the recent

literature relevant in this study is described as follows.

Horgan and Chan (1999) investigated the effects of

material inhomogeneity in fundamental boundary-

value problem of linear inhomogeneous isotropic

pressurized hollow cylinder. The results are illustrated

using a specific radially inhomogeneous material

model for which explicit exact solutions are obtained.

Chen et al. (2002) considered the axisymmetric

thermoelastic problem of a uniformly heated, func-

tionally graded isotropic hollow cylinder and proposed

an analytical form of solution. Ye et al. (2001) studied

the one-dimensional axisymmetric thermoelastic

problem of a functionally graded transversely isotro-

pic cylindrical shell and presented useful discussion

and numerical results. Exact and explicit solution is

derived. Tutuncu and Ozturk (2001) obtained closed-

form solutions for stresses and displacements in

functionally graded cylindrical and spherical vessels

subjected to internal pressure alone using the infini-

tesimal theory of elasticity. Jabbari et al. (2002)

developed a general analysis procedure for tackling

one-dimensional steady-state thermal stress problem

of a hollow thick cylinder made of FGMs. Recent

literature survey follows will focus on FG cylinders of

orthotropic materials subjected to thermal loads.

Literature survey will focus on FG cylinders of

orthotropic materials subjected to thermal loads.
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Wu and Tsai (2011) have recently presented the

three-dimensional (3D) coupled analysis of simply

supported FG and piezoelectric sandwich cylinders

under electro mechanical loads using modified

pagano method. The modification in the original

pagano’s method were replacement of displacement-

based formulation with mixed formulation and set of

complex-valued solutions of system equation is

transferred to a corresponding set of real-valued

solutions. A transfer matrix method is used to

analyse the effect of layers. Chen and Lin (2010)

have analysed FG spheres with arbitrary Young’s

modulus and constant Poisson’s ratio. Again the

method of transmission matrix is used to account the

effect of layers and continuity conditions are

required in this paper Shariyat et al. (2011) devel-

oped analytical and numerical elastodynamic solu-

tions for long thick walled functionally graded

cylinders subjected to arbitrary dynamic and shock

pressures. Liew et al. (2003) presented an analysis

of the thermomechanical behavior of hollow circular

cylinders of FGM. The solutions are obtained by a

novel limiting process that employs the solutions of

homogeneous hollow circular cylinders, with no

recourse to the basic theory or the equations of non-

homogeneous thermoelasticity. Yas and Aragh

(2010) have investigated 3-D steady-state response

of simply supported FG fiber reinforced cylindrical

panel. Suitable temperature and displacement func-

tions that identically satisfy the simply supported

boundary conditions are used to reduce the thermo-

elastic equilibrium equations to a set of coupled

ordinary differential equations (ODEs) with variable

coefficients, which can be solved by differential

quadrature method. Peng and Li (2010) presented a

novel method for analyzing steady thermal stresses

in a functionally graded hollow cylinder. The

thermal and thermoelastic parameters are assumed

to arbitrarily vary along the radial direction of the

hollow cylinder. The BVP associated with a ther-

moelastic problem is converted to a Fredholm

integral equation. By numerically solving the result-

ing equation, the distribution of the thermal stresses

and radial displacement is obtained. Afshar et al.

(2011) studied a glass-like (viscoelastic) functionally

graded cylinder by using finite element method to

investigate the mechanical responses. A subroutine

is developed by using ANSYS parametric design

language (APDL) to simulate two nonlinearities,

which are the variation of material properties with

respect to time and position.

In this paper, governing elasticity equations of a

simply (diaphragm) supported symmetric FG ortho-

tropic cylinder are used to predict its behaviour under

longitudinally sinusoidal thermal load. Material con-

stants are assumed to have a power-law dependence

on the radial coordinate. By assuming a global

analytical solution in the longitudinal direction satis-

fying the two end boundary conditions exactly, the 2D

problem is reduced to a 1D problem in the radial

direction. The equations are reformulated to enable

application of an efficient and accurate numerical

integration technique for the solution of the BVP of a

cylinder in the radial coordinate. To enable applica-

tion of numerical integration, BVP of a cylinder is

converted into a set of initial value problems (IVPs).

The basic approach to convert a BVP into a set of

IVPs is also explained in the following sections.

Finally, a comparison of the resulting stresses with the

elasticity plane strain solution of infinitely long

cylinder (Ye et al. 2001) is carried out for ratios of

the inner radius to outer radius of 1.5 and 1.05 and for

two ratios of length to inner radius, viz., 2 and 100.

Results are validated through comparison with those

given by Ye et al. (2001).

In addition, one dimensional elasticity equations of

an infinitely long axisymmetric cylinder are utilized to

reformulate the mathematical model suitable for

numerical integration. These equations are summa-

rized in the Appendix. This has been done with a view

to check and compares the results of the present

formulation of finite length cylinder under uniform

internal/external thermal and mechanical loads, when

the length of the cylinder tends to infinity.

2 Mathematical model

Basic governing equations of a 2D problem of a

cylinder in cylindrical coordinates (Fig. 1a) are:

Equilibrium equations

orr

or
þ oszr

oz
þ rr � rh

r
¼ 0;

oszr

or
þ orz

oz
þ szr

r
¼ 0

ð2aÞ

Strain displacement relations

A mixed semi analytical solution for FG finite length cylinders 91

123



er ¼
ou

or
eh ¼

u

r
ez ¼

ow

oz
czr ¼

ow

or
þ ou

oz
ð2bÞ

Stress–strains–temperature relations for cylindrically

orthotropic material

er ¼
rr

Er
� mhr

rh

Eh
� mzr

rz

Ez
þ arT ;

eh ¼ �mrh
rr

Er
þ rh

Eh
� mzh

rz

Ez
þ ahT ;

ez ¼ �mrz
rr

Er
� mhz

rh

Eh
þ rz

Ez
þ azT ; crz ¼

srz

Grz
;

ð2cÞ

Stresses in terms of strains can be written as follows

rr

rh

rz

srz

8
>><

>>:

9
>>=

>>;

¼

C11 C12 C13 0

C21 C22 C23 0

C31 C32 C33 0

0 0 0 C44

2

6
6
4

3

7
7
5

er � arT
eh � ahT
ez � azT

crz

8
>><

>>:

9
>>=

>>;

ð2dÞ

where, mrh ¼ mhr

Eh
Er; mrz ¼ mzr

Ez
Er; mzh ¼ mhz

Eh
Ez

C11 ¼
Er 1� thztzhð Þ

D
; C12 ¼

Er thr þ tzrthzð Þ
D

;

C13 ¼
Er tzr þ thrtzhð Þ

D
;C22 ¼

Eh 1� trztzrð Þ
D

;

C32 ¼
Eh tzh þ trhtzrð Þ

D
; C33 ¼

Ez 1� trhthrð Þ
D

where D ¼ 1� mrhmhr � mhzmzh � mzrmrz � 2mhrmzhmrzð Þ
C21 ¼ C12; C23 ¼ C32; C31 ¼ C13; C44 ¼ G ð2eÞ

It is assumed that all material constants have a power-

law dependence on the radial coordinate, i.e.,

Cij ¼ C0
ijn

n; ai ¼ a0
i n

n ð2fÞ

where n ¼ r
ri
; C0

ij, and ai
0 are constants, and n is a

inhomogeneity parameter or gradient index. Spatial

variation of Poisson’s ratio is of much less practical

significance than that of Young’s modulus. Poisson’s

ratio is thus assumed to be a constant. This assump-

tion, commonly made in the literature on FGMs, leads

to considerable mathematical simplification. It can be

easily proved that when the material is isotropic and if

n = 0 for the homogeneous case, without taking

thermal effect, results are same as given by Timo-

shenko and Goodier (1951) for plane strain elasticity

solution for Lame cylinder.

Stresses in terms of displacement components can

be cast as follows:

rr¼C11

ou

or
�arT

� �

þC12

u

r
�ahT

� �
þC13

ow

oz
�azT

� �

rh¼C21

ou

or
�arT

� �

þC22

u

r
�ahT

� �
þC23

ow

oz
�azT

� �

rz¼C31

ou

or
�arT

� �

þC32

u

r
�ahT

� �
þC33

ow

oz
�azT

� �

srz¼C44crz¼C44

ow

or
þou

oz

� �

ð2gÞ

and boundary conditions (Fig. 1b) in the longitudinal

and radial directions are written in Eq. 3 as,

at z ¼ 0; l; u ¼ rz ¼ 0; at r ¼ ri; ro;
rr ¼ srz ¼ 0

ð3Þ

in which l is the length, ri is the inner radius and ro is

the outer radius of a hollow cylinder.

Radial direction r is chosen to be a preferred

independent coordinate. Four fundamental dependent

variables, viz., displacements, u and w and corre-

sponding stresses, rr and srz that occur naturally on a

,r u

θ

,z w
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l
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b

Fig. 1 a Coordinate system and geometry of cylinder. b Finite

FG cylinder under sinusoidal external thermal loading
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tangent plane r = constant, are chosen in the radial

direction. Circumferential stress rh and axial stress rz

are treated here as auxiliary variables since these are

found to be dependent on the chosen fundamental

variables (Kant and Ramesh 1981). A set of four first

order partial differential equations in independent

coordinate r which involves only fundamental vari-

ables is obtained through algebraic manipulation of

Eqs. 2a–2g. These are,

ou

or
¼ rr

C11

þ arT þ
C12

C11

ahT � u

r

� �
þC13

C11

azT �
ow

oz

� �

;

ow

or
¼ 1

C44

srz�
ou

oz

orr

or
¼�osrz

oz
þrr

r

C21

C11

�1

� �

þ C21C12

C11

�C22

� �

� ahT

r
� u

r2

� �

þ C21C13

C11

�C23

� �
azT

r
�1

r

ow

oz

� �

ð4aÞ
osrz

or
¼� srz

r
� C31

C11

orr

oz
� C31

oðarTÞ
oz

þ C32 �
C12C31

C11

� �
o

oz
ahT � u

r

� �

þ C33 �
C13C31

C11

� �
o

oz
azT �

ow

oz

� �

and the auxiliary variables,

rh ¼C21

ou

or
� arT

� �

þC22

u

r
� ahT

� �
þC23

ow

oz
� azT

� �

rz ¼C31

ou

or
� arT

� �

þC32

u

r
� ahT

� �
þC33

ow

oz
� azT

� �

ð4bÞ

A longitudinally sinusoidal variation of temperature is

assumed as follows,

Tðr; zÞ ¼ Tm sin
pz

l
ð5aÞ

Variations of the four fundamental dependent vari-

ables which completely satisfy the boundary condi-

tions of simple (diaphragm) supports at z = 0, l can

then be assumed as,

uðr; zÞ ¼ UðrÞ sin pz
l

wðr; zÞ ¼ WðrÞ cos pz
l

;
rrðr; zÞ ¼ rðrÞ sin pz

l
srzðr; zÞ ¼ sðrÞ cos pz

l

ð5bÞ

Substitution of Eqs. 5a and 5b in Eq. 4a, b and

simplification resulting from orthogonality conditions

of trigonometric functions lead to the following four

simultaneous ODEs involving only fundamental vari-

ables. These are,

U0ðrÞ ¼ rðrÞ
C11

þ arTm þ
C12

C11

ahTm �
UðrÞ

r

� �

þ C13

C11

azTm þ
p
l

WðrÞ
� �

;

W 0ðrÞ ¼ 1

G
sðrÞ � UðrÞ p

l

r0ðrÞ ¼ p
l
sðrÞ þ C21

C11

� 1

� �
rðrÞ

r

þ C21C12

C11

� C22

� �
ah

r
Tm �

UðrÞ
r2

� �

þ C21C13

C11

� C23

� �
az

r
Tm þ

p
l

WðrÞ
r

� �

s0ðrÞ ¼ � sðrÞ
r
� p

l

C31

C11

rðrÞ � C31 ar
p
l

Tm

� �

þ C32 �
C12C31

C11

� �

ah
p
l

Tm �
p
l

UðrÞ
r

� �

þ C33 �
C13C31

C11

� �

az
p
l

Tm þ
p
l

� �2

WðrÞ
� �

ð6aÞ

and the auxiliary variables,

rh ¼
C21

C11

rðrÞ þ C21C12

C11

� C22

� �

ahTm �
UðrÞ

r

� ��

þ C13C21

C11

� C23

� �

azTm þ
p
l

WðrÞ
� ��

sin
pz

l

rz ¼
C31

C11

rðrÞ þ C31C12

C11

� C32

� �

ahTm �
UðrÞ

r

� ��

þ C13C31

C11

� C33

� �

azTm þ
p
l

WðrÞ
� ��

sin
pz

l

ð6bÞ

3 Numerical solution

The above system of first order simultaneous ODEs

(6a) together with the appropriate boundary condi-

tions (3) at the inner and outer edges of the cylinder

forms a two-point BVP. However, a BVP in ODEs

cannot be numerically integrated as only a half of

the dependent variables (two) are known at the

initial edge and numerical integration of an ODE is

intrinsically an IVP. It becomes necessary to

transform the problem into a set of IVPs. The
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initial values of the remaining two fundamental

variables must be selected so that the complete

solution satisfies the two specified conditions at the

terminal boundary (Kant and Ramesh 1981). The

Nth (N = 4 here) order BVP is transformed into a

set of (N/2 ? 1) IVPs. ODEs are integrated from

initial edge to final edge using the initial values

specified in Table 1. The N/2 ? 1 solutions given in

the Table 1 may be thought of as (i) one non-

homogeneous integration which includes all the non-

homogeneous terms (e.g., loading) and the known

N/2 quantities at starting edge, with the unknown

N/2 quantities at the starting edge set equal to zero,

(ii) N/2 homogeneous integrations which are carried

out by setting the known quantities at the starting

edge as zero and choosing the N/2 unknown

quantities at starting edge as unit values in succes-

sion and deleting the non-homogeneous terms from

the ODEs. The solutions at the terminal boundary

corresponding to the initial values are given in the

right side columns in Table 1. A linear combination

of the (N/2 ? 1) solutions must satisfy the boundary

conditions at the terminal edge, i.e.,

Y3;0

Y4;0

� 	

þ
Y3;1 Y3;2

Y4;1 Y4;2

� �
X1

X2

� �

¼ Y3

Y4

( )

or

Yi;0 þ Yi;jXj ¼ Yi

or

Xj ¼ Yi;j


 ��1
Yi � Yi;0

� 


ð7Þ

where i indicates the N/2 variables consistent with the

specified boundary values at terminal edge, j refers to

solution number and ranges from 1 to N/2, Yi is a

vector of specified dependent variables at the terminal

boundary and Xj is a vector of unknown dependent

variables at the starting edge. Finally, a non-homoge-

neous integration with all the dependent variables

known at the starting edge is carried out to get the

desired results. Fourth order Runge–Kutta algorithm

with modifications suggested by Gill (1951) is used for

the numerical integration of the IVPs. Flow chart for

numerical integration is shown in the Fig. 2.

4 Results and discussion

Nondimensionalized parameters are defined as fol-

lows in Eq. 8:

r ¼ r

R
; R ¼ 1

2
ro þ rið Þ; u;wð Þ ¼ 1

ato
r TR
ðu;wÞ;

rr; rh; rz;srz

� 

¼ 1

ato
r TCo

11

rr; rh; rz;srz

� 


ð8Þ

A hollow cylinder is analysed by taking two ro/ri

ratios, 1.05 and 1.5, which cover both thick and thin

cases. Material properties for transversely isotropic

material are taken as follows (Ye et al. 2001).

Material I

Co
12=Co

11 ¼ 0:364; Co
13=Co

11 ¼ 0:372;

Co
33=Co

11 ¼ 1:002; ao
3=a

o
1 ¼ 1:010

Material II

Co
12=Co

11 ¼ 0:5; Co
13=Co

11 ¼ 0:2;

Co
33=Co

11 ¼ 3:2; ao
3=a

o
1 ¼ 2:6

Using above relations between the material constants

following properties are taken for numerical analysis.

Material I

Co
11 ¼ 22:29� 106; Co

12 ¼ 8:1135� 106;

Co
13 ¼ 8:2918� 106;

Co
21 ¼ 8:1135� 106; Co

22 ¼ 22:29� 106;

Co
23 ¼ 8:2918� 106;

Co
31 ¼ 8:2918� 106; Co

32 ¼ 8:2918� 106;

Co
33 ¼ 22:33� 106;

Co
44 ¼ 8:272� 106

ar ¼ 51� 10�6; ah ¼ 51� 10�6;

az ¼ 5:151� 10�5

Table 1 Initial and integrated values

IN Initial boundary Terminal boundary Load

term

u w rr srz u w rr srz

0 0 0 0 (S) 0 (S) Y1,0 Y2,0 Y3,0 Y4,0 I

1 1 0 0 0 Y1,1 Y2,1 Y3,1 Y4,1 D

2 0 1 0 0 Y1,2 Y2,2 Y3,2 Y4,2 D

FI X1 X2 0 (S) 0 (S) C C C C I

IN integration number, S specified, C correct value, FI final

integration, I include, D delete
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Set unit value to one of the 
unknown components of 
y(s1) at a time

Store y(s2) for all integrations as y0(s2) and yj(s2): j=1,n/2

Integration<=n/2+1 ?

start

Input
n no.of 1st order ordinary 

differential equtions

n/2  no. of unkown components of 
the vector y (s1)

n/2           BC’s at s=s1
n/2 BC’s at s=s2

Integration=
?

Non homogeneous integration 
include load terms

Homogeneous integration 
delete load terms

Set prescribed values of 
known components of y(s1)

Set zero values of to 
known components of 
y(s1)

Set zero values to remainng 
unkown components of  y(s1)

Set zero values to remaining 
unkown components of y(s1)

Integrate to s=s2

Solve for n/2 unkown components of 
y(s1) by linear combination of n/2+1 
solutions, y0(s1) and yj (s2), so 
obtained in conjunction with n/2 BC’s 
at s=s2

Non homogeneous integration 
include load terms

Set now true values to all 
components of the vector y(s1)

Integration to s=s2

output

stop

Store intermediate values 
of the vector y(s) within the 

interval s1<=s<=s2

Path of integration

s=s2s=s1

noyes

noyes

Fig. 2 Flowchart for numerical integration
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Material II

Co
11 ¼ 22:29� 106; Co

12 ¼ 11:14� 106;

Co
13 ¼ 4:46� 106;

Co
21 ¼ 11:14� 106; Co

22 ¼ 22:29� 106;

Co
23 ¼ 4:46� 106;

Co
31 ¼ 4:46� 106; Co

32 ¼ 4:46� 106;

Co
33 ¼ 71:32� 106;

Co
44 ¼ 8:272� 106

ar ¼ 51� 10�6; ah ¼ 51� 10�6;

az ¼ 1:33� 10�4

Numerical analysis is carried out with both material

I and material II, various inhomogeneity parameters

n = 2, 1 and -2 and two l/ri ratios 2 and 100.

Figures 3, 4, 5, 6, 7, and 8 show the variations of basic

fundamental variables as well as auxiliary variables

through thickness for ro/ri ratio of 1.5 signifying a

thick cylinder and Figs. 9 and 10 show the variation of

basic fundamental variable radial stress as well as

auxiliary variable hoop stress through thickness for ro/

ri ratio 1.05. Radial and hoop quantities are maximum

at z = l/2 whereas axial quantities are maximum at

z = 0, l.

Table 2 shows values of radial, hoop and axial

stresses for l/ri = 2 and 100. These values are

compared with those of Ye et al. (2001) for plane

strain elasticity solution for infinitely long cylinder in

Table 2. For l/ri = 100, results are close to those of Ye

et al. (2001). Axial displacement is constant over the

thickness for both ro/ri ratios. Radial displacement is

linear through thickness; gives higher value for

Fig. 3 Distribution of rr through thickness for ro/ri = 1.5 for

a material I and b material II

Fig. 4 Distribution of rh through thickness for ro/ri = 1.5 for

a material I and b material II
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positive n as compared to negative n. Parabolic

variations of shear stress and radial stress are seen in

both thin and thick cases. In thin cylinder, hoop and

axial stresses have linear variation and nonlinear

parabolic through thickness in thick cylinder. From

Fig. 3a, it is seen that positive value of n produces

positive magnitude of radial stress (n = 2, 1) whereas

negative value of n = -2 gives negative radial stress

for both l/ri = 2, 100. Both l/ri ratio follow similar

trend, whereas opposite behavior is seen for non

homogeneity parameter n = 2 and n = -2. Figure 3b

shows radial stress results for material property II.

There is no significant effect is seen in terms of trends

of radial stress through thickness for both material

properties. Figure 4a gives nonlinear behavior of hoop

stress for n = 2, 1, it gives variation from positive to

negative (higher to lower) whereas n = -1 gives

variation lower to higher values. From Fig. 4b it is

seen that all positive hoop stress is obtained for

all cases for material II. Negative values of

nonhomogeneity give drastic behavior change in the

magnitude. From, Fig. 5a, it is seen that there is a effect

of l/ri ratios on axial stresses unlike for radial stresses.

Similarly from, Fig. 6a, b, it is seen the effect of l/ri

ratios on stresses. Parabolic shear stresses are obtained

for both cases. From Fig. 7a, it is seen that radial

displacement is linear. Effect of n is seen for n = 2,

n = -1 and n = -2. n = 2 gives higher range of

stresses, it decreases with n = 1 and gradually further

decreases for n = -2. Similar is the case for material II

(Fig. 7b). Constant values are obtained for axial

displacements as seen from Fig. 8a. Negligible and

lower values are obtained for l/ri = 2 whereas higher

values are obtained for l/ri = 100. Same is the case for

material properties II (Fig. 8b). From Fig. 9a, b shows

radial stresses for thin cylinder. For different

n values, behavior of thin cylinder is same as thick

Fig. 5 Distribution of rz through thickness for ro/ri = 1.5 for

a material I and b material II

Fig. 6 Distribution of srz through thickness for ro/ri = 1.5 for

a material I and b material II
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cylinder. From Fig. 10a, b, it is seen that hoop stresses

are linearly varying as compared to ratio thick cylinder.

It is seen that non-homogeneity parameter n both

positive and negative has greater effect on distribution

of stresses and displacements. Stresses can be triggered

easily with functionally graded model presented

according to the engineering design requirements.

5 Conclusion

An attempt is made here to analyze the FG cylinders

which are subjected to elastostatic and temperature

fields through exact semi analytical cum numerical

approach which differs from conventional approxi-

mate finite element approach and is also free from any

assumptions in the theory. Results are very useful

when one is designing pressurized cylinders made up

of FG materials subjected to thermal load. This

approach can be applied to very thick cylinders.

Technique is very convenient to obtain the stresses

with an ease, since no separate integration is required

to account the non homogeneity effect occurred due to

gradation. This is an important feature of the proposed

model. Also, it involves mixed variables in the

derivations, both stresses and displacements are

obtained accurately simultaneously. Systematic devel-

opment of mathematical model has significantly

contributed in understanding the behavioural phenom-

enon of graded cylinders under extreme loading

environment of thermal loadings. Mathematical model

developed here is simple in nature and easily appli-

cable for the large class of shell problems. Choice of

fundamental variables is an important task for devel-

oping the model. Current model is applicable to

simply diaphragm supported cylinder only. Change in

Fig. 7 Distribution of u through thickness for ro/ri = 1.5 for

a material I and b material II

Fig. 8 Distribution of w through thickness for ro/ri = 1.5 for

a material I and b material II
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Fig. 9 Distribution of rr through thickness for ro/ri = 1.05 for

a material I and b material II

Fig. 10 Distribution of rh through thickness for ro/ri = 1.05

for a material I and b material II

Table 2 Comparison of

non-dimensional radial

stress rr ðz ¼ l=2Þ, hoop

stress rh ðz ¼ l=2Þ and axial

stress rz ðz ¼ 0; lÞ through

thickness for l/ri = 1.5,

material I and n = 2 for

diaphragm supported elastic

orthotropic cylinder under

thermal load with elasticity

plane strain solutions given

by Ye et al. (2001)

Quantity r/ri Present numerical solutions—finite

length cylinder

Analytical elasticity plane

strain solution by Ye et al. (2001)

and numerical solution for plane

strain infinitely long cylinderl/ri = 2 l/ri = 100

rr ðz ¼ l=2Þ 1.05 0.0184 0.0367 0.0376

1.2 0.0567 0.1009 0.101225

1.25 0.0621 0.1064 0.108365

1.3 0.0626 0.1033 0.105184

1.4 0.0463 0.0702 0.070456

rh ðz ¼ l=2Þ 1.0 0.3896 0.8099 0.823538

1.05 0.338 0.7286 0.746013

1.1 0.2711 0.6233 0.641465

1.4 -0.5234 -0.6588 -0.65224

1.5 -0.9663 -1.4031 -1.35085

rz ðz ¼ 0; lÞ 1.2 -0.1862 0.4201 0.392654

1.15 -0.2423 0.5609 0.476166

1.25 -0.1148 0.2405 0.307495
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Fourier series expansion can be extended to tackle

other boundary conditions that can be considered as

limitation of the current model. Numerical results

presented for different ro/ri and l/ri ratios will be useful

for future reference and can be used as benchmark

results.

Appendix: 1D formulation for orthotropic cylinder

under thermal loading

drr

dr
þ 1

r
rr � rhð Þ ¼ 0; er ¼

ou

or
; eh ¼

u

r
; ð9Þ

rr ¼ C11 er � arTð Þ þ C12 eh � ahTð Þ
rh ¼ C12 er � arTð Þ þ C22 eh � ahTð Þ

;

rr ¼ C11
du
dr
� C11arT þ C12

u
r � C12ahT

rh ¼ C21
du
dr
� C21arT þ C22

u
r � C22ahT

;

du

dr
¼ rr

C11

þ arT �
C12

C11

u

r
þ C12

C11

ahT ;

drr

dr
¼ rr

r

C21

C11

� 1

� �

þ u

r2
C22 �

C21C12

C11

� �

þ ahT

r

C21C12

C11

� C22

� �

ð10Þ

where,

mrh ¼
mhr

Eh
Er; C11 ¼

Er

1� trhthrð Þ ;

C12 ¼
trhEh

1� trhthrð Þ ; C22 ¼
Eh

1� trhthrð Þ ;

C21 ¼ C12; Cij ¼ C0
ijn

n; ai ¼ a0
i n

n
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