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Abstract In this article mixed semi-analytical and
analytical solutions are presented for a rectangular plate
made of functionally graded (FG) material. All edges of
a plate are under simply supported (diaphragm) end
conditions and general stress boundary conditions can
be applied on both top and bottom surface of a plate
during solution. A mixed semi-analytical model consists
in defining a two-point boundary value problem
governed by a set of first-order ordinary differential
equations in the plate thickness direction. Analytical
solutions based on shear-normal deformation theories
are also established to show the accuracy, simplicity and
effectiveness of mixed semi-analytical model. The FG
material is assumed to be exponential in the thickness
direction and Poisson’s ratio is assumed to be constant.
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1 Introduction

A functionally graded (FG) material is a micro-
engineered composites where the composite and
structures are continuously varied in thickness direc-
tion of a structural component so that an optimum
distribution of properties can be obtained depending
on the functional requirements and are therefore, free
from interface weaknesses typically consists in
laminated composites and sandwiches. The great
feature of this particular material is elimination or
reduction of delamination failure associated with the
traditional laminated components at their interfaces
where a material property varies suddenly. FG
material offers many advantages over the monolithic
material and traditional laminated composites and
sandwiches, and therefore, extensive use of FG
material has been seen in the field of aerospace and
nuclear technologies. However, directional composi-
tional variation of the constituents within FG mate-
rials makes analysis and design more challenging
than traditional materials.

Over the years, a number of approaches/models
have been developed and presented to analysis of
structural components with FG material under trans-
verse/thermal/electric loads. A comprehensive review
on FG materials can be found in Tanigawa (1995).
Three dimensional (3D) elasticity solutions based on
the solution of partial differential equations (PDEs)
with appropriate boundary conditions are valuable
because they represent a more realistic and closer
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approximation to the actual behaviour of the struc-
tures. Sankar (2001) has presented two dimensional
(2D) elasticity solution under plane strain conditions
for simply supported FG beams subjected to sinusoidal
load by assuming exponential variation of Young’s
modulus through the thickness of beam. With the same
assumption, a mixed semi-analytical solution along
with analytical solutions based on shear deformation
theories for simply supported FG beams under plane
stress condition of elasticity have been presented by
Pendhari et al. (2010). Sankar and Tzeng (2002)
extended the elasticity solutions for a FG beams
subjected to thermal loads.

Kashtalyan (2004) developed exact 3D elasticity
solutions for simply supported FG plate subjected to
transverse loading by assuming exponential variation
of Young’s modulus through the thickness of plate. By
assuming power-law variation of the volume fractions
of the constituents through the thickness of simply
supported FG plate, exact solutions are presented by
Vel and Batra (2002) for mechanical and thermal
loading. Governing PDE for thermo-mechanical defor-
mation is reduced to a set of coupled ordinary
differential equations (ODEs) in the thickness co-
ordinate, which is then solved by using the power series
method. Anderson (2003) solved sandwich composites
with FG core components exactly for circular patch
loading. Parametric studies on different degrees of core
stiffness at the face sheet interface are also presented.

The shear stiffness and shear correction factors
associated with first order shear deformation theories
(FOSTs) were calculated by Nguyen et al. (2008) for
FG simply supported plates under cylindrical bending.
Matsunaga (2009) developed higher order shear
deformation theories (HOSTs) for displacements and
stresses in FG simply supported plates subjected to
thermal and mechanical loads. Khabbaz et al. (2009)
used energy concept along with first and HOSTs to
evaluate large deformation and through thickness
stresses of FG plates. Kang and Li (2009) presented
non-linear behaviour of cantilever beam subjected to
end force by using large and small deformation
theories. Analytical solutions for piezoelectric FG
half-spaces under uniform circular surface loading are
presented by Han et al. (2006). The effect of different
exponential factors of the FG materials on the field
response is demonstrated in detail.

Woo and Meguid (2001) developed series solutions
for large deflections of FG plates under transverse
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loading and temperature fields using Von-Karman
theory. The material properties of FG materials are
assumed to vary according to power-law distribution
of the volume fraction of the constituents through the
thickness. Further, analytical solution is presented by
Woo et al. (2005) for post-buckling analysis of
moderately thick FG plates and shells under edge
compression loads and a temperature field. Bodaghi
and Saidi (2010) presented analytical approach based
on a HOST to determine critical buckling loads of
thick FG rectangular plates.

Praveen and Reddy (1998) developed finite element
(FE) model for static and dynamic analysis of FG
ceramic—metal plates with Von-Karman type nonlin-
earity. Power-law dependence of material properties
in the thickness direction of plate is assumed. Reddy
and Chin (1998) derived boundary value problem
(BVP) by using FOST to study the dynamic thermo-
elastic response of FG cylinders and plates. The
presented formulation accounting for the coupling
with 3D heat conduction equation for a FG plate.
Further, Reddy (2000) extended same formulation for
third order shear deformation plate theory. With the
help of classical plate theory (CPT), Shen (2002) and
Yang and Shen (2003) studied large deflection and
post buckling response of FG plates with temperature
dependent material properties. Chakraborty and
Gopalakrishnan (2003) have developed a FE model
based on the FOST. Ma and Wang (2004) presented a
relationship between the third order shear deformation
solutions of axisymmetric bending and buckling of FG
circular plate with isotropic circular plates based on
CPT. GhannadPour and Alinia (2006) studied the
large deflection behaviour of FG plate with power-law
distribution of the volume fraction of constituents by
using CPT. The fundamental equations for rectangular
FG plate are obtained using Von-Karman theory and
solution is obtained by minimization of the potential
energy (PE).

In the present article, mixed semi-analytical model
developed by Kant et al. (2008) has been reformulated
for 3D stress analysis of simply supported FG plates
under transverse loads. The model use of the formation
of two-point BVP governed by coupled first-order
ODEs along the thickness coordinate of a plate
(Kantrovich and Krylov 1958). In addition to this,
analytical solutions based on higher order shear-
normal deformation theory (HOSNT) are also devel-
oped and presented.
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2 Formulations oy Cn Ci Cz 0 0 0 &y
Oy Cx Cyn 0 0 0 &y
A FG plate (Fig. 1), simply supported on all its four o | Cis 0 0 0 &
edges is considered. A right-handed orthogonal co- [ Cu 0 O Yo
ordinate system (x, y, and z) is chosen such that the T symmetric Css 0 Yz
plate occupies a domain Q in the x—y plane and z-axis 7, Cos ) Uy
is normal to the plane. The top surface of a plate is Or
loaded only with transversely distributed load and it o=Cye
can be expressed as, - - 3)
. mnx | nmy
plx,y) = DOmn SiN — smT (1) where,
mn
Iz 2
where, m and n = 1,3,5,....... and other surfaces are Cii = Cyp = Cy3 = M
free from any stresses. The 3D equations of equilib- ) (1 =30 —20%)
rium are, Ege™* (v 4 v?
Cip= Ciz = Cy3 :(fl
(1 =302 —203)
00, Oty  OTy
+—=+—"+B:=0 Epe”
ox Oy 0z _ _ _ _Foe
Cy = Cs5s = Ce6 =
0ty Ooy, Oty 2(1 +v)
ay +a—+ ay +B,=0 (2)
ax ay @Z and A= — ln%’ is the Gradation factor, E, is the
%—l— asz + % +B,=0 Young’s modulus at the bottom of the beam, E, is
X y Z

where, B,, B, and B, are the body forces per unit
volume in x, y and z directions, respectively.

It is assumed that the Poisson’s ratio is constant
through the thickness and variation of Young’s
modulus through the plate thickness is given by
E(z) = E,e’* (/. = gradation factor). Further, it is
assumed here that FG material is isotropic at every
point. Therefore, constitutive relations for FG plate
can be written as,

Fig. 1 3D plate domain subjected to transverse loads

the Young’s modulus at the top of the beam, v is the
Poison’s ratio and, general 3D linear strain—displace-
ment relations are,

. Ou o Ou n ov
T T 0y Ox
ov Ou Ow
DL T TeLid 4
‘OY ay sz az + ax ( )
ow ov Oow
“Ta ey

2.1 Mixed semi analytical model

An attempt is made in this section to extend the semi
analytical model developed by Kant et al. (2008) for
stress analysis of FG plate under transverse loads. The
models is based on the formation of two-point BVP
governed by a set of first-order ODEs,

d

57 (® =A@y +p(2) (5)

in the domain 0 <z<h with any half of the primary
unknowns prescribed at the top and bottom surface of
a plate. In Eq. 5, y(z) is an n-dimensional vector of
fundamental variables whose number (n) equals the
order of PDE, A(z) is an x n coefficient matrix (which
is a function of material properties in thickness
direction) and p(z) is a n-dimensional vector of non-
homogenous (loading) terms.
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The Egs. 2—4 have a total of fifteen unknowns
Uy Vy W, Exy €y €25 Vrys Vo Vyzs Oxs Oys Oz, Tayy Tag @0 Ty
in fifteen equations. After a simple algebraic manip-
ulation of the above sets of equations, a set of PDEs
involving only six primary dependent variables
u,V, W, Ty, Ty, and o, are obtained as follows,

Ou o ow C66
% o <C55C66) fxz
v Ow Css
oz oy * (Css C66> £z

ow o, 1 Ou ov
= | Ca— 4+ Crr—
aZ C33 C33 ( 3 Ox tx ay)

afxz Ci13C3 6214
=—(Cu-— =5
0z Cy; Jox

6214 C13C32 62\} C]gaGZ
—Cp— — | Cro4 Cyg ——= .
446))2 ( 127+ Cas C33 Gxay C33 Ox
a‘L'yZ C23C31 8214
Cy +Cys—
o ( utCu——c " Joxdy
6214 C23C32 6 4 C2360'7
—Cy—— | Cp— > _B,
446)62 ( 2 C33 6y C33 Gy 7
0o, 0ty Oty

dz oy (6)
The above PDEs defined by Eq. 6 can be further
reduced to a coupled first-order ODEs by using double
Fourier trigonometry series expansion for primary
displacement variables satisfying the simply support
end conditions on all four edges.

mnx ., nmy

u(x,y,z) = Z”’""(Z) cos ——sin— =

v(x,y,z van sm—cos? (7)
(x,y,2 Zwmn sm@smnbﬂ

and from the basic relations of theory of elasticity, it
can be shown that,

mMuX . nmy
T (X, 3,2 E Tromn(2) COS ——sin 5
mnx  nmy
Tyz )C T Sln —COS——
yz\X; Y5, 2 § yzmn a b (8)
MAX ., nmy
x 3V, 3 E O-zmn Sln ——sin—= b

Substituting Eqs. 7-8 and its derivatives into Eq. 6
and noting orthogonality conditions of trigonometric
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functions, the following ODEs are obtained,

dityn(2) mm

1
dz = _7Wmn (Z) +C7557xzmn (Z)
AV (2 nm 1
dZ( ) = _7Wmn (Z) +C_667yzmn (Z)
dwn(z)  Czimm Cynm
dZ _C33 a umn(Z)+C33 l’) an(Z)
1
+=—0mn (2
n (2)
AT (2) C13C31\ m*n*
——=|Cy - 5 Umn
dz ( u=—c, )@ tm
\C n*m? @)+ (cn+c C13C3,\ mnm? (2)
44 2 Umn\Z 12 44 Crs ab Vmn(Z
Cizmn
i — 0y mn(z) _Bx(xvyvz)
Cuoa
Aty (2) C3C31 \ mnm?
'&7: C Cyy——— mn
&z 21+ Cyq Cu P Uy (2)
m2n2 C23C32 n 7'[2
Cyy—— mn C — mn
+Cyg P Vv, (Z)+( 20 — Cu ) B —V (Z)

C23 nm
Gy b O Blen)
doym(z) mn nm
Zdiz()_ ; Tyr mn(z)+ b ‘L'yzmn(Z) *Bz(x7y7Z)

©)

Further, the secondary variables o,,0,and ., can be
expressed as a function of the primary set of variables
as follows,

C;3C —mn mnx . nm
‘”:(C“ _¥> 3 (@) [ sin” sin %

Cs b
CisCn [ ] . MmX . nmy
+ < Cas %;vm,, sin p sin b
C
48 o (2) sin 7 gin MY
C33 o a b
Cy3C3 —mmn mnx . nmy
o, —(C21 Ca ;um(z)[ ] sm—smT
Cy3C3p —nm mnx ., nmy
- Gl
+( 2 o ;vmn(z) sin sin—
C3 mnx . nmy
+ o O onn(2) Sin L sin—

nm mnx  nmy
—| cos ——cos ——
a b

mm mnx ~ nm
+ Cys Z Vi (2) [7] cos ——cos y
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Load term

Inc
De
De
De
Inc

0z

Yoi

Yoo
Ye3
Yea

P Xy

w Tyz T,
Y Y Ysi
Y32 Y42 YSZ
Y33 Y3 Ys3
Y Y4 Ysq
Wr 0 0

Final edge; z = h
v
Yo
Y22
Yos
You
vt

u
Y
YI2
Yis
Yia
ur

0 (known)
Known

0 (known)
Known

0 (known)
Known

Txz
0
0
0

0 (assumed)
0 (assumed)
0 (assumed)

1 (unity)

X

0 (assumed)
0 (assumed)
0 (assumed)
X

1 (unity)

Starting edge; z = 0
0 (assumed)

0 (assumed)

0 (assumed)

Xy

1 (unity)

Table 1 Transformation of a BVP into IVPs

Intg.
Final

The Eq. 9, defines the governing two-point BVP in
ODEs through thickness of the laminate in the domain
0 < z < h with stress components known at the top
and bottom faces. The basic approach to the numerical
integration of the BVP defined in Eq. 9 and the
associated boundary conditions when it contains no
boundary layer effects, is to transform the given BVP
into a set of I[IVPs—one non-homogeneous and n/2
homogeneous. The solution of BVP defined by Eq. 9
is then obtained by forming a linear combination of
one non-homogeneous and n/2 homogeneous solu-
tions so as to satisfy the boundary conditions at z = h
(Kant and Ramesh 1981). This gives rise to a system of
n/2 linear algebraic equations, the solutions of which
determines the unknown n/2 components, X;, X, and
X5 (Table 1) at the starting edge z = 0. Then a final
numerical integration of Eq. 9 produces the desired
results. Numbers of successful and well-tested numer-
ical algorithms are available in literature for solution
of IVPs expressed by ODEs. Displacement and stress
boundary conditions on all four edges of a 3D FG plate
are detailed in Table 2.

2.2 Analytical models based on HOSNT

In order to reduce 3D elasticity problem to a 2D plate
problem, the displacement components in all three
direction of rectangular Cartension co-ordinate system
u(x,y,z),v(x,y,z), and w(x,y,z) at any point in the
plate domain are expanded in Taylor’s series in terms
of thickness co-ordinate. The higher order displace-
ment fields considered here in the formulation are,

u(x, y, 2) = up(x, y) + 20,(x, y) + 221’ (x, y) + 2205 (x, y)
v(x, ¥, 2) = volx, ) + 20,(x, ) + 22Vi(x, ¥) + 230;(x, y)
w(x, y, 2) = wo(x, y) + 20:(x, y) + 2w (x, y) + 207 (x, y)

(11)

Table 2 Boundary conditions (BCs)

Edge BCs on BCs on
displacement field stress field

x=0,a w=0 o, =0

x=al2 u=0 Ty, =0

x=0,b w=0 g, =0

x = b2 V= Ty, =0

z=0 - 0.=0;1,=0;7,=0
z=h - Oy = Pomn; Tne = 05 7y =0

@ Springer



56

S. S. Pendhari et al.

In the above relations, the terms u,v and w are the
displacement at a general point (x, y, z) in the plate
domain in the x, y and z directions, respectively. The
parameters u,, v, are the inplane displacement and w,
is the transverse displacement at a point (x, y) on
reference plane. The functions 0,, 0, are the rotations
of the normal to the reference plane about y and x axes,
respectively. The parameters ug, vj, w, 0y, 0 and 0;
are the higher order terms in Taylor’s series expansion
and they represent higher order transverse cross
sectional deformation modes. The terms u; and v;
contribute to higher order inplane modes of deformation
while the terms 0} and 0 contribute to higher order
flexural modes of deformation. The terms w), and 0]
defines the non-linear variation of the transverse strain &.

By substitution of the displacement relations given by
Eq. 11 into the strain—displacement Eq. 4 of the classical
theory of elasticity, the following relations are obtained.

& = &+ 2y + 28, A
&y = &yo + 2)y + zzs;, + 7 s
& = & + 20 + 7€,

Pry = Exyo + 2y + L Ehyo + 2y
o = Gy e TP+ DA
ve = Gy + 2ty + zzqﬁ;‘, + z3x;

where,

(Ze01 Eyr Exy0) = Oup Qvo Ouy | Qv
X0 ©yoy Oxyo ) — ax ) ay ) ay 6)(

(.9 ) _ (Ou; Ov, Ou; +6vz
X0 v07 xvo - ax ’ ay ) ay ax
(£20) = (0:)

&) = (30*)
(% 20 a0 o0,
x7y)7yxy - &c’@y’@y ax

o0, o0, o0’ ao;f
(o) - (55 5+ %)
00, 00,
(7 sza/C)n) = (ZW 2 —|—a— 2 _|_ ay)

00; 00
(y"z’ ﬂ) “\oax oy
ow, ow,

(¢x>¢y) (9 +a39y +6y)

(01.;) = (39* 66*39* ag;)
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2.2.1 Stress resultant

It is convenient to integrate the stress distribution
through the thickness of the FG plate to replace the
usual consideration of stresses by considering stress-
resultants due to which the variations with respect to
7z’ direction are completely eliminated. Here, the
membrane, flexure and shear stress resultants of FG
plate are derived as a function of the reference plane
stretching, curvature and shear rotation strain terms,
respectively.

The total PE [] of the FG plate with volume V,
reference surface A can be written as: [[=U — W

1 1 !
HzgfaadV—/ép (13)

Vv A

where, U is the strain energy stored in the plate, W
represents the work-done by externally applied loads
and p is the vector of surface load intensities
corresponding to the generalized displacement vector
0 defined at the reference plane and these can be
expressed as,

t
g— :((Tx, Oy, 0z, Txys Txzy Tyz)
E :(8)(7 gya 8Z7 ’))xy7 yxzﬂ yyz)t
6 =(u,v,w)’
p :(PXaPyaPz)t

The expressions for the strain components (Eq. 12) are
substituted in Eq. 13. The following relation results
when an explicit integration is carried out through the
plate thickness.

1 _
H:§/§’6dA—/5’pdA (14)
A A
in which,

G = (N, My, N}, M, Ny, My, N}, M}, N., M., N,
Nuys May, N2y My, O, Si 0, 57, 0, Sy, 05, S5
€ = (Ex0s Lxs Exor s €901 Lys Eyos Ays €205 Xz Eggs Exvos
Yvor Exyor Layor Prs Towr Dis sar Py Lys Pps )"
0 = (U, Vo, Wo, O, 0y, 0, u,, v, w070 9*)

07 7V0) WorYxr Yy

where,
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N, M, N; M; h [ Ox
N, M, N; M; :/ oy [1 7 Z2 Z3]dz
N, M, N O 0 o,
n [Cu Ci Cis &y
= Cxn Cx &y [1 [ z3]dz
o symmetry Cs3 &

h
[ny M,y N:‘v M:v} = / TX}'[I

o

h
:/C44‘/X,[l : 2 Pz

o

h
0. S 0 sz:}=/rxz[1 ;2 P

h

Z/Cce“/w[l 2 2 2ldz

o

Upon integration, these expressions are rewritten in
the matrix form as given below,

Ny &xo
M, Lx
N €
M A
N, &0
M, = [y %
Ny Eyo
N. z €20
M, 1
N )i o ) 11a

N xy sxyo
MX)’ _ [ B} Xxyo
No [ T e
M;)’ 4x1 X;YU 4x1
QX ¢X
Sx X Z
* = [D]4x4 d:* and (15)
X X
Sy ) aa Yxz ) 4t
Oy b,
S)’ Xyz
Q* = [E] 4x4 d)*
y y
* *
Sy 4x1 Xyl 4x1

where [A], [B], [D] and [E] are the matrices of FG plate
stiffness whose elements are defined in Appendix. The
stress resultants with * as a superscript represent
higher order quantities because of the higher order
terms in the displacement fields (Eq. 11).

2.2.2 Equilibrium equations and boundary conditions

The governing equations of equilibrium for the stress
analysis are obtained using the principle of minimum
potential energy (PMPE), which states that for equi-
librium, the total PE must be stationary. In analytical

form it can be written as follows,
(U =Wy —We —Wey) =0

The individual terms of the above equation are
evaluated as follows

SU = / / / (axésx + 0,08y + 0,08, + Tay07,y,
X y z

+ széyxz + T}‘Zéy_vz) dx dy dZ (16)

Substituting the appropriate strain expressions using
Eq. 12 and integrating through the thickness to get the
stress resultants as defined in Eq. 15 and integrating
the resulting expressions by parts transforms the
Eq. 16 into the following form
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oU = f [Ny Oty +Ny v, + Oy 0w, + My 60,

+M,00y + 8,00, + Ny ou; + Ny ov, + Q) ow,
+M;, 50, +M; 60, + ;507 ] dx

+ ]{ [NyOuy + Nyyov, 4+ Qxow, + M 00, + M., 00,

y
+8,30, + N7 0w, + N2y ovi, + Q0w + M0
+M,30; + 52007 dy

ON, aNW . ON, ONy\ .
//{( )bu(,+(ay @x)bvo
. (GQX 00, )(3w0+ <6M GM”_QX) 50,

@y Ox

Q})ae

+

ON: ONj,
+( +f7 )59+<a ay )(514
aN* * * %
+ X‘—ZS o'+ aQ"'—l— 00, —2M, |ow;,
¢ ox Oy
30 Vo0r + (M Mo 565 50
*( a__ 0o+ (G430 )0
+( x+ % _ ;)50§}dxdy
(17)

Work done by externally applied load can be calcu-
lated by,

5Ws=//(p;5w+)dxdy (18)

where, w is the transverse displacement at any point
at the top surface of the plate and is given by

wh =w, + 10, + k" w; + h30!

Therefore after further simplification for A
W, — / / () owo + (pT1)30, + (pT )W

+(p1)50:} dx dy (19)

The work done by the edge stresses is given by

1
W, = E/ / (Exu + TV + fxzw) dydz
y z

on an edge x = constant (20)
1
= 5/ / (fxyu +o,v+ fyzw) dxdz
X Z
on an edge y = constant (21)

@ Springer

where the bars on the quantities refer to edge values.
On integration through the thickness the variation of
these expressions take the form

W,y = j{ (NxOtty + Nyyov, + Qrow, + M50,
y
+ M,,60, + 5,00, + N ou, + N;,0v;
+ 00w, + M;00; + M 60, + 5:607)dy  (22)

Xy

and

W,y = }{ (Nysdtty + Nydvy + 0,0, + M0,
X
+ M0, + 8,00, + N;, ou; 4 Ny v, + O} ow;
+ M, 00} + M; 60 + 5;6():) dx (23)
The variational Eq. 17 takes the following form when

the relevant foregoing expressions are substituted for
its individual terms.

11 (5o

(aQt + ) - (aM, M,

+

Oy 0 dy
aMx) Qv) 59‘) + <7+7 —N + h(p+))

* N* aN* @N*
aN Ny - 25 ) >+ < 25y> ov,
)

(o
(5 +
(6
(o

Qx) 00,

+

+

+

+h2(p+>

3 00" + aM" 6M o0
e o+ (5 -3 oo

( — 3N + h3(p+)> 50;} dxdy
X

7{[ ' — Nyw)Su, + (N,

X

+

+

+

)5"0 + (Qv Q_\')(SWo

+ (Myx — My, )30, + (M — M,)d0,
+ (Sy = 8,)00 + (N, — Ny )ous, + (N — N;)ov,
+(Q; — 0;)ow, + ( M:,)80:

(05— M;)o0; + (5, - s;)aat} S AL
!

ow, + (M, — M) 00,

30+ (N — N*)ou

— M50

Nxv _ny)évo ( )
Loy — My)00, + (S, _s)
: N;)(Svo+ (Q — 0;)ow) +(M
—M:},)(SO;—&—(S; $1)002] dy =0

(24)

The above Eq. 24 will be an identity only if each of the
coefficients of the arbitrary variation vanishes. The
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vanishing of the surface integral defines twelve and, on the edge y = constant
equilibrium equations, while that of the line integrals B No—W s NN
defines the consistent natural boundary conditions that Uo =Uo R Vo ="Vo Y
are to be used with this theory along the two edges. W, =W, 0, :@y 0, =0, My =M,,
Setting the individual integral terms in Eq. 24 to zero, _ _ _ S _%
the following equations of equilibrium and the con- 0y =0, My =M, d 0. =0 ey
sistent boundary conditions are obtained. w, =1 o N, :N;y an V=7 o N; :1_\7;
aNx any * _ —% « —k K e * bV
5“0 . x + ay =0 W, =W, Qy = Qy HX = Hx Mxy = Mxy
5\/0 . aa—lzy aé\;r} = 0) = Ov M; = My H: = az St = _y
00, 00, @0
L O Yot —
oW : Ox + Oy tro =0 2.2.3 Closed-form solution
oM, OM,,
00 : Ox + Jy —0:=0 Navier’s solution technique using the Fourier series
oM, OoM,, is used to obtain closed form solution of the 2D
50, 1 — = —0,=0
Y 0y ox Y plate problem. All displacements and loads acting
oS, aSy N on the FG plate are defined in terms of Fourier
00 : ox - dy N+ hip;) =0 series. The equilibrium equations are solved for
oN*  ON% (25) displacement amplitudes by substituting stress resul-
Out : 3 xx + ay’ —25 =0 tants in terms of displacements expanded in Fourier
ON*  ON* series.
v 6—y 3 =28, =0 For the simply supported boundary conditions, viz.,
62* aé* Atedgesx =0andx = a
owhi 24 X oM, + R (pf) =0
Ox Oy vo=0; w,=0; 0}'203 0.=0; M,=0;
005 T3 %0 vi=0; w,=0; 0,=0; 0;=0; M;=0;
59*'6M; aM;y_3Q*:O N,=0; N =0.
Y dy Ox Y
- as (28)
* x y * 3.4\
Z'a+a_y_3NZ+h(pz)_O Atedgesy =0andy = b
The boundary conditions, on the edge x = constant u,=0; w,=0; 0,=0; 0,=0; M, =0;
u, =1, Nx:ix VO:EO nyzyxy w'=0; wi=0; 9;:07 9:: : M;:O,
Wy =W, Qx:Qx 0,(:6’,( Mx:Mx .
Oyzﬁy Mxy:MXy . 0,=0, S, =S, N, =0; Ny =0.
w=w, " N=N. v O N =N (29)
W: :_M:o Q.= Qi* 0= % M, :,{t/[ x To satisfy the above boundary conditions the general-
05 =0, My =M,, 0: =0, Sy=S, ized displacement field is expanded in terms of double
(26) Fourier series as:
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o0 o0 o0 o0
MTX | nTY MTX | NTy
U, = E E U, COSs ——sin—— 0, = E E 0. €OS —— sin ——
a b a b
m=1 n=1 m=1 n=1
o0 o0 o0 o0
MTX  nTy MRX  nmy
Vo = E g Vo, SIl——COS —— | 0y, = E E 0y,,, sin——cos ——
—t L b —t L b
m=1 n=1 m=1 n=1
2\ mux . nmy 2\ & mux . nmy
Wy = E E Wa,,, S ——sin— = 0, = E E 0., sin——sin—=
m=1 n=1 m=1 n=1 (30
2 mux . nmy S mux . nmy )
u, = E E u, cos——sin 0; = E E 07 cos——sin
mn a mn a b
m=1 n=1 m=1 n=1

m=1 n=1 m=1 n=1
. NN~ , . mmx _ nmy . CAA ., . mMAX | nmy
w, = "; ; W, SIn——sin—= 0. = ,,; ; o, sin——sin—=
where u,,, 0y ,u,,.......... are called as displace- Ou, 0v,
ment Fourier amplitudes. Only odd values of m and dy ox
n=1,3,5,... a.re t?ken. . Ny 20, 0,

Further, substitution of Eq. 12 into stress resultant M T
relationship (Eq. 15), relation between the stress e = [Bl,u Y x ,
resultant and the reference plane strain quantities can Ny Quy  Ov,
be obtained. My ), dy Ox

Ou, 6_0; 6_0;
Ox Qy  Ox ) 4
20, 9.+ Wo
ox T
\ 0 00, (31)
Nx auo SX 2“: + a .
Ox x X
Mx Q* = [D]4x4 a * and
N o0 : 30, + 7.
X Ox Sx 4x1 Ox
M, v, 00;
Ny 6y . a.x 4x1
_ 0, + e
M, = [Al 00, J 0, »F i;)g
N; o S|y JrE
* * - 4x4 * owy
M, o} Qf 3 9)’ 5
N, Oy 5 4x1 06,
MZ Oy 4x1
* o0’
N; el Yy where,
Ou, 00, du’; 007, N o
0. e =22
2w . .
{—ocuom aby,, —ou, —al } sin o x sin fy
30°

11x1
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=¥y

m=1 n=1

dv, 06, ov: 007"
dy dy dy Gy

{~Buto,, — B0, — pu;,, — B0, }

Omn Omn

sinoxsin iy

o0 o0
o L .
Z Z { oW, Z} sinoxsinfy

m=1 n=1
[Qu, 00, 0uj 003"
Loy oy oy oy

{ Buo,, BOs,, Pu,, Oumn

[Ov, 00, OV}, 69*
| ox ox ax ax

{ avomn ae}"mn o(V(),,m Ymn
COs o/ x sin ﬁ y

ow, 00, 0w: 301" S &
ox ox ox ax} :ZZ

m=1 n=1

[() wh 0*

NgE
gk

3
[N
=
[N

po,.,

T

cos o x sin iy

——

I
Mg
NgE

3
Il
-
3
Il
-

H/—/

cos o xsin ffy

[Huﬁ

>

u
Ximn " Oy xnm

{OfWo,,,” zn & } cosaxsinfy

o0 o0
* * * .
[F)Vv 0 } E E { Vo, ‘mn} sinaxcos fy

m=1 n=1

w, 00, dw; 007
ay ay 6y

i i {ﬁwomnﬁgzm,, pw,, BO. } sinoxcos iy

m=1 n=1

and ff =

The following steps are taken to obtain the required
system of equilibrium equations (Eq. 25) in terms of
displacements.

in which, o ="

1. Equations 28-31 are substituted in Eq. 25.
2. The twelve equilibrium equations are multiplied

with  cos”™sin™*  sin”™ cos "Z’ ,sin ™ gin 2
cos ™ sin ”Z} ,sin”X cos "Zy ,sin ™™ gin "Zy , COs M
nny

nny mnx nny mnx "ﬂy mnx
sin—2> b 7SlIl COS —/= b 7SlI'l sin 2> b 7COS sin =2 D

sin”2 cos "Zy and sin”™sin %> respectlvely and

then mtegrated between the llmlts 0<x<aand
0<y<b.

mmnx mmnx

After following the above two steps with use of
orthogonality conditions for trigonometric functions
and collecting the displacement coefficients, one
obtains:

uomn 0
v‘:}onm 0
Omn
0, pg
Oy,, 0
Himn h (p;L
(X 12:12 o = 0 (32)
Vo 0
*
W:”m h2 (1); )
OX
*mn 0
Yo 0
or w P2) ) 12
Zmn 12x1

for any fixed value of m and n. The matrix [X] is
the coefficient matrix whose elements are listed in
Appendix.

The Fourier amplitudes are obtained by solving
Eq. 32. The Fourier displacement amplitudes are then
used to calculate the generalized displacement com-
ponents and their derivatives. The values of general-
ized displacement components and their derivatives
are then substituted in Eq. 15 to obtain the values of
stress resultants. The same displacement values are
also back substituted into the strain—displacement
relations (Eq. 4) to obtain the values of strain. The
material constitutive relations (Eq. 3) are then used to
compute the inplane and transverse stresses using 3D
equilibrium equations (Eq. 2).

2.2.4 Evaluation of transverse stresses

The transverse stresses (ty,Ty; and g;) cannot be
accurately estimated by constitutive relations
(Eq. 3). Here, the transverse stresses are obtained by
integrating the 3D equilibrium equations of elasticity
(Eq. 2) for each layer over the plate thickness.

After performing numerical integration along the
thickness of a FG plate, first-order and second-order
differential equations are obtained.
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z a%u a"}e 63 * 630*
0 X 0 ¥ — 4 X
”‘Z:_/<ai+z§yy)d”c‘ (33) “K 63“63*36*““&3)
’ ol OO0 By 2
s
. Slaay T ooy T N aoy T ooy
0oy Oty
Ty = _/ (65} T )dz e (34) r0, w00
p y +USI62+2S262+3362
T , , ol u, iy 00, s oul s o%0:
- — 66,;_’_60‘_’_2@%“ dz | dz laxaz 525x oy2 3 5% oy? 4@x6y
: ox2  Oy? Ox Oy 3 3 3 %
o \o (S a3e)y+ SRV
s §4—=
+2C3 + Gy (35) o TP T ey Ty
After substitution of Eq. 3 into above Egs. 33-35, the n 0%0. = o *w? o3 626* Py 1—v
final expression for the transverse shear and normal U\ 0y? 22 0y? By 6y2 2
stresses are written as, (S 63u0 . o 0, . 63 " . 5 (9;
aZu 629 az * 620* ! axay2 52 a @y 53 a ay 54 @x@yz
Txz = |:( 62+262+t362+46;> s 63\/0 iy a30y s 63 * iy 639;
Pu, R0, v 0 ‘arty T acey T oty T ey
0 o Y
“’( 180 +t26xay+t36x6y+4ax@y> +2C; + Cy (38)
* o0; where,
+U<t1%+2tza °+3183 —> _ _
e Ox Ox t o= Z_E() s Ez_Eo_@
1—v( %, 0, T Y P
" 2 < az+26y2+3ay ZEZ_tl _ZEZ EZ_EO S1
== w= T )77
2 ¢ aZvo 620 62 * 29* . . /L,
+I4a > L4t 1a ay+fzaxay+tgaxay+t4a ay +C 3:ZEZ)— 21y S3:Z}§Z—2jfz
36) ) )

_u(s 62u0+ 0%0, iy 0%u :j+ 620;
e = 16x6y 26x8y 38x6y 46x6y

N a2v+t629+t62*+t629*
o2 Ty TP T g2

+o ( 00: | 2, %% 4 3y, ag*)
dy Oy Oy
l—v/( o, 0,  u
2 < Vaxay T 2axy T P no
+t = il +1 = v, +h——= 0, +13 Cu G 4 aze);)} +C
oxdy | ox2 ox2 o2 ox2

(37)
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E —E,, A\ ZSE _313
2 (= VA e S
* < P > 2 2

50— 2E, _ 372E,  6zE, _6 E,—E, 53
22 23 2 2

in which, E(Z) = 15002 > and E'o = %

3 Numerical investigation

A computer code is developed in FORTRAN 90 by
incorporating the present mixed semi-analytical and
HOSNT formulation for the stress analysis of rectan-
gular FG plates under transverse loads. Numerical
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load

a, Source o:/5y(4,5,h) T,y(0,0, —h) Tae/Tyz(max) w(§.5.h)
2 Semi-analytical 0.3791 0.0833 0.2361 10.8456
HOSNT 0.3652 0.0908 0.2341 11.7217
5 Semi-analytical 0.2702 0.0832 0.2393 4.9165
HOSNT 0.2570 0.0915 0.2389 5.3749
10 Semi-analytical 0.2583 0.0823 0.2404 4.3203
HOSNT 0.2448 0.0905 0.2403 4.7407
50 Semi-analytical 0.2547 0.0820 0.2407 4.1433
HOSNT 0.2412 0.0901 0.2407 4.5528
Fig. 2 Through thickness 1.00
variation of a inplane
normal stress G,
b transverse shear stress
Ty, € inplane shear stress T,y 0.75-
and d transverse — s . Ivtical
displacement (W) for simply Z emi-analytica
supported square FG plate o HOSNT
under sinusoidal load 0.501
0.254
Semi-analytical
o HOSNT o
0.00- " T T - i
-0.2-0.1 0.0 0.1 0.2 0.3 0.4
(a)
1.00——0
m|
0.75+
< <
0.50+ 0.50+
0.25+ 0.25+
Semi-analytical
o HOSNT __ Semi-analytical
7, HOSNT
0.00-~ " — 0.00- i i " " "
-0.2 -0.1 0.0 0.1 7 8 9 10 11 12
() (d)
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transverse load

U Source o:(4,5,h) o,(4,5,h) T4(0,0,—h) T, (max) Ty, (max) w(%,5,h)
2 Semi-analytical 0.6545 0.3872 0.1080 0.3791 0.1896 20.0471
HOSNT 0.6536 0.3461 0.1184 0.3767 0.1884 21.7327
5 Semi-analytical 0.5536 0.2916 0.1060 0.3837 0.1919 11.8021
HOSNT 0.5463 0.2562 0.1165 0.3833 0.1917 12.9252
10 Semi-analytical 0.5424 0.2796 0.1053 0.3848 0.1924 10.8808
HOSNT 0.5341 0.2447 0.1157 0.3847 0.1923 11.9460
50 Semi-analytical 0.5391 0.2759 0.1050 0.3851 0.1926 10.5999
HOSNT 0.5304 0.2412 0.1154 0.3851 0.1926 11.6477
Fig. 3 Through thickness 1.00—03 1.00
variation of a inplane alh=2.0
displacement u, b inplane '
normal stress G,
c transverse shear stress T,; 0.75 0.75-
and d transverse shear stress _ —
7. for simply supported z Z
rectangular FG plate under
sinusoidal load 0.501 0.501
0.251 0.251
Semi-analytica Semi-analytical
O HOSNT u O HOSNT a
0.00 . : . O 0.00 &— : . . :
-0.2 -01 0.0 0.1 0.2 -0.2 0.0 0.2 04 0.6
(a) (b)
1.000 1.00c>

0.751 0.751
Z - . Z Semi-analytical
Semi-analytical O HOSNT
0.50{ O HOSNT 0.50

0.251 0.251

: 0.00z
0.0 . . 0.0
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investigations on various simply supported rectangu-
lar FG plates have been performed to establish the
accuracy of the simplified model presented in the
preceding sections of the paper. Comparison is
demonstrated between present semi-analytical and
analytical solutions based on shear-normal deforma-
tion theories (HOSNT).

Following normalizations are used here in all
numerical examples for the uniform comparison of the
results.

aorb __ _ _ 0,,0y,Ty
s = 7 O, Oyy Tay = —p0s2
100E,*w Tyzy T
— - vz
W=—"—""" Ty Tly =" (39)
Ppod Pos
En(u,v) o
uy=———=- 0,=—
Pohs Po

transverse load for different gradation factors

in which a bar over the variable defines its normalized
value. The following sets of material properties are used:

Material set 1 (Praveen and Reddy 1998; Reddy
2000)

E, = 70 GPa (Aluminum)
E;, = 151 GPa (Zirconia)

v=0.3
Material set 2 (Sankar 2001)

E, = 1GPa
E,/E, = 5, 10, 20 and 40

v=20.3

Illustrative examples considered in the present
work are discussed next in detail.

a, Eh/E() G.:/5,(%,2,h) Ty (0,0, —h)
Semi-analytical HOSNT Semi-analytical HOSNT
2 5 0.6341 0.5903 0.0993 0.1230
10 0.7931 0.7355 0.0727 0.0899
20 0.9868 0.9119 0.0523 0.0647
40 1.2186 1.1233 0.0369 0.0457
5 5 0.5091 0.4803 0.1102 0.1232
10 0.6365 0.6000 0.0839 0.0938
20 0.7938 0.7476 0.0629 0.0702
40 0.9863 0.9282 0.0463 0.0517
10 5 0.4921 0.4654 0.1114 0.1229
10 0.6150 0.5815 0.0857 0.0945
20 0.7670 0.7250 0.0649 0.0715
40 0.9536 0.9012 0.0482 0.0532
af, Eh/EO Tyz /Ty (max) w(4,5,h)
Semi-analytical HOSNT Semi-analytical HOSNT
2 5 0.5280 0.6479 23.1297 247710
10 0.5778 0.6881 31.9892 33.9580
20 0.6367 0.7541 43.6258 46.1202
40 0.6998 0.8129 58.7232 61.9529
5 5 0.5061 0.5095 11.8598 12.9185
10 0.5366 0.5509 16.9658 18.4424
20 0.5763 0.6026 24.1295 26.1991
40 0.6142 0.6353 34.0076 36.9109
10 5 0.5092 0.5179 10.5360 11.5496
10 0.5331 0.5476 15.1162 16.5607
20 0.5616 0.5739 21.6259 23.6848
40 0.6043 0.6235 30.7213 33.6431
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- - 1.00
NI alh-2.0 P $\T
Semi analytical =
N —0—E/E=5 \o\;\ﬁ .
—A—E /E,=10 3 Y
Ve —v—E,/E;=20 o v
NN — —E/E-40 0.751 b7
AN - i
s N _ [/
218580
L z y
\ \ 0.50
0.50- ?Xk Yo\ A
[0 v
1L 2
(o] v
SR , /v/Ajc/
R pe
025l b L Lo a/h=2.0 0251 HAS a/h=2.0
}3 X Kv \ Semi analytical VA/ Semi analytical
S N W —0—E/E;5 1045 —o—E,/E5
v N oy —A—E/E=10 4 —a—E /E=10
Y ox O o | — v EB/E=20 Y — —v— E,/E,=20
— A4 \ _ T h =0
U 000 YL N Kp| O - E/E40 0.00 w2 — —E/E=40
02 00 02 04 06 02 00 02 04 06 08 10 12 0.0 02 06 0.8
(a)

(b) (©

Fig. 4 Through thickness variation of a inplane displacement i, b inplane normal stress o, and c transverse shear stress T, for simply
supported square FG plate under uniformly distributed load for different gradation factors

3.1 Example 1

A square FG plate with simply supported end condi-
tion on all four edges and subjected to bidirectional
sinusoidal load has been considered to show the
effectiveness of mixed semi-analytical model over
the simplified plate models. Material set 1 is used.
The normalized inplane normal stress (G5, G,), inplane
shear stress (7,,), transverse shear stress (7,;) and
transverse displacement (w) for different aspect ratios
are presented in Table 3. Moreover, through thickness
variations of inplane normal stress (o), inplane and
transverse shear stresses (T,, and 7,;) as well as
transverse displacement (w) for an aspect ratio of 2 are

depicted in Fig. 2. The analytical solutions (HOSNT)
are used for comparison.

3.2 Example 2

A simply supported rectangular FG plate under
bidirectional sinusoidal load has been considered
here. Material set 1 is used. The normalized
inplane normal stresses (cy, @,), inplane and trans-
verse shear stress (T, Ty, T,;) and transverse
displacement (w) for different aspect ratios are
detailed in Table 4. Through thickness variations of
inplane displacement (), inplane normal stresses (o),
transverse shear stresses (T,; and 7,;) for an aspect ratio
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of 2 are shown in Fig. 3. The HOSNT solutions are
used for comparison.

3.3 Example 3

A simply supported square FG plate under uniformly
distributed load with various gradation factor (1) is
considered in this example to study the effect
of gradation factor and to show the capability of
presented models to handle the different kind of
loading. Material set 2 is used. The normalized inplane
normal stress (6%, G,), inplane and transverse shear
stress (Tyy, Txz, Tyz) and transverse displacement (W)
for different aspect ratios and for different gradation
factors (A = 5, 10, 20 and 40) are detailed in Table 5.
The HOSNT solutions are used for comparison.
Through thickness variations of inplane displacement
(u), inplane normal stress (¢,) and transverse shear

stresses (T,;) for an aspect ratio of 2 are shown in
Fig. 4.

4 Concluding remarks

A simple mixed semi-analytical model developed by
Kant et al. (2008) is extended here for 3D stress
analysis of simply supported FG plate. A two-point

BVP governed by a set of linear first-order ODEs is
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formed by assuming all primary variables in the form Age =Azn Ag7 =A23 Agg=Azs Agyo =Ass
of trigonometry functions along the inplane direction. Ag10 = Az Ag11 = A2z
The solutions ensure the fundamental relationship
between stress, strain and displacement fields within A77 =A33 A7 =Aszs A79 =435
the elastic continuum. No any simplifying assump- A710 =A36 A711 =A3z7
tions are made through the thickness of a FG plate. Ao — A Moo — A Aein— A
Analytical solutions based on shear-normal deforma- 88 — 44 A8 T A4S 4810 = 446
tion theory (HOSNT) are also developed and pre- Ag 11 = A4z
s.ente(.l for comparison and to show the effectlven.ess, Agg =A11 Agio=A1s Aoy =Ap3
simplicity and accuracy of a newly developed mixed
semi-analytical model over the other simplified plate Aro10 =A22 Ao = Az
models. The main feature of mixed semi-analytical A=Az
model is that the governing equation system is not B P B -
transformed into an algebraic equation system, thus where, Ej = ()¢’ and E, = oy and Aij =
the intrinsic behaviour of the physical system is Aj;, G,j=1to11)
retained to a greater degree of accuracy. The coefficients of matrix [B] are,
1—-v 1-v
By = A1 Bip= Ain
. 2 2
Appendix 1—v 1—v
B3 = A1z Bia= 5 Alg
The coefficients of matrix [A] are, 1—v 1—v 1-v
_ _ By, = Ary Boz= Arz Bog= Aoy
E, —E, hE, — Ay 4 2 2 2
A= F Ap=——7F7—""- 1—-v 1—v
* ~ B33 = 5 A3z B3g= 5 Azy
WE, —2A1, WE, —3A13
Aly=——F—"" Ay=—"7-—7" 1—v
}v )\, B4.4 — 2 A44
Ais=0vA11 Aig=VA1p A7 =VA3
Aig =vA1s A1g=As and Bij = B;; (i,j = 1to4)
Ao =A16 A=A [D] and [E] matrix are same as [B] matrix.
- The coefficients of vector {I} are
. . _WE, —4A3;
Ay =A13 Az =Ag Ayy=—"—7"- PP hp,—1 L= p, -2
A2’5 = UAl’z A2’6 =0 Az‘g A2’7 = UA273 /11 /ll ﬂvl
Ars = VArs Aso = Ays W, -3L  htp,—4l, . Kp,—5Is
’ o ’ h==7 5=— fo=—7
Ario =Azs Az =Az7 ! "l 'l
_ h®p), — 615
WE, — 5433 h=—"7—"
A3z =Axs Azy= — Azs = VA3 !
The coefficients of matrix [X] are
Aze =VAr3 Az7=0A33A33 =VA34 Azg9=A3;s ¥ Al 4 By [X]
= o
Az10 =Azs Az = Azg L1 L1 Ll
Xio=As0f+Briof Xi3=0
h®E;, — 6A = 2 2
Agq = h 7 43 Ass =VA14 Aspe =VArs X4 =A120" + Bi2f
s " VA A s X5 =A60f + B1r0f
A4,7 = UA3,4 A4,8 = 114 44 A49 = A45 X1,6 _ —Al,grx
410 = A4 Aq11 = Agg Xi7 = A2 +B1,3ﬁ2
Ass =A11 Asg=A1p Asp=A13 Asg=Ara Xig = Ar7of + Bisof
Asog=A15 Asio=As Asii =Aiz X190 = —24A4 00
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Xi10= 1‘\1,4062 + Bl,4ﬁ2
X111 = A1 goff + By soff
X120 =-3A 1

Xo0 = A15B* + By 1ol
X3=0

Xo4 = Asp0f + Brooff
Xo5 = Asgf® + Bi o
X26 = —Asoff

X257 = Aszof + Bizoff
Xo5 = Assf* + By 3o
Xp9 = —24As5100

X210 = As 40 + By 408
Xo11 = As,sﬂ2 + By 402
X210 = —34As5118

X33 =D 0> +E

X34=Dy 10
X3s5=E f

X356 =D 0 +E1,2ﬁ2
X37=2D; 0

X33 =2E,f
Xs0=D1 30> +E; 3
X310 =3D1 3

X311 =3E 38

X312 =D 40 +E1,4ﬁ2

X44=A220% +Byyf* + Dy
Xu5=A260f+ By 0
X46=—Ar90+Dipa

X7 =A230>+ B3> +2D) »
X488 =Ar 7084 B 308

X490 =—2A5 100+ D1 300

X410 =A240% +Braf* +3D; 3
Xa1 =Ar g0+ By sofs

X412 =—3As 1100+ D1 40

Xs5=Ascf + By o0® +Ej
Xs6=—Asof+E2p
Xs7=A¢30f+ By z0p
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X583 = 1‘\6,752 + Byso® +2E) 5
X590 = —2A610f + E1 3P

X510 = Ag 408 + By 408

X511 = As,xﬁz + 192,4062 +3E13
X512 = =3A611B + E14B
Xo6=D220* +Exnf* + Aoy
Xo7 =—Ag30+2D;,f

Xog = —Ao7f+2E22

Xo9 =D130° + Ex3° +2A0 10
Xo,10 = —Ag 40+ 3Ds 30

Xo,11 = —Aogf+3E23f

Xo.12 = D2.40* + Ez 4> + 349 1

X77 = A330% + B33 + 4D
X78 = Asz70f + B3 308

X79 = =243 1000 + 2D; 30

X710 = A349% + B34f* + 6D 4
X711 = Asgoff + B340

Xgg = A7,7ﬁ2 + B330° +4E;,
Xgo = —2A7.10P + 2E2 3P
Xg10 = A7408 + B3 408

Xs11 = A7B° + By 40* + 6Es 3
Xg10 = —3A7118 + 2E48

Xog = D3302 + E33% + 441010

X910 = —2A104% + 3D3 30
Xo 11 = —2A108f + 3E338

Xo.12 = D340 + E34° + 6A011

X10.10 = A4 40> + Byyf* +9Ds3

X011 = Aggoff + Bysofs

Ajo,12 = —3A4 110+ 3D3 40
Xi1.11 = Agsf* + Byao® +9E3;
Xi1,12 = —3Ag.11p +3E34P

X212 = Dy s + Esaf® + 9411 1

12)

in which, « =% and f§ = F and X;; = Xj;, (i,j = 1 to
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