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The demand for improved structural efficiency in 
space structures and nuclear reactors has resulted 
in the development of a new class of materials, 
called functionally graded materials (FGMs). FGMs 
have become one of the major research topics in the 
mechanics of materials community during the past 
fifteen years. The concept of FGMs was proposed in 
1984 by materials’ scientists in the Sendai (Japan) area 
as a means of preparing thermal barrier materials1. 
Continuous changes in the composition, microstructure, 
porosity, etc. of these materials result in gradients in 
properties such as mechanical strength and thermal 
conductivity. Thus, FGMs are heterogeneous materials, 
characterized by spatially variable microstructures, 
and thus spatially variable macroscopic properties 
are introduced to enhance material or structural 
performance. Particularly, material properties can be 

A simplified and accurate analytical cum numerical model is presented here to investigate the behavior of FG cylinders 
of finite length subjected to thermo mechanical load. A diaphragm supported FG cylinder under symmetric thermal 
and mechanical load which is considered as a two dimensional (2D) plane strain problem of thermoelasticity in (r, z) 
direction. The boundary conditions are satisfied exactly in axial direction (z) by taking an analytical expression in 
terms of Fourier series expansion. Fundamental (basic) dependent variables are chosen in the radial coordinate of 
the cylinder. First order simultaneous ordinary differential equations are obtained as mathematical model which are 
integrated through an effective numerical integration technique by first transforming the BVP into a set of initial value 
problems (IVPs). For FG cylinders, the material properties have power law dependence in the radial coordinate. Effect 
of non homogeneity parameters on the stresses and displacements of FG cylinder are studied. The numerical results 
obtained are also first validated with existing literature for their accuracy. Stresses and displacements in axial and 
radial directions in cylinders having various l/ri and ro/ri ratios parameter are presented for future reference.
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designed to vary continuously along structural geometry 
to prevent delamination and stress concentration in 
traditional multilayered structures.  The basic concept 
is to mix ceramic and metal such that the material 
properties continuously vary from one constituent 
material to the other. The spatially variable material 
properties make FGMs challenging to analyze.  Before 
these material devices are used in engineering design, 
it is very important that these are analyzed very 
accurately. For such a reason, present study focuses 
the analysis of FG cylinders using the exact approach. 
The uniqueness of this approach is: it first requires 
algebraic manipulation of basic elasticity equations 
like equilibrium, strain displacement and constitute 
equations. After this manipulation, this becomes the 
two point boundary value problem which governs the 
behavior of finite length cylinder which is plane strain 
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two dimensional problem in r, z plane and gives four 
first order simultaneous partial differential equations. 
This can be explained by the following equation2,3.
		  y r A r y r p r' ( ) ( ) ( ) ( )  	 (1)

In the domain, r1 £ r £ r2, where, y(r) is an n- 
dimensional vector of dependent variables; dependent 
variables in the present case can be described as 
y u w r rz

t
 , , ,s t . Choice of dependent variables is an 

important task. The variables which naturally appear 
on r = constant are chosen as dependent variables; 
such variables are called intrinsic variables. Remaining 
variables are described as auxiliary dependent variables 
which are dependent on intrinsic dependent variables. 
A(r) is a coefficient matrix of partial differential equations. 
p(r) is an n-dimensional vector of non homogeneous 
(loading) terms. For boundary conditions, any n/2 
elements of y(r) are specified at the two termini edges; 
mixed type of boundary conditions can be specified 
in this type of formulation. Recently, Desai and Kant4 
have obtained accurate stresses in laminated finite 
length cylinders subjected to thermo elastic load using 
similar numerical model. Research results obtained thus 
far have demonstrated that FGMs have great potential 
for improving material/structural performance in many 
engineering applications precisely because of their 
spatially graded heterogeneous microstructure. Some 
of the recent literature relevant in this study is described 
as follows.  Horgan and Chan5 investigated the effects 
of material inhomogeneity in fundamental boundary-
value problem of linear inhomogeneous isotropic 
pressurized hollow cylinder. The results are illustrated 
using a specific radially inhomogeneous material 
model for which explicit exact solutions are obtained. 
Chen et.al6 considered the axisymmetric thermoelastic 
problem of a uniformly heated, functionally graded 
isotropic hollow cylinder and proposed an analytical 
form of solution. Ye et.al7 studied the one-dimensional 
axisymmetric thermoelastic problem of a functionally 
graded transversely isotropic cylindrical shell and 
presented useful discussion and numerical results. 
Exact and explicit solution is derived. Tutuncu and 
Ozturk8 obtained closed-form solutions for stresses and 
displacements in functionally graded cylindrical and 
spherical vessels subjected to internal pressure alone 
using the infinitesimal theory of elasticity. Jabbari et 
al9 developed a general analysis procedure for tackling 
one-dimensional steady-state thermal stress problem of  

a hollow thick cylinder made of FGMs. Eslami et al10 
presented a general solution for the one-dimensional 
steady-state thermal and mechanical stresses in a hollow 
thick sphere made of functionally graded material. It 
is seen from the literature that accurate benchmark 
solutions using exact elasticity theory are rare for finite 
length cylinders under thermo-mechanical loadings. In 
this paper, governing elasticity equations of a simply 
(diaphragm) supported FG cylinder are used to predict its 
behaviour under longitudinally sinusoidal thermal and 
mechanical loads assuming that all material constants 
have a power-law dependence on the radial coordinate. 
By assuming a global analytical solution in the 
longitudinal direction satisfying the two end boundary 
conditions exactly. The equations are reformulated to 
enable application of an efficient and accurate numerical 
integration technique for the solution of the BVP of a 
cylinder in the radial coordinate. To enable application 
of numerical integration, BVP of a cylinder is converted 
into a set of IVPs. The basic approach to convert a BVP 
into a set of IVPs is also explained in the following 
sections. Finally, a comparison of the resulting stresses 
with the elasticity plane strain solution of infinitely 
long cylinder is carried out for ratios of the inner radius 
to outer radius of 1.5 and 1.05 for thermal loading and 
ri/ro = 1/10 for pressure loading; ratio of length to inner 
radius varying from 2 and 100. Results are validated 
with those given by Horgan and Chan5. 

In addition, one dimensional elasticity equations of 
an infinitely long axisymmetric cylinder are utilized 
to reformulate the mathematical model suitable for 
numerical integration. These equations are summarized 
in the Appendix. This has been done with a view to check 
and compares the results of the present formulation of 
finite length cylinder under uniform internal/external 
thermal and mechanical loads, when the length of the 
cylinder tends to infinity.

Problem Statement and Formulation 

Basic governing equations of an axisymmetric cylinder 
in cylindrical coordinates are (Fig.1a). 

Equilibrium equations
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Strain displacement relations
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Strains in terms of stresses are
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Stress-strains-temperature relations

	  	
(1d)

It is now considered that all material constants have 
a power-law dependence on the radial coordinate, i.e.,
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parameter, Eo = constant parameter which has the 
same dimension as E(r), ri = inner radius. E(r) and are 
function dependent on position. Spatial variation of 
Poisson’s ratio is of much less practical significance than 
Young’s modulus, hence, Poisson’s ratio is assumed to 
be constant. This assumption, commonly made in the 
literature on FGMs, leads to considerable mathematical 
simplification. It can be easily proved that when the 
material is isotropic and if  n = 0 for the homogeneous 
case, without taking thermal effect, results are same as 

given by Timoshenko and Goodier11 for plane strain 
elasticity solution for Lame cylinder.
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Fig. 1a C oordinate system and geometry of cylinder
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Fig. 1b F inite FG cylinder under sinusoidal external thermal and 
pressure loading

Stresses in terms of displacement components can 
be cast as follows:

	 	
(1e)

Boundary conditions in the longitudinal and radial 
directions are,
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at z = 0, l    u = 0; σz = 0;  at r = ri,
σr = τrz = 0; at r = ro, σr = -p(z), τrz = 0	 (2)

where load can be represented in terms of Fourier series 
in general form as follows,

		  p z p
i z

li
i

N

( ) sin
, , ..


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 

1 3 5

	 (3a)

in which pi  is the Fourier load coefficient which can be 
determined by using the orthogonality conditions and 
for sinusoidal loading,

		  p z p
z

l
( ) sin 0


	 (3b)

Radial direction r is chosen to be a preferred 
independent coordinate. Four fundamental dependent 
variables, viz., displacements, u and w and corresponding 
stresses sr,  and trz that occur naturally on a tangent 
plane r = constant, are chosen in the radial direction. 
Circumferential stress sq and axial stress sz  are treated 
here as auxiliary variables4 since these are found to be 
dependent on the chosen fundamental variables. A set of 
four first order partial differential equations in independent 
coordinate r which involves only fundamental variables 
is obtained through algebraic manipulation of Eqs. (1a)-
(1c). These are,
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where =
E

(1+ )(1-2 )
 g=

E
2(1+ )


  

and

and the auxiliary variables,
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A longitudinally sinusoidal variation of temperature 
is assumed as follows,

		  T r z T
z

lm( , ) sin   
 	 (6)

Variations of the four fundamental dependent 
variables which completely satisfy the boundary 
conditions of simple (diaphragm) supports at z = 0, l 
can then be assumed as,
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Substitution of Eq. (7) in Eqs. (4a)-(4d) and 
simplification resulting  from orthogonality conditions 
of trigonometric functions leads to the following four 
simultaneous ordinary differential equations  involving 
only fundamental variables. These are,
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and the auxiliary variables,
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Solution Technique

The above system of first order simultaneous ordinary 
differential equations Eqs. (8a)-(8d) together with the 
appropriate boundary conditions at the inner and outer 
edges of the cylinder (Eq. (11)), forms a two-point 
BVP. However, a BVP in ODEs cannot be numerically 
integrated as only a half of the dependent variables (two) 
are known at the initial edge and numerical integration 
of an ODE is intrinsically an IVP. It becomes necessary 

to transform the problem into a set of IVPs. The initial 
values of the remaining two fundamental variables must 
be selected so that the complete solution satisfies the two 
specified conditions at the terminal boundary12. This 
technique has been successfully applied to solutions of 
plate13-17. However, problem of cylindrical coordinates 
is not covered in that literature using elasticity theory. 
The nth (N = 4 here) order BVP is transformed into a 
set of (N/2+1) IVPs. ODEs are integrated from initial 
edge to final edge using the initial values specified 
in Table 1. The N/2+1 solutions given in the Table 
1 may be thought of as (i) one non-homogeneous 
integration which includes all the non-homogeneous 
terms (e.g., loading) and the known N/2 quantities at 
starting edge, with the unknown N/2 quantities at the 
starting edge set equal to zero, (ii) N/2 homogeneous 
integrations which are carried out by setting the known 
quantities at the starting edge as zero and choosing the 
N/2 unknown quantities at starting edge as unit values 
in succession and deleting the non-homogeneous terms 
from the ODEs. The solutions at the terminal boundary 
corresponding to the initial values are given in the right 
side columns in Table 1.  A linear combination of the 
(N/2+1) solutions must satisfy the boundary conditions 
at the terminal edge, i.e.,
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TABLE 1

INITIAL AND INTEGRATED VALUES

Integration number Initial boundary Terminal boundary Load term

u w sr trz u w sr trz

0 0 0 0(specified) 0(specified) Y1,0 Y2,0 Y3,0 Y4,0 include
1 1 0 0 0 Y1,1 Y2,1 Y3,1 Y4,1 delete
2 0 1 0 0 Y1,2 Y2,2 Y3,2 Y4,2 delete

Final integration X1 X2 0(specified) 0(specified) Correct 
value

Correct
value

Correct
value

Correct 
value

include
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where i indicates the n/2 variables consistent with 
the specified boundary values at terminal edge, j 
refers to solution number and ranges from 1 to n/2, 
Yi  is a vector of specified dependent variables at 
the terminal boundary and Xj is a vector of unknown 
dependent variables at the starting edge. Finally, a 
non-homogeneous integration with all the dependent 
variables known at the starting edge is carried out to get 
the desired results. Fourth order Runge-Kutta algorithm 
with modifications suggested by Gill18 is used for the 
numerical integration of the IVPs. A computer code 
in FORTRAN 77 is written. A complete flowchart for 
numerical integration is given in Fig. 21.

Results and Discussions

Example 1: FGM cylinder under pressure loading

A hollow cylinder is analyzed for external pressure 
loading by taking different ri/ro and l/ri ratios to cover 
both thick/thin and short/long cylinders. Three sets of 
numerical results are presented in Tables 2-3 and in Figs. 
2-8, i. e., results from the present finite length cylinder 
formulation, computations on the analytical formulae 
available for infinitely long cylinder under plane strain 
condition5 and numerically integrated values of the 
boundary value problem of the plane strain situation 
(1D), the first and the last are obtained by the specially 
developed numerical integration technique described 

in this paper.
Material properties and pressure loading are taken 

as follows.

v = 0, E0 = 2 ´ 108  KN/m2, po = 1000 KN/m2 	 (11)
Figure. 2-8 show the variation of radial and hoop 

stresses for ri/ro = 1/10 for various in-homogeneity 
parameters n = 0, 1/20, 1/5, 1/2 under external pressure 
loading. Radial and hoop stresses are compared with 
analytical solutions given by Horgan and Chan5 for 
infinitely long cylinder shown in Figs. 2-5.  It is clearly 
seen from Table 2-3, for higher l/ri ratios, results are 
much closed to Horgan and Chan5. Eq. (13) represents 
the hoop and radial stress given by Horgan and Chan5 
and is used in the present work for comparison. When 
the cylinder is subjected to a sinusoidal pressure load, 
the results within the limited central length zone only 
are compared with the plane strain one dimensional 
solutions. Figs. 6-8 show radial and hoop stresses for 
different values of inhomogeneity parameters n. The 
effect of inhomogeneity parameter on stresses is clearly 
seen these figures. As seen from Figs. 6-7, for l/ri ratios 
20 and 1000, the value of radial hoop stress decreases 
for higher value of inhomogenity parameters. Thus, by 
selecting a proper value of this parameter n, it is possible 
to tailor the stresses as per the design requirements by 
engineers. Radial and hoop quantities are maximum at z 
= l/2 whereas axial quantities are maximum at z = 0, l.

TABLE 2A

COMPARISON OF NON-DIMENSIONAL RADIAL STRESS s r z l ( / ) 2(z=l/2) THROUGH THICKNESS FOR DIAPHRAGM SUPPORTED 
ELASTIC CYLINDER UNDER PRESSURE LOADING FOR rI /rO = 1/10 AND n = 0 WITH ELASTICITY PLANE STRAIN SOLUTION 

FOR INFINITELY LONG CYLINDER AND FINITE CYLINDER FROM THE PRESENT WORK.

Present - Finite length cylinder (2D) s r z l ( / ) 2 Analytical9 and Present (1D)

r l/ri =5 l/ ri =20 l/ri =1000

0.1 0.0000 0.0000 0.0000 0.0000
0.19 0.0506 0.6668 0.7268 0.7303
0.28 0.085 0.8134 0.8796 0.8813
0.37 0.1299 0.8742 0.9354 0.9363
0.46 0.1934 0.9101 0.9619 0.9624
0.55 0.283 0.9365 0.9764 0.9767
0.64 0.4057 0.9579 0.9852 0.9854
0.73 0.5651 0.9757 0.991 0.9911
0.82 0.7536 0.9896 0.995 0.9951
0.91 0.9337 0.9982 0.9979 0.9979

1 1.0000 1.0000 1.0000 1.0000
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TABLE 2B

COMPARISON OF NON-DIMENSIONAL HOOP STRESS sq  ( / )z l 2 (z=l/2) THROUGH THICKNESS FOR DIAPHRAGM SUPPORTED 
ELASTIC CYLINDER UNDER PRESSURE LOADING FOR rI /rO = 1/10 AND n = 0 WITH ELASTICITY PLANE STRAIN SOLUTION 

FOR INFINITELY LONG CYLINDER AND FINITE CYLINDER FROM THE PRESENT WORK.

 Present- Finite length cylinder  (2D)

sq  ( / )z l 2
Analytical5and Present (1D)

r l/ri =5 l/ri =20 l/ri =1000

0.1 0.1062 1.8278 2.0015 2.0202

0.19 0.0703 1.1814 1.2932 1.2899

0.28 0.0693 1.0441 1.1408 1.1389

0.37 0.0783 0.9963 1.085 1.0839

0.46 0.0942 0.9761 1.0586 1.0578

0.55 0.1174 0.9676 1.0441 1.0435

0.64 0.1489 0.9647 1.0352 1.0348

0.73 0.19 0.965 1.0295 1.0291

0.82 0.2414 0.967 1.0255 1.0251

0.91 0.3013 0.9697 1.0226 1.0223

1 0.3628 0.9724 1.0205 1.0202

TABLE 3A

COMPARISON OF NON-DIMENSIONAL RADIAL STRESS s r z l ( / ) 2(z=l/2) THROUGH THICKNESS FOR DIAPHRAGM SUPPORTED 
ELASTIC CYLINDER UNDER PRESSURE LOADING FOR rI /rO = 1/10 AND n = 1/5 WITH ELASTICITY PLANE STRAIN 

SOLUTION FOR INFINITELY LONG CYLINDER AND FINITE CYLINDER FROM THE PRESENT WORK.

 Present - Finite length cylinder (2D) 

s r z l ( / ) 2
Analytical5 and Present (1D)

r l/ri =5 l/ri=20 l/ri =1000

0.1 0.0000 0.000 0.000 0.0000

0.19 0.0416 0.5609 0.6117 0.6148

0.28 0.0731 0.7120 0.7705 0.7720

0.37 0.1156 0.7876 0.8433 0.8442

0.46 0.1771 0.8388 0.887 0.8875

0.55 0.2652 0.8795 0.9173 0.9176

0.64 0.3876 0.9143 0.9403 0.9405

0.73 0.5488 0.9444 0.9589 0.9591

0.82 0.7416 0.9697 0.9746 0.9746

0.91 0.9285 0.9889 0.9881 0.9881

1 1.0000 1.0000 1.0000 1.0000
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Fig. 2  Distribution of radial and hoop stress through thickness for 
n=0 and ri/ro =1/10 under pressure loading.
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Fig. 3  Distribution of radial and hoop stress through thickness for 
n=1/5 and ri/ro =1/10 under pressure loading

TABLE 3B

COMPARISON OF NON-DIMENSIONAL HOOP STRESS sq  ( / )z l 2(z=l/2) THROUGH THICKNESS FOR DIAPHRAGM SUPPORTED 
ELASTIC CYLINDER UNDER PRESSURE LOADING FOR rI /rO = 1/10 AND n = 1/5 WITH ELASTICITY PLANE STRAIN SOLUTION 

FOR INFINITELY LONG CYLINDER AND FINITE CYLINDER FROM THE PRESENT WORK.

Present- Finite length cylinder (2D)

sq  ( / )z l 2
Analytical5 and Present (1D)

r l/ri =5 l/ri =20 l/ri =1000

0.1 0.082 1.4449 1.583 1.5939
0.19 0.0611 1.0514 1.1514 1.1486
0.28 0.0636 0.9868 1.0788 1.0772
0.37 0.0741 0.9776 1.0656 1.0646
0.46 0.0911 0.984 1.0685 1.0677
0.55 0.1153 0.9961 1.0765 1.0759
0.64 0.1483 1.0104 1.0862 1.0857
0.73 0.1915 1.0256 1.0963 1.0959
0.82 0.2459 1.0408 1.1063 1.1059
0.91 0.31 1.0555 1.1159 1.1156

1 0.3767 1.0692 1.1251 1.1248
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Fig. 4  Distribution of radial and hoop stress through thickness for 
n=1/20 and ri/ro =1/10 under pressure loading.

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 n=1/2

Ra
di

al 
str

es
s a

t z
 =

 l
/2

Radial distance r/R

 l/ri =5
 l/ri =20
 l/ri =1000
 Horgan and Chan (1999)

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n=1/2

Ho
op

 st
re

ss
 at

 z 
= 
l/2

Radial distance r/R

 l/ri =5
 l/ri =20
 l/ri =1000
 Horgan and Chan (1999)

Fig. 5  Distribution of radial and hoop stress through thickness for 
n=1/2 and ri/ro =1/10 under pressure loading.
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Fig. 6 C omparison of radial and hoop stress through thickness 
with different non-homogeneity parameters for ri/ro = 1/10 
and l/ri =20 under pressure loading.
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Example 2: FGM cylinder under thermal loading
A hollow cylinder is analyzed by taking two ro/ri ratios, 
1.05 and 1.5, which cover both thick and thin cases. 
Material properties for isotropic material are taken as 
follows.

v=0.3, E0=2´108 KN/m2, a0=2.306 ´ 10-6 l/°C (14)
Non-dimesnional parameters are chosen as follows 

under thermal loading

r
r
r

u w
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	 (15)

For thermal loading, numerical analysis is carried 
out taking various inhomogeniety parameter n as 
2, 1, -1 and -2 for both l/ri ratios 2 and 50. It is seen 
from Figs. 9-20 that inhomogeniety parameter has 
greater effect on distribution of thermoelastic stresses. 
Negative n gives compressive nature of radial stress. 
Axial displacement is constant over the thickness for 
both ro/ri ratios. Radial displacement is linear through 
thickness, and assumes higher value for positive n as 
compared to negative n. Parabolic variation of shear 
stress and radial stress is seen in both thin and thick 
cases with zero values at inner and outer surfaces of the 
cylinder. Hoop and axial stresses are linear through the 
thickness in the case of a thin cylinder. This change to 
nonlinear parabolic when the cylinder turns thick.
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Fig. 9  Distribution of radial displacement u  through thickness for 
functionally graded thick cylinder under thermal loading.
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functionally graded thick cylinder under thermal loading.
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Fig. 12	 Distribution of shear stress t rz through thickness for 
functionally graded thick cylinder under thermal loading
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Fig. 13	 Distribution of hoop stress s q
 through thickness for 

functionally graded thick cylinder under thermal loading.
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Fig. 14	 Distribution of axial stress s z   through thickness for 
functionally graded thick cylinder under thermal loading.
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Fig. 15	 Distribution of radial displacement u  through thickness for 
functionally graded thin cylinder under thermal loading.
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Fig. 16	 Distribution of axial displacement w  through thickness for 
functionally graded thin cylinder under thermal loading.
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Fig. 17	 Distribution of radial stress s r  through thickness for 
functionally graded thin cylinder under thermal loading.



288 	 Journal of Structural Engineering
	 Vol. 39,  No. 3, AUGUST - SEPTEMBER 2012

1.00 1.01 1.02 1.03 1.04 1.05

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
Sh

ea
r s

tre
ss 

at 
z=

0,
l

Radial distance r/ri

ro /ri=1.5
l/ri=2,n= -2
l/ri=2,n=1
l/ri=2,n=2
l/ri=50,n= -1
l/ri=50,n= -2
l/ri=50,n=1
l/ri=50,n=2

l/ri=2,n= -1

Fig. 18	 Distribution of shear stress  t rz  through thickness for 
functionally graded thin cylinder under thermal loading.
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Fig. 19	 Distribution of hoop stress   s q
 through thickness for 

functionally graded thin cylinder under thermal loading
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Fig. 20	 Distribution of axial stress  s z   through thickness for 
functionally graded thin cylinder under thermal loading.

Nomenclature

r, q, z Cylindrical coordinates
u,v,w Displacement components
sx, sq, sz Normal stress components  parallel to r, q, 

and z axis
tZr Shearing stress in cylindrical coordinates
er, eq, ez Unit elongations (normal strain) components 

in cylindrical coordinates
gzr Shearing strain component in cylindrical 

coordinates

E(r) Power law variation of Young’s modulus
a(r) Power law variation of  Coefficient of 

thermal expansion 
E0 Young’s modulus at inner radius
a0 Coefficient of thermal expansion at inner radius
T Temperature rise at any point in a cylinder
v Poisson’s ratio
ri Inner radius of the cylinder
r0 Outer radius of the cylinder
l Length of the cylinder
Tm Initial reference temperature

u w, Nondimensionalized displacement 
components

s s sqr z, , ,
Nondimensionalized normal stress 
components  parallel to r, θ, and z axis

t rz
Nondimensionalized shearing stress in 
cylindrical coordinates

r Nondimensionalized radius

R Mean radius ( )r ri0

2


Conclusion

An attempt is made here to analyze the FG cylinders 
which are subjected to elastostatic and temperature 
fields through exact semi analytical cum numerical 
approach which differs from conventional approximate 
finite element approach and is also free from any 
assumptions in the theory. Results are very useful when 
one is designing pressurized cylinders made up of FG 
materials. This approach can be applied to very thick 
cylinders. Technique is very convenient to obtain the 
stresses with an ease, since no separate integration is 
required to account the non homogeneity effect occurred 
due to gradation. This is an important feature of the 
proposed model. Also, it involves mixed variables in the 
derivations, both stresses and displacements are obtained 
accurately simultaneously. Systematic development of 
mathematical model has significantly contributed in 
understanding the behavioural phenomenon of Graded 
cylinders under extreme loading environment of thermo-
mechanical loadings. Mathematical model developed 
here is simple in nature and easily applicable for the 
large class of shell problems. Choice of fundamental 
variables is an important task for developing the model. 
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Numerical results presented for different ro/ri and l/ri 
ratios will be useful for future reference and can be used 
as benchmark results.
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Set now true values to all 
components of the vector y (s1)

Integration to s =s2

output

stop

Store intermediate values 
of the vector y(s) within the 

interval s1<=s<=s2

Path of integration

s=s2s=s1

noyes

noyes

Fig. 21 F lowchart of numerical integration

Appendix
Mathematical model for infinitely long cylinder

Equilibrium equations•	

		  







s s s
qr r

r r
0 	 (1A)

Strain-displacement relations•	
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Stresses  in terms of strains are•	
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First order two simultaneous ordinary differential •	
equations
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(4A)
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