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a b s t r a c t

A complete analytical model, which incorporates shear deformation as well as transverse normal thermal
strains is assessed for the thermal stress analysis of cross-ply laminates subjected to linear or gradient
thermal profile across thickness of the laminate. Primary displacement field is expanded in the thickness
direction using twelve degrees of freedom. Equilibrium equations in the present higher order shear and
normal deformation theory (HOSNT12) are variationally consistent and obtained using principle of vir-
tual work [1]. Numerical results of displacements and stresses are compared with three dimensional
(3D) elasticity solution and other two dimensional (2D) models.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayered composites have found wide use in many weight-
sensitive structures such as aircraft and missile structural compo-
nents, where high strength-to-weight and stiffness to-weight
ratios are essentials. A laminate is a multilayered composite made
up of several individual elastic layers called laminae. Every laminae
consists of fibers oriented in a specific direction to provide effi-
ciently the required strength and stiffness to laminate. Thermal
stress analysis is important in composite laminates due to high
transverse stresses and different thermal expansion coefficients
in the orthotropic layers of laminate. Delamination of layers and
longitudinal cracks in the matrix are the few failure modes in the
laminate because of severe thermal loading and requires accurate
prediction of interlaminar stresses. Higher order shear and normal
deformation theory (HOSNT12) is used to find thermally induced
stresses in the composite laminates. Normal deformation plays
very important role in the thermal analysis because of high ther-
mal expansion coefficient in the thickness direction.

Thermal stress analysis of isotropic beams, plates and shells
using classical laminated plate theory (CLPT) can be accessible
from Timoshenko and Woinowsky-Krieger [2]. Most of the early
research which is based on first order shear deformation theory
(FOST) [3,4], which included the thermal effects on laminates were
Reddy and Chao [5] developed finite element (FE) formulation of
laminates subjected to thermal loading based on FOST. Argyris
and Tenek [6] used linear thermal variation across the thickness

of the laminates to formulate FE model based on the first order
shear deformation theory. The prime objective of HOST models is
to remove the deficiencies from the CLPT and FOST. Cubic variation
is assumed in the in-plane displacement field resulting in parabolic
variation in the transverse shear stress with no need to consider
shear correction factors. Khdeir and Reddy [7] developed refined
plate theories to study the thermal stresses and deformations of
cross-ply rectangular laminates using stress-space approach. Kant
and Khare [8] developed a simple Co iso-parametric finite element
(FE) displacement model based on HOST formulations for the anal-
ysis of symmetric and unsymmetric laminates subjected to ther-
mal gradient. Rohwer et al. [9] removed the deficiencies in the
FOST by incorporating third and fifth order displacement approxi-
mations through the plate thickness. 3D elasticity equations can
estimate the correct results of the thermally induced quantities
like displacements and stresses. Tungikar and Rao [10] obtained
3D elasticity solution for temperature distribution and thermal
stresses in simply supported rectangular laminates. The actual
temperature distribution across the thickness of the laminate is
evaluated by solving the ordinary differential equations (ODEs) of
heat conduction without internal heat generation. The actual pro-
file also satisfies the interface heat flux continuity. Savoia and Red-
dy [11] also solved transient heat conduction equation for exact
temperature distribution across the thickness of laminates for 3D
stress analysis of symmetric four-layered square laminate sub-
jected to sudden uniform temperature change. Bhaskar et al. [12]
developed 3D elasticity solution for laminates under cylindrical
and bi-directional bending by assuming linear variation of thermal
profile through the thickness of the symmetric laminate. Kapuria
and Achary [13] assessed higher order zig-zag (HZIGT) model along
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with exact, zig-zag (ZIGT) and third order theory (TOT) models for
composite laminates subjected various thermal profiles across the
thickness. Kant et al. [14] developed semi-analytical solution for
constant and linear temperature variation through the thickness
of a laminated composites and sandwiches.

Here, in this paper we assess various approximate theories in
view of 3D exact solutions for laminates subjected to thermal
loading.

2. Higher order formulation

A complete analytical formulation and solution for a laminate
simply (diaphragm) supported on all the sides is presented. The
geometry of the laminate is such that the side ‘a’ is along ‘x’ axis
and side ‘b’ is on ‘y’ axis. The thickness of the laminate is denoted
by ‘h’ and is coinciding with ‘z’ axis. The reference mid-plane of the
laminate is at h/2 from top or bottom surface of the laminate as
shown in Fig. 1. The lamina reference axes system is also shown
in the figure with fiber direction. Figure also illustrates the mid-
plane positive set of displacements along (x–y–z) axes.

From linear theory of elasticity, the general strain–displace-
ment relationships for small displacements can be stated as under.
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Principal material coordinate system (1–2–3) is used for the
stress–strain relationship of fiber-reinforced composites. The axis
1 is aligned with the fiber direction, the axis 2 is perpendicular
to the fibers but in the plane of the layer, and axis 3 is perpendic-
ular to the fibers as well as to the plane of layer. The stress–strain–
temperature relationship in 1–2–3 coordinate system can be writ-
ten as [15].
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The above relationship for Lth orthotropic elastic layer can be
written in a matrix form as:
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It also can be written in a compact form as: {ei}L = [Sij]L{ri}L +
{ai}T where, [Sij] associated with this relationship is known as com-
pliance matrix and the inverse of the compliance matrix is stiffness
matrix or elasticity matrix [Cij].

As stated in Eq. (3), the compliance matrix involves 12 engi-
neering properties: three extensional moduli (E1, E2, E3), six Pois-
son’s ratios (m12, m21, m23, m32, m13, m31) and three shear moduli

(G12, G23, G13). These 12 engineering properties are not indepen-
dent. Since compliance matrix is symmetric, there are only nine
independent elastic properties with following relationships.
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The 3D stress–strain constitutive relationship with stiffness matrix
[Cij] for Lth lamina w.r.t. 1–2–3 coordinate system can be written as:

r1

r2

r3

s12

s23

s13

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

L

¼

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

2
666666664

3
777777775

L e1 � a1T
e2 � a2T

e3 � a3T

c12

c23

c13

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

L

ð5Þ

in which,
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and D = (1 � m12m21 � m23m32 � m31m13 � 2m12m23m31).
In the laminate coordinate system (x–y–z) the stress strain rela-

tionship for Lth lamina can be written as
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where (rx, ry, rz, sxy, syz, sxz) are the stresses and (ex, ey, ez, cxy,
cyz, cxz) are the strains with respect to laminate coordinate

Fig. 1. Laminate geometry with positive set of lamina/laminate reference axes,
positive displacement components, fiber orientation and thermal loading across the
thickness of the laminate.
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system (x–y–z). [Qij] are transformed elastic constants or stiffness
matrix and defined as per the following.

Q 11 ¼ C11c4 þ 2ðC12 þ 2C44Þs2c2 þ C22s4; Q 12 ¼ C12ðc4 þ s4Þ þ ðC11 þ C22 � 4C44Þs2c2;

Q13 ¼ C13c2 þ C23s2; Q 14 ¼ ðC11 � C12 � 2C44Þsc3 þ ðC12 � C22 þ 2C44Þcs3;

Q22 ¼ C11s4 þ C22c4 þ ð2C12 þ 4C44Þs2c2; Q 23 ¼ C13s2 þ C23c2;

Q24 ¼ ðC11 � C12 � 2C44Þs3c þ ðC12 � C22 þ 2C44Þc3s; Q 33 ¼ C33 ;

Q34 ¼ ðC31 � C32Þsc; Q 44 ¼ ðC11 � 2C12 þ C22 � 2C44Þc2s2 þ C44ðc4 þ s4Þ;
Q55 ¼ C55c2 þ C66s2; Q 56 ¼ ðC66 � C55Þcs; Q 66 ¼ C55s2 þ C66c2

ð8Þ

and Qij = Qji, i, j = 1–6, where, c = cos (a) and s = sin (a), a is the angle
made by fiber direction to x-axis. The transformations of coeffi-
cients of linear thermal expansion are given by

ax ¼ a1c2 þ a2s2; ay ¼ a1s2 þ a2c2; az ¼ a3 ð9Þ

where a1, a2, a3 are the linear thermal expansion coefficients with
respect to lamina reference axes and ax, ay, az are the linear thermal
expansion coefficients with respect to laminate reference axes. T is
rise in temperature with respect to reference temperature. The
expansion effects are linearly proportional to the temperature
change. The free thermal strains do not have any shearing deforma-
tions with respect to lamina reference axes.

2.1. Displacement field

In order to approximate the 3D elasticity problem to a 2D plate
problem, the displacement components u(x, y, z), v(x, y, z) and w(x,
y, z) at any point in the plate space are expanded in a Taylor series
in terms of thickness coordinate z, viz.,
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The first four terms of in-plane displacements (u, and v) involve a
nonlinear (cubic) variation through the thickness of the plate and
thus the warping of the transverse cross section is integrated in
the displacement field. The linear, quadratic and cubic terms in
the transverse displacement (w) gives rise to non-zero transverse
normal strain and stress. Thus the limitations of CPT as well as FOST
are finally eliminated.

Displacement field given by Eq. (10) is written in a concise form
and named HOSNT12 [1], as:

uðx; y; zÞ ¼ u0ðx; yÞ þ zhxðx; yÞ þ z2u�0ðx; yÞ þ z3h�xðx; yÞ
vðx; y; zÞ ¼ v0ðx; yÞ þ zhyðx; yÞ þ z2v�0ðx; yÞ þ z3h�yðx; yÞ
wðx; y; zÞ ¼ w0ðx; yÞ þ zhzðx; yÞ þ z2w�0ðx; yÞ þ z3h�zðx; yÞ

ð11Þ

The parameter u0,v0 are the in-plane displacement and w0 is the
transverse displacement of the middle plane. The hx, hy are the
rotation of the normal to the middle-plane about y and x–axes
respectively. The other parameters u�0; v�0;w�0; h

�
x; h

�
y; h

�
z are the

corresponding higher order terms in the Taylor’s series expansion
defined at mid-plane.

Table 1
Elastic and thermal material properties.

Example Reference Properties Normalization

2 [12]

EL=ET ¼ 25;
GLT=ET ¼ 0:5;
GTT=ET ¼ 0:2;
mLT ¼ mTT ¼ 0:25;
aT=aL ¼ 1125:

�w ¼ w

haLT0S2 ;

ð�u; �vÞ ¼ ðu;vÞ
haLT0S

;

ð�ri; �sijÞ ¼
ðri; sijÞ
ETaLT0

:

1, 2 [16]

EL=ET ¼ 15; ET ¼ 10 GPa;
GLT=ET ¼ 0:3356;
mLT ¼ 0:3;
mTT ¼ 0:3;
aL=a0 ¼ 0:015;
aT=a0 ¼ 1:0:

ð�u; �v; �wÞ ¼ ðu;v ;wÞ
a0T0h

;

ð�ri; �sijÞ ¼
ðri; sijÞ
a0T0E0

:

a0 ¼ 10�6=K; E0 ¼ 1 GPa

3, 4, 5 [13]

EL ¼ 181; ET ¼ 10:3 GPa;
GLT ¼ 7:17 GPa; GTT ¼ 2:87 GPa
mLT ¼ 0:28;
mTT ¼ 0:33;

aL ¼ 0:02� 10�6 K�1;

aT ¼ 22:5� 10�6 K�1:

kL ¼ 1:5 W�1
m K�1;

kT ¼ 0:5 W�1
m K�1

ð�u; �v; �wÞ ¼ 100ðu;v ;w=SÞ
aT ShT0

;

ð�rx; �ryÞ ¼
ðrx;ryÞ
aT ET T0

;

ð�syz; �sxz; �rzÞ ¼
ðsyz; sxz; SrzÞS

aT ET T0
:
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2.2. Governing equations of equilibrium

The principle of minimum potential energy is used, i.e.,

dðU þ VÞ ¼ 0 ð12Þ

where U is the total strain energy due to deformation, V is the po-
tential of the external loads and U + V = p is the total potential en-
ergy. d is the variational symbol. Substituting the appropriate
energy expression in the above equation, the final expression is
written as:Z þh=2

�h=2
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The following equations of equilibrium are obtained
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where qþz is mechanical loading term
The resulting stress resultants are defined as:
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Following are the mechanical boundary conditions used for simply
supported plate.

At edges x = 0 and x = a:

v0 ¼ 0;w0 ¼ 0; hy ¼ 0; hz ¼ 0;Mx ¼ 0;Nx ¼ 0; v�0 ¼ 0;w�0 ¼ 0;
h�y ¼ 0; h�z ¼ 0;
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Fig. 2. Variation of normalized (a) transverse displacement �w, and (b) inplane
displacement �u through the thickness of a unsymmetric [0�/90�] laminate under
gradient thermal loading for a/h = 5, 10, and 20.
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Fig. 3. Variation of normalized in-plane normal stress (a) �rx , and (b) �ry through the
thickness of an unsymmetric [0�/90�] laminate under gradient thermal loading for
a/h = 5, 10, and 20.
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M�
x ¼ 0;N�x ¼ 0;

At edges y = 0 and y = b:

u0 ¼ 0;w0 ¼ 0; hx ¼ 0; hz ¼ 0;My ¼ 0;Ny ¼ 0;u�0 ¼ 0;w�0 ¼ 0; h�x
¼ 0; h�z ¼ 0;
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The thermal load is expressed as doubly sinusoidal loading at top of
the laminate as.

T ¼
X1

m¼1;3;5

X1
n¼1;3;5

TðzÞmn sin
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a

� �
sin

npy
b

� �
ð17Þ

T(z) is obtained by considering equal rise and fall of the tempera-
tures at top and bottom of the laminate surface as

Tðx; y;�h=2Þ ¼ �T0 sin
mpx

a

� �
sin

npy
b

� �
ð18Þ

To suit the above temperature gradient, linear thermal loading
across the thickness is given by T(z) = 2T0 z/h, where h is the total
thickness of the laminate.

Transverse shearing stresses and normal stresses are calculated
by integrating the equilibrium equations of elasticity, i.e.,
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3. Numerical results

Following configurations of the laminates are used for the
thermal stress analysis under thermal gradient considering m = 1
and n = 1.

(a) Unsymmetrical laminated plate (0�/90�),
(b) Symmetric laminated plate (0�/90�/0�),
(c) Symmetric laminated plate (0�/90�/90�/0�) and
(d) Unsymmetrical laminated plate (90�/0�/90�/0�).

The lamina properties and the normalization coefficients for of
numerical results are tabulated in Table 1.
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The results are compared with published results of exact solu-
tion, higher order zig-zag theory (HZIGT) and zig-zag theory (ZIGT)
solutions in which transverse displacement is assumed constant
through the thickness and thermal expansion coefficient in z direc-
tion is taken as zero and third order shear deformation theory,

(TOT) [13]. Matsunaga [16] computed 3D exact results following
the formulations of Pagano [17] and also presented two-dimen-
sional global higher-order shear deformation theory for multilay-
ered laminates and sandwiches.

Table 2
Normalized displacements ð�u; �v ; �wÞ and stresses ð�rx; �ry; �sxy; �sxz; �syzÞ for three layered cross-ply (0�/90�/0�) laminated square plate simply supported on all edges subjected to
gradient thermal loading.

a/h SO �u �v �w �rx �ry �sxy �sxz �syz

2 PT 19.296 [�3.71] 143.408 [�5.27] 98.121 [1.37] 1334.96
[�3.95]

�654.37 [2.98] �255.94 [�4.95] 52.531
[�17.81]

�205.25 [22.25]

3D [12] 20.04 151.4 96.79 1390.00 �635.4 269.3 63.92 167.9

4 PT 18.178 [0.37] 75.9776 [�7.15] 42.020 [1.56] 1189.39 [0.54] �871.19 [1.76] �148.11 [�5.65] 88.618 [4.49] �136.27 [5.88]
3D [12] 18.11 81.83 42.69 1183.00 �856.1 �157.00 84.81 128.7

10 PT 16.531 [�0.47] 30.1846 [�3.71] 16.890 [�2.88] 1020.33 [�0.55] �1019.28
[0.52]

�73.48 [�3.67] 61.715 [1.94] �66.722 [1.07]

3D [12] 16.61 31.35 17.39 1026.00 �1014.00 �76.29 60.54 �66.01

20 PT 16.128 [�0.26] 19.8194 [�2.55] 11.953 [1.37] 979.754 [�0.22] �1052.76
[0.16]

�56.54 [�1.39] 34.174 [0.57] �34.862 [0.29]

3D [12] 16.17 20.34 12.12 982.00 �1051.00 �57.35 33.98 �34.76

50 PT 16.00 [�0.11] 16.6067 [�0.61] 10.468 [�0.36] 967.113 [�0.04] �1063.14 [0.01] �51.30 [�0.22] 14.08 [0.07] �14.13 [0.00]
3D [12] 16.02 16.71 10.50 967.5 1063.00 51.41 14.07 14.13

100 PT 15.983 [�0.10] 16.1352
[�0.103]

10.2442
[�0.15]

965.256 [�0.01] �1065.00 [0.00] �50.53 [0.00] 7.075 [0.02] �7.080 [0.00]

3D [12] 16.00 16.17 10.26 965.4 �1065.00 �50.53 7.073 �7.080

[12] 3D Exact, PT – present HOSNT12 [1], SO – Source, a/h – Aspect Ratio, [ ] % error = (present � exact) � 100/Exact.
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Table 3
Normalized displacements and stresses for square (b/a = 1) symmetric (0�/90�/90�/0�) laminate simply supported on all edges subjected to gradient thermal loading.

Quantity a/h Exact [12] Present HOSNT12 [1] HZIGT [13] ZIGT [13] TOT [13]

w (�0.5 h) 5 2.75290 2.79138 [1.40] [�9.70] [�38.03] [�43.02]
10 1.64490 1.64287 [�0.12] [�4.01] [�16.10] [�19.56]
20 1.31550 1.31398 [�0.12] [�1.24] [�5.04] [�6.29]
40 1.22830 1.22789 [�0.03] [�0.33] [�1.34] [�1.69]

w (0.0 h) 5 1.51260 1.51064 [�0.13] [0.29] [12.79] [3.70]
10 1.32500 1.32039 [�0.35] [0.45] [4.16] [�0.14]
20 1.23490 1.23316 [�0.14] [0.15] [1.16] [�0.18]
40 1.20810 1.20768 [�0.03] [0.05] [0.31] [�0.05]

rx (0.5 h) 5 0.74627 0.77721 [4.15] [�2.74] [�17.66] [�34.78]
10 0.75237 0.76048 [1.08] [�1.02] [�4.88] [�10.38]
20 0.76033 0.76241 [0.27] [�0.28] [�1.24] [�2.71]
40 0.76299 0.76351 [0.07] [�0.07] [�0.31] [�0.68]

ry (�0.25 h) 5 �0.75104 �0.79404 [5.72] [8.89] [14.52] [13.82]
10 �0.51518 �0.52420 [1.75] [3.76] [6.12] [4.57]
20 �0.41917 �0.42115 [0.47] [1.20] [1.95] [1.29]
40 �0.39155 �0.39202 [0.12] [0.32] [0.53] [0.33]

sxy (0.5 h) 5 �0.13164 �0.13120 [�0.34] [�7.54] [�14.68] [�18.14]
10 �0.09746 �0.09696 [�0.52] [�2.34] [�4.71] [�6.72]
20 �0.08682 �0.08623 [�0.68 [�0.63] [�1.30] [�1.96]
40 �0.08339 �0.08334 [�0.06 [�0.16] [�0.33] [�0.51]

sxz (0.0 h) 5 0.19328 0.19410 [0.42] [�5.71] [�4.78] [5.38]
10 0.28502 0.28661 [0.56] [�1.22] [�1.20] [1.76]
20 0.31933 0.31988 [0.17] [�0.29] [�0.29] [0.48]
40 0.32901 0.32916 [0.04] [�0.07] [�0.07] [0.12]

syz (0.0 h) 5 �0.14025 �0.13323 [�5.01] [�30.78] [�47.82] [�40.45]
10 �0.26317 �0.26309 [�0.03] [�4.60] [�7.20] [�4.71]
20 �0.31303 �0.31323 [0.06] [�0.99] [�1.56] [�0.89]
40 �0.32737 �0.32744 [0.02] [�0.24] [�0.38] [�0.20]

[12] 3D-Exact, present HOSNT12 [1] – {higher order zig-zag theory (HZIGT), zig-zag theory (ZIGT), third order theory (TOT)}, [ ] % error = (present � exact) � 100/exact.

Table 4
Normalized displacements and stresses for rectangular (b/a = 2) symmetric (0�/90�/90�/0�) laminated plate subjected to gradient thermal loading.

Quantity a/h Exact [12] Present HOSNT12 [1] HZIGT [13] ZIGT [13] TOT [13]

w (�0.5 h) 5 1.99510 2.03454 [1.98] [�12.67] [�50.44] [�51.20]
10 1.07800 1.08250 [0.42] [�5.96] [�23.94] [�24.60]
20 0.83326 0.83400 [0.09] [�1.94] [�7.79] [�8.04]
40 0.77097 0.77113 [0.02] [�0.52] [�2.11] [�2.18]

w (0.0 h) 5 0.71047 0.72012 [1.36] [7.57] [39.16] [37.04]
10 0.75036 0.75296 [0.35] [1.97] [9.28] [8.32]
20 0.75093 0.75155 [0.08] [0.50] [2.32] [2.04]
40 0.75036 0.75051 [0.02] [0.13] [0.58] [0.51]

rx (�0.5 h) 5 �0.46412 �0.47833 [3.06] [�2.53] [�23.45] [�34.55]
10 �0.38786 �0.39111 [0.84] [�1.04] [�7.50] [�11.32]
20 �0.36644 �0.36726 [0.22] [�0.30] [�2.02] [�3.07]
40 �0.36091 �0.36116 [0.07] [�0.08] [�0.52] [�0.78]

ry (�0.5 h) 5 0.96525 0.96428 [�0.10] [0.23] [0.53] [0.36]
10 0.97960 0.97937 [�0.02] [0.06] [0.13] [0.09]
20 0.98363 0.98354 [�0.01] [0.01] [0.03] [0.02]
40 0.98467 0.98462 [�0.01] [0.00] [0.01] [0.01]

sxy (�0.5 h) 5 0.05294 0.05247 [�0.88] [�5.78] [�12.91] [�8.34
10 0.03323 0.03298 [�0.75] [�2.31] [�5.26] [�3.33]
20 0.02768 0.02761 [�0.26] [�0.69] [�1.59] [�1.00]
40 0.02625 0.02623 [�0.08] [�0.18] [�0.42] [�0.26]

sxz (0.0 h) 5 0.01013 0.00674 [�33.46] [�16.66] [51.43] [88.39]
10 0.02589 0.02518 [�2.75] [�1.29] [5.67] [9.94]
20 0.03053 0.03034 [�0.62] [�0.25] [1.24] [2.19]
40 0.03175 0.03167 [�0.26] [�0.06] [0.30] [0.53]

syz (0.0 h) 5 �0.23707 �0.24150 [1.87] [�2.07] [�4.37] [�5.80]
10 �0.26932 �0.27066 [0.50] [�0.48] [�0.99] [�1.32]
20 �0.27871 �0.27907 [0.13] [�0.12] [�0.24] [�0.32]
40 �0.28115 �0.28126 [0.04] [�0.03] [�0.06] [�0.08]

[ ] % Error = (present � exact) � 100/exact.
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Example 1. A simply supported square unsymmetric (0�/90�)
laminate under bi-directional bending subjected to gradient ther-
mal loading is analyzed and results are compared with 3D
elasticity solution [16]. Fig. 2 shows variation of normalized
transverse displacement ð�wÞ and in-plane displacement ð�uÞ across
the thickness of the laminate. It is clear from the graph that the
transverse displacement ð�wÞ is constant and in-plane displacement
ð�uÞ is linear over the thickness. Cubical variation in primary
displacement field is quite sufficient to express the displacements.
Fig. 3 presents the variations in in-plane normal stresses ð�rx; �ryÞ
across the thickness. Present theory, HOST 12 [1] underestimates
the values at extreme faces of the thick laminates (a/h = 5). Fig. 4
demonstrates variations in transverse shear stresses ð�sxz; �syzÞ
where the results of the present theory are seen to be to that of
the exact solutions for thin (a/h = 20) as well as thick (a/h = 5)
laminates. The transverse shear and normal stresses ð�sxz; �syz; �rzÞ
are evaluated through integration of equilibrium equations of
elasticity.

Example 2. A simply supported square cross-ply symmetric (0�/
90�/0�) laminated plate under bi-directional bending and subjected
to linear thermal profile is presented here. Normalized results for
in-plane displacements ð�uÞ, transverse displacements ð �wÞ, in-plane
normal stresses ð�rx; �ryÞ and in-plane shear ð�sxyÞ, transverse shear
stresses ð�sxz; �syzÞ are tabulated in Table 2. Results are compared
with 3D elasticity solution [12] for very thick (a/h = 2) to thin (a/
h = 100) laminates and the present results are in good agreement
with elasticity solution.

Variations of the quantities over the thickness of the laminates
are expressed in the figures and compared with the 3D elasticity
solutions published [16]. Fig. 5a and b shows variations of in-plane
displacements ð�uÞ and transverse displacements ð�wÞ respectively
for aspect ratios 5, 10 and 20. Non-linear variations are observed

in the displacement quantities especially for a thick laminate (a/
h = 5). Variations in in-plane stresses ð�rx; �ryÞ for various aspect ra-
tios are displayed in Fig. 6 and transverse shear stresses ð�sxz; �syzÞ
are demonstrated in Fig. 7.

Example 3. A simply supported square (b/a = 1) symmetric (0�/
90�/90�/0�) laminated plate under bi-directional bending and
subjected to linear thermal profile is discussed here. Numerical
results are tabulated in Table 3. Results of present HOST 12 [1] for
transverse displacement ð �wÞ are more accurate than other models.
Present HOST12 [1], overestimates the values of the results for in-
plane normal stresses ð�rx; �ryÞ by 4–5% for thick (a/h = 5) laminate.
In case of in-plane shear stress ð�sxyÞ, present HOST12 [1] provides
very accurate values compared to other models. ZIGT provides
large errors in the stress quantities. Results of transverse shear
stresses ð�sxzÞ are excellent as compared with HZIGT, where % errors
in ð�sxzÞ are same for HZIGT and ZIGT. Underestimation of trans-
verse shear stresses ð�syzÞ is observed in case of present HOST12 [1],
by about 5%, where as other theories provide very large errors up
to 47%.

Example 4. A simply supported rectangular (b/a = 2) symmetric
(0�/90�/90�/0�) laminated plate under bi-directional bending and
subjected to linear thermal profile is considered. Numerical results
are compared in Table 4. Results of present theory for transverse
displacement ð �wÞ show excellent agreement with exact results as
compare to other models [13]. The % error in present HOST12 [1],
for in-plane stresses ð�rxÞ is marginally more than HZIGT model
but for in-plane stress ð�ryÞ, results are excellent. The % error in
present HOST12 [1], model for transverse shear stresses ð�sxzÞ is
more than HZIGT results for all aspect ratios. Present results for
in-plane shear stress ð�sxyÞ and transverse shear stress ð�syzÞ are close
to exact solution.

Table 5
Normalized displacements and stresses for square unsymmetric (90�/0�/90�/0�) laminated plate subjected to gradient thermal loading.

Quantity a/h Exact [12] Present HOSNT12 [1] HZIGT [13] ZIGT [13] TOT [13]

w (�0.5 h) 5 2.78690 2.72833 [�2.10] [�11.53] [�39.57] [�47.18]
10 1.84550 1.81823 [�1.48] [�4.90] [�15.82] [�18.79]
20 1.59370 1.58640 [�0.46] [�1.47] [�4.65] [�5.52]
40 1.52960 1.52816 [�0.09] [�0.39] [�1.22] [�1.44]

w (0.0 h) 5 1.54920 1.45080 [�6.35] [�3.38] [8.71] [�4.98]
10 1.52760 1.49774 [�1.95] [�1.35] [1.70] [�1.89]
20 1.51360 1.50621 [�0.49] [�0.38] [0.40] [�0.52]
40 1.50950 1.50811 [�0.09] [�0.09] [0.10] [�0.13]

rx (0.5 h) 5 0.64727 0.64434 [�0.45] [5.21] [�11.00] [�15.49]
10 0.59169 0.58960 [�0.35] [1.23] [-3.34] [�4.61]
20 0.57588 0.57529 [�0.10] [0.30] [-0.88] [�1.21]
40 0.57180 0.57167 [�0.02] [0.08] [-0.22] [�0.31]

ry (0.5 h) 5 �0.84264 �0.84209 [�0.07] [4.22] [5.38] [5.88]
10 �0.87679 �0.87744 [0.07] [1.13] [1.41] [1.54]
20 �0.88632 �0.88678 [0.05] [0.29] [0.36] [0.39]
40 �0.88877 �0.88915 [0.04] [0.07] [0.09] [0.10]

sxy (0.5 h) 5 �0.13797 �0.13587 [�1.52] [�16.98] [�24.00] [�26.69]
10 �0.11299 �0.11205 [�0.83] [�5.80] [�8.01] [�8.86]
20 �0.10601 �0.10578 [�0.22] [�1.59] [�2.19] [�2.41]
40 �0.10422 �0.10419 [�0.03] [�0.41] [�0.57] [�0.62]

sxz (0.25 h) 5 0.26478 0.28572 [7.91] [8.79] [10.16] [11.75]
10 0.29420 0.30015 [2.02] [2.25] [2.58] [2.95]
20 0.30246 0.30396 [0.50] [0.57] [0.65] [0.74]
40 0.30459 0.30493 [0.11] [0.14] [0.16] [0.18]

syz (0.25 h) 5 �0.41447 �0.43692 [5.42] [7.09] [7.63] [8.13]
10 �0.44710 �0.45353 [1.44] [1.82] [1.95] [2.06]
20 �0.45608 �0.45793 [0.41] [0.46] [0.49] [0.52]
40 �0.45839 �0.45904 [0.14] [0.11] [0.12] [0.13]

[ ] % Error = (present � exact) � 100/exact.
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Example 5. A simply supported square (b/a = 1) unsymmetric
(90�/0�/90�/0�) laminated plate under bi-directional bending and
subjected to thermal gradient is presented here. Numerical results
are compared in Table 5. The present numerical results for trans-
verse displacement ð �wÞ, at top of the laminate are close to exact
solution but mid-plane results are deviating by more than 6%.
Excellent results are observed for in-plane normal stresses as well
as in-plane shear stresses ð�rx; �ry; �sxyÞ. The present results are
deviating by more than 7% for transverse shear stresses ð�sxz; �syzÞ
in case of thick laminates (a/h = 5). Graphical variations of % errors

with respect to aspect ratios for various theories are demonstrated
in Fig. 8.

4. Conclusions

An efficient higher order shear and normal deformation theory
with twelve degrees of freedom in primary displacement field
HOSNT12 [1] is presented for thermal stress analysis of composite
laminates. Present theory accounts for thermal expansion coeffi-
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cient in the transverse normal direction in addition to planner
directions. Thermal loading with doubly sinusoidal variation along
x and y directions and linear or gradient thermal fields along thick-
ness direction is considered over the cross-ply laminates. The pres-
ent HOSNT12 [1] is assessed by comparison with the 3D exact and
other 2D models. ZIGT and TOT provide good results only in case of
very thin laminates with aspect ratio (a/h) of more than 40. HZIGT
estimates fairly accurate results for the moderately thick (a/h = 10)
to thin plate (a/h > 10).

It is clear from the comparisons, that the performance of pres-
ent HOSNT12 [1] model (which also accounts for thermal strains
in transverse normal direction) is excellent in the estimation of
global as well as local quantities of laminates subjected to thermal
gradient for almost all aspect ratios.
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