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Free vibration analysis of functionally graded elastic, rectangular, and simply supported
(diaphragm) plates is presented based on a higher-order shear and normal deformation theory
(HOSNT). Although functionally graded materials (FGMs) are highly heterogeneous in nature,
they are generally idealized as continua with mechanical properties changing smoothly with
respect to the spatial coordinates. The material properties of functionally graded (FG) plates
are assumed here to be varying through the thickness of the plate in a continuous manner.
The Poisson ratios of the FG plates are assumed to be constant, but their Young’s modulii
and densities vary continuously in the thickness direction according to the volume fraction
of constituents which is mathematically modeled as a power law function. The equations of
motion are derived using Hamilton’s principle for the FG plates on the basis of a HOSNT
assuming varying material properties. Numerical solutions are obtained by the use of Navier
solution method. The accuracy of the numerical solutions is first established through com-
parison with the exact three-dimensional (3D) elasticity solutions and the present solutions are
then compared with available solutions of other models.

Keywords: Higher-order shear and normal deformation theory; functionally graded plates;
material gradient index; Navier solution; free vibration; natural frequency.
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1. Introduction

Functionally graded materials (FGMs) are recently developed advanced composite
materials which have potential for wide use in various engineering appliances such
as nuclear reactors and high-speed spacecrafts. FGMs are inhomogeneous materials
in which the mechanical properties such as Young’s modulus of elasticity, Poisson’s
ratio, shear modulus of elasticity, material density, etc. vary smoothly and con-
tinuously in preferred directions. FGMs consisting of metallic and ceramic com-
ponents are well known to improve the properties of thermal-barrier systems. This
is because, cracking or de-lamination, which are often observed in conventional
multi-layer systems are avoided due to the smooth transition between the properties
of the components. A combination of ceramic and metal is used to make FGMs. The
analysis of FGMs has been considered by many researchers in recent years due to
the potential of the applications of such materials.

The concept of FGMs was proposed by the Japanese scientists' in early nineties.
Pagano,”® Srinivas and Rao® and Srinivas et al.’ developed the exact solutions of
simply supported laminated plates by using three-dimensional (3D) elasticity theory.
Their benchmark solutions have proved to be very useful in assessing 2D approxi-
mate plate theories by different researchers (see Refs. 6—8). Their methods are valid
for laminated plates and shells, where the material properties are piecewise constant,
but not applicable for finding solutions of plate problems with continuous in-
homogeneity of material properties such as FGMs. Suresh and Mortensen’ provided
an excellent introduction to the fundamentals of FGMs. Intensive studies have been
done to analyze the mechanical, thermal and dynamic responses of functionally
graded (FG) beams, plates and shells. Tanigawa'” presented a broad review of the
works on FG structures. Praveen and Reddy'! reported the response of FG ceramic
metal plates using a plate finite element formulation. Static behavior of FG rec-
tangular plates based on a third-order shear deformation theory (TSDT) is done by
Reddy'? to show the effects of the material distribution on the deflection and stresses.
Javaheri and Eslami'®'* presented the mechanical and thermal buckling of rec-
tangular FG plates based on the classical and high-order plate theories. Cheng
and Batra'®"!” have derived field equations for a FG plate and further these
equations are simplified for a simply supported polygonal plate. They established
an exact relationship between the deflection of a simply supported FG polygonal
plate given by the first-order shear deformation theory (FOST) and TSDT to that
of an equivalent homogeneous Kirchhoff plate. They used an asymptotic expansion
method for the analysis of 3D thermo-mechanical deformations of FG elliptic plates,
rigidly clamped at all the edges with material properties having power-law depen-
dence on the thickness coordinate. In addition, they have also presented the results
for the buckling and steady-state vibrations of a simply supported functionally
graded polygonal plate based on TSDT. Vel and Batra'® used the classical plate
theory (CPT), FOST and TSDT approximations, for the displacement fields for
a simply supported plate assuming trigonometric variation of each displacement
components and derived an algebraic equation for the frequencies. The assumed
forms of displacements satisfy boundary conditions for only simply supported edge
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conditions. Carrera and Brischetto'? deduced advanced theories for bending analysis
of FG plates using the Reissner mixed variational approach. Other recent studies
on the 2D models of FG plates may be found in Della Croce et al.,> GhannadPour
et al.,’! Nguyen et al.,”> and Matsunaga.?® Shahrjerdi et al.>* have studied the free
vibration of rectangular simply supported FG plates using second-order shear
deformation theory (SSDT). Kumar et al.”” have carried out the free vibration
analysis of FG plates using higher-order theory without enforcing zero transverse
shear stress conditions on the top and bottom surfaces of the plate using higher-order
displacement model. Benachour et al.?® have evaluated the natural frequency of
plates made of FG materials by using a four variable refined plate theory with an
arbitrary gradient considering only the four number of unknown functions taking
account of transverse shear effects and parabolic distribution of the transverse
shear strains through the thickness of the plate. Free vibration analysis of FG and
composite sandwich plates are carried out by Xiang et al.>” using a displacement
model consisting n-order polynomial satisfying zero transverse shear stress boundary
conditions at the top and bottom of the plate. Neves et al.’®?° have developed the
quasi-3D sinusoidal and hyperbolic shear deformation theories for the bending and
free vibration analysis of FG plate accounting through thickness deformations. For
inhomogeneous plates, several 3D solutions are also available but most of these works
are for laminated plates consisting of homogeneous laminate layers (see Refs. 4, 5
and 30). 3D analytical solutions for FG plates are very useful since they provide
benchmark results to assess the accuracy of various 2D plate theories. Main and
Spencer®! constituted a class of exact 3D solutions for FG plates with traction-free
surfaces. An asymptotic 3D theory of thermo-mechanical deformations of FG rec-
tangular plates was developed by Reddy and Cheng.?? Batra and Vel®® presented a
3D solution for the cylindrical bending vibration of simply supported FG thick plates
using displacement fields that identically satisfy boundary conditions to reduce the
governing equations to a set of coupled ordinary differential equations. The obtained
set of ODEs with variable coefficients is then solved by the power series method. The
thermal stresses in a ceramic—metal plate subjected to through-thickness heat flow
using the Mori—Tanaka scheme and the classical laminated plate theory were
examined by Tsukamoto.** Kashtalyan®® obtained a 3D elasticity solution for a FG
simply supported plates using the Plevako®® general solution methodology for the
equilibrium equations of inhomogeneous isotropic media.

In the present article, free vibration analysis of simply supported (diaphragm) FG
plates has been carried out using a higher-order shear and normal deformation theory
(HOSNT). Hamilton’s principle is used to obtain the governing equations of motion
for the free vibration of FG plates. The Navier solution method is used as the solution
technique for the free vibration problem of FG plate. The material properties are
considered to vary in the thickness direction according to power law distribution of
constituent volume fraction. The objective of present study is to study the influence
of the higher-order terms in the shear deformation theories of FG plate on its natural
frequencies. The effect of constituent volume fraction (material grading) of FGMs on
free vibration of FG plates is also captured. Natural frequencies evaluated by the
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present theory are presented in this article. These results are validated first with 3D
elasticity solutions and compared with the other models’ solutions that are available
in the literature.

2. Problem Description and Governing Equations

A linearly-elastic square/rectangular simply supported (diaphragm) FG plate of
uniform thickness h is considered as shown in Fig. 1.

A higher-order refined theory for the free vibration analysis of geometrically
thick FG plates is presented considering the effects of both the transverse shear and
normal strain/stress and the complete material constitutive relation. The theory
defines a displacement field in which the in-plane and out-of-plane displacements are
nonlinear cubic variations through the plate thickness coordinate. The material
properties of the FG plate are assumed to be graded in the thickness direction and
the volume fractions of its constituent materials, i.e. ceramic and metal are assumed
to follow the power law distribution'! in the thickness direction, expressed as:

z 1\ *
‘/C:(E+§)’ V,=1-V.. (1)
Here subscripts, m and c indicate the metal and ceramic constituents of FGM,
respectively; z represents the thickness coordinate (—h/2 < z < h/2), and k is the
material gradient index (k > 0). The variation of the composition of ceramic and
metal is linear for £ = 1. The value of k£ equal to zero represents a fully ceramic plate.
The variation of the ceramic volume fraction function V, versus nondimensional
thickness of plate z/h with different material gradient index k is plotted in Fig. 2.
The mechanical properties of FGM are determined from the volume fraction of
the material constituents. The Young’s modulus, E and density of material, p are

Y

=~ ~MIDDLE SURFACE
OF FG PLATE

|

a

Fig. 1. Geometry of FG plate with positive set of reference axes and its displacement components.
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Fig. 2. Variation of ceramic volume fraction with respect to nondimensional thickness of plate with
different power index k.

assumed to vary in the thickness direction based on the Voigt’s rule over the whole
range of the volume fraction.!! The Poisson’ ratio, v is assumed to be constant across
the plate thickness. The effective material properties of FGM with two constituents
can be expressed as:

1 k
E(Z) =EV.+E,V,=E,+ (Ec - Em) (% + 5)
g+ (- (24 L) (2)
— & t b L 9 )

z 1\*
p(Z) :p("/c + pm‘/m = Pm =+ (pc - pm) (E + 5)

=py+ (o0 — o) (% + %) | (2b)

Here subscripts b and t refer to the bottom (z = —h/2) and top (z = +h/2)
surfaces of FG plate. It is clear from the assumed variation expression that the
bottom surface of the FG plate is metal rich and the top is ceramic rich in
constituents.

2.1. Displacement-field

The displacement model assumed here as theoretical basis is based on a higher-order
refined theory (see Refs. 37—40) and is re-stated as follows:

w(®,y,2) = uo(w,y) + 20, (2,y) + 2uj(z,y) + 2°05(2,y),
v(@,y,2) = v,(x,y) + 20, (x,y) + 22v5(2,y) + 2°0,(x,y), (3)
w(@,y,2) = wo(x,y) + 20.(z,y) + 2°wi(x,y) + 2°0%(2,y).
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This model is named as HOSNT12 as it has twelve middle surface parameters giving
rise to nonvanishing transverse normal strain term varying quadratically through
the thickness. In the above relations, the terms u, v and w are the displacements
of a general point (z, y, z) in the laminate domain in the z, y and z directions,
respectively. The parameters u,, v, are the in-plane tangential displacements and w,
is the transverse displacement of a point (x, y) on the middle surface. The functions
0,,0, are rotations of the normals to the middle surface about y and x axes,
respectively. The parameters u,, vy, wy, 03,0;,0% and 0, are the higher-order terms
in the Taylor’s series expansion and they represent higher-order transverse cross-
sectional deformation modes.

2.2. Strain—displacement relations

The general linear strain—displacement relations®! at any point within a plate are:

ar—axv y_aya ’Y:(:y—ay axv z—aza (4)
_Ov | Ow ou Ow

V2= g, T oy’ Ve = 5o T o

The six quantities: three elongations (e,,¢,,¢,) in three perpendicular directions
and three shear strains (7,,,7,.,7;.) related to the three orthogonal planes are
called components of strain at a point. The strain expressions at a point P(x,y, 2)
corresponding to HOSNT12 given by Eq. (3) can be written as below. The strain
vector €7 is split into two parts, €5 and €%. The former corresponds to membrane-
bending part while the latter corresponds to transverse shear part. A superscript z
signifies that the parameters are defined at a general point P located at a distance z
from the reference surface of FG plate.

* *
o z €ro Ky € xo Ry
* *
2 €y Eyo Ry o) Ew )
EMB = = +z L (TF . +z
62 620 'kaz Ezo O
*
Vay Eayo Ray & ;yo Ky
=g, + 2K+ 2% + 23K, (5a)
z * *
Yyz o} R ¢ Kyz
€§ _ { Y _ Y Ny Yz + Z? ?: T 23 f
Yz ¢z Kz ¢:c Ky
* *
=@, + 26, + 2@, + 2°K], (5b)
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where,

(67‘05 Eyoy STyo

ou, Ov, Ou, n Jv,

Oz’ 83/ 8y ox

ou Z vy Ou) Ov}
(€ . )

0’ yoa zyo 8$ ay 8y + or

* 69z * 69z
("{zu "iyz) - 2U’o + ax 72 o + 82] )7
2: o) o

(Kogy Ky K2y Figy) =

0 06

891’3y’2w2’891+7y

x Oy oy Ox
0. 00, o0 o0,
x’ Oy’ Oy Ox

(Ko by Kay) =

* *\ a’wo * a a 8w

2.3. Stress-strain relations

A FG plate is modeled as an inhomogeneous plate. The material is assumed to be
isotropic/orthotropic with varying material properties along plate thickness direc-
tion. From linear elasticity theory, the generalized Hooke’s law for an orthotropic
material can be written as,

5 t4,j=1to6. (7)
Here o = (01, 09,03, T12, To, T13)" is the stress vector, C;;(2) is the plate’s stiffness
matrix and E;' = (e1,€1,€1,712: V23, 13)" is the engineering strain vector of the
material at a distance z from the middle surface with reference to the principal
material axes (1, 2, 3). It is assumed here that the structural reference axes (z,y, 2)
coincide with the principal material axes (1, 2, 3). For an orthotropic FG plate in a
3D state of stress/strain, the constitutive relations given by Eq. (7) can be written in

expanded form as follows®:

o VA M Cll 012 013 0 0 O 77 5 z

1 1

oy 012 022 023 0 0 0 €9

o3\ _[Cis G C3 0 0 0 €3 8)
7—12 O 0 0 044 O O 712

T23 0 0 0 0 Cyp O 723

13 LO 0 0 0 0 Cgl ‘T3
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in which,
0, = Al
c,, = 220
c,, = Bl
Cyy = Gy,

— Ugg U FEi(vy; + vgv
A23 32)7 Cpy = 1 (Vg = 31 Ua3) — Oy,
— V3V Ei(v31 + v9yv
A13 31), Cys = 1(vg1 K 91U32) — Oy,
— VyaUs1) Con — E(vs39 4 v15031) —C (9)
A ) BT A 32
Css5 = Gaz, Cgg = Gs,

A= (1 — U1aU21 — Ug3Uszy — U31 V13 — 2U12U23U31)~

Here, F,, E,, E5 are the Young’s modulii and Gy, Gos, G13 are the shear modulii for
an orthotropic plate in the three orthogonal planes. v;; is Poisson’s ratio giving the
strain in the jth direction caused by a strain in the ith direction.

2.4. Equations of motion and natural boundary conditions

The governing equations of motion appropriate for the chosen displacement field,
Eq. (3), can be derived using the Hamilton’s principle’? and represented as:

ON
5%:88]\;95 6;’
5 N, 0N,
T Qy Ox
§w0:a§:+a§j
M,
692:805)‘9{%88—;”—%
69y:8£’+%—62y
592:%+%—N2
5u;:8é\f+a§jy—zsx
502:8{;\:;; %725@,
6w§:aaci;+8i;2M;‘
o
R
80; - agz; +%—3QZ
wgzaaihaa—?—w;

= Tyii, + 0, + Tyiiy + 140,

= I, + o0, + Tyt + 140,

= Tyii, + Tof, + Tyio; + T407,

= Dyii, + 30, + Tyiil + 50,

- FZ;U.O + Fgay + F4U: + F5é;,
= Tyii, + T30, + Tyio; + T50,
(10)

- F3U0 + ].—‘491 + F5'u:§ + ]‘—‘69;7

o

- F3'.U.O + F40y + F5U: + Fﬁey,

= Fg”(‘l‘)o + F4éz + F5’UJ; + F69;

- F4UO + F59£ + Fﬁuz + F70;,

= T, + 50, + Do)+ T40,,

= Ty, + 50, + Dl + 76
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The inertia terms are defined as
h/2

I,y 05,1, T, T, 'y :/ p(1, 2,22, 23,24, 25 25)dz. (11)
—h/2

and the boundary conditions are on the edge x = constant,

u,=u, or N,=N,, v, =7, Or ny:J\_fmy,
wO = wo or QI = Q.T’ 01’ = éz or ME = M{E’
0, =0, or M, =M,, 0.,=0. or S,=S5,, 12)
ut=a’ or N:=Nj, v, =70, Or N;y:]v;y,
w;;:’lf); or Q;::_;km 0;::9_; or M;:Mt')
9;:92 or M;y:M;y, : =80, or S:=S.
on the edge y = constant,
u, =1, or N, =N,, v, =0, or N,=N,,
w, =W, or Qy :va 0. :0_.’3 or sz: M:(:yv
6‘y:§y or My:My, 6,=80, or Sy:S_'y, (13)
up=u) or Nj, =N, vy =0, or N;j=N,,
wy=w, or Q) =Q,, 0. =0, or My, =My,
0:=0, or M;=DM, :=0. or S;=S5..
y y y Y z z y y

2.5. Relationship between stress-resultants and middle surface
displacements

The force and moment resultants of FG plate are given by

M, M
x x (o™
M, M; h/2 . Q h/2
'Z y = / Ty [Z 23]d2, |:QL Q::| — / {Tzz}[l ZZ]dZ,
Mz 0 —h/2 02 Qv Qy —h/2 Tyz
M,, M;, | Tay
N, N} / o, /
N N* h/2 SL SI h/2
4 v :/ % [1 2%]dz, [ *} —/ {T“}[z 23 ]dz
N, N: —n2 | 9= S, Sy —n2 U Tyz
N,, Nz, | Tay
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In the terms of displacements, we obtain

o

*

Se

The matrices [A], [A'], [B], [B’], [D], [D’], [E], [E’] are the

9w,

Ju,
ox
v,
dy
ouy
ox
vy
dy
0.
0>
00,
ox
a0,
oy
003,
ox
a0,
dy

w,

0,

ox

0
ow}

ox

U

00,
ox
00
oz

+ D]

Ju,

v,
ox
ouy
Oy
o}
ox
a0,
dy
a0
ox
093,
Ay
a0,
or

0@/
ow,
dy
0y
ow}
dy

v,

00,
dy
00*

Jy

N,

Ty
N *

Ty

zy

M*

Ty

0
ow}
ox

U

a0,
ox
00’
ox

rigidity matrix, and their elements are defined in Appendix A.

3. Analytical Solution

+ [B]

Jdu,

v,
Ox
ou}
Oy
ov}
Ox
00,
dy
a0,
ox
003,
dy
a0,
ox

0,

00*
Oy

sub matrices of plate

Among all the analytical methods available the Navier solution technique is very
simple and easy to use when the plate is of rectangular geometry (side dimensions
= a and b, thickness = h) with simply supported (diaphragm) edge conditions. This
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method of solution for Kirchhoff plate problems of rectangular geometry is well
documented.®

3.1. Solution technique

Navier solution technique using the double Fourier series is described in this
section. The boundary conditions for the simply supported (diaphragm) FG plate
are:

At edges =0 and = = a:

v,=0; w,=0; 6,=0; 0,=0;, M,=0; N,=0,

. (16)
v,=0; w,=0; 0,=0; 0:=0; M;=0; N;=0
At edges y=0and y =b:
u,=0; w,=0; 0,=0; 0,=0;, M,=0; N,=0,
17
U, =0; wy,=0; 0,=0; =0, M,=0; N,=0 (17)

The generalized displacement field, to satisfy the above boundary conditions, is
expanded in double Fourier series as:

o0 o0 oo oo
o . - —iw ¢ * * - o —iw
U, = Uy, COS QT Sin Byye “m', ug = U, COS Q@ sin Buye “m',

m=1 n=1 m=1 n=1
oo oo o0 o0
p— 3 - —iw ¢ * * . —iw ¢
v, = Vo SN cosBye Tm', wg = v, sina,,xcosByyem'
m=1n=1 m=1 n=1
o0 o0 o0 o0
— 3 : —iw ¢ * * . i —iw ¢
w, = w, sina,z sinB,ye wm', wg = w, sina,z sinB,ye m
m=1n=1 m=1 n=1
oo o0 i o0 o0 i
. 1w . —wWw
0, = E E 0, cosayrsinf,ye m', 0 = E E 6, —cosa,T sin B,ye '
m=1n=1 m=1 n=1
o0 o0 . o) o) .
. —W . —w
6, = E E 0, sina,,xcosfye “m', 0, = E E 6, sina,,xcosB,ye “m',
m=1 n=1 m=1 n=1
o0 o0 . o0 o0 .
o . . —iw ¢ * * : : Tt
0, = E E 0, sina,zsinf,ye “m', 0= E 0. sina,z sinf,ye “m',
m=1 n=1 m=1 n=1

(18)
where, «,,, = mm/a, and 3, = nr/bin which m,n=1,2,3,....

Using the above generalized displacement field and following the standard steps
for collecting the coefficients of the twelve displacement degrees of freedom in a
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(12 x 12) system of simultaneous equations we obtain the following eigenvalue
problem for any fixed values of m and n:

S

omn

<
o

'mn

g

O,

mn

<>
8

mn
'mn

mn

([Xhzxm - W%nn[M]uXu) = {0} (19)

S

S 2 >
(s}

Q ¥

mn

QO *

'mn

mn

* B ¥

Ymn
*
9 Zmn 12x1

Here, [X] is the stiffness coefficient matrix whose elements are presented in
Appendix B. [M] is the mass matrix, whose elements are provided in Appendix C.
Wy, 18 the circular natural frequency of vibration of the system associated with mth
mode in z-direction and nth mode in y-direction. u, ,v, ,w, .0, .0, 0. ,ug, |

,0,, ,and 7 —are the unknown coefficients. The above eigenvalue

* * *

v

Omn? Omn? 7 Tmn
problem can be solved for the various eigenvalues and associated eigenvectors. To
obtain nontrivial solution, we must set |[X] — w2,,[M]| = 0. The real positive roots of
Eq. (19) yield the square of the circular natural frequency w,,, corresponding to
vibration modes (m, n). The lowest eigenvalue gives the square of the fundamental

natural frequency of vibration of FG plate.

4. Numerical Examples

The present higher-order shear and normal deformation theory (HOSNT12) has
been used to analyze the free vibration of simply supported (diaphragm) FG plates
for different aspect ratios. The material properties are assumed to be graded in the
thickness direction as a power law model. A computer program is developed in
MATLAB 7.0 based on the theoretical formulation described earlier for the free
vibration analysis of FG plates. The parallel modules are also developed for the free
vibration analysis of isotropic and orthotropic plates. The natural frequencies for the
simply supported (diaphragm) isotropic, orthotropic and FG plates are evaluated
using the developed codes. In order to validate the accuracy, the numerical results
using present model (HOSNT12) are compared with the other models’ solutions, viz.
CPT, FOST, SSDT, TSDT, refined plate theory (RPT) and the exact 3D elasticity
solutions available in the literature. The comparisons of the results are presented in
tabular form. The errors in the solutions are computed as follows:

Value obtained by a theory

% Error = ( — 1) x 100.

Corresponding value by exact solution
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The following material properties are used in the analysis:
Isotropic Plates:

E=1Gpa, G=[E/2(1+v)], v=0.3.

Non-dimensional frequency, @, = Wnnh/p/G.
Orthotropic Plates:

Q11 = 160 GPa, Ey/E; = 0.5250, G5/ E; = 0.2629, Gi3/E; = 0.1599, Gy3/E; =
0.2688, vy = 0.4405, vy = 0.2312.

Non-dimensional frequency,@,,, = Wpph/p/Q11-

FG Plates:

Metal (Aluminum): E,, = 70Gpa, v =10.3, p,, = 2707kg/m>

Ceramic (Zirconia): E, = 151 Gpa, v=0.3, p, = 3000kg/m*
Non-dimensional frequency, @, = Wmnh/ pe/Ge

Natural frequencies (bending frequencies predominantly) using HOSNT12 for
isotropic and orthotropic square plates are tabulated in Tables 1 and 2, respectively.
The tables also show the 3D elasticity solutions,* solutions by Reddy’s theory****
named as TSDT, Mindlin’s theory which is FOST, CPT taking into account rotary
inertias, results using the displacement model considered by Senthilnathan et al.*®
and results of RPT.“® Present results are obtained using same values of m and n as
those used for obtaining results using 3D elasticity exact theory.?

The HOSNT12 has been used to evaluate the fundamental natural frequency of
simply supported (diaphragm) FG plates for different values of aspect ratios (b/a).
The exact values of nondimensional natural frequencies of simply supported (dia-
phragm) isotropic plates using 3D elasticity theory are available for b/a = 1 and
a/h =10 in Ref. 4. The exact value of the same is available for b/a = v/2 and
a/h =10 in Ref. 47. The nondimensional natural frequencies of simply supported
(diaphragm) isotropic plates are available using CPT without and with rotary
inertia (CPT1 and CPT2), FOST, TSDT in various references. A comparison
between these results and the presented results (HOSNT12) is shown in Table 3. The
comparison shows that the presented results are much closed to the 3D elasticity
solutions. The influence of constituents volume fraction on the natural frequencies
of FG plate is studied by varying the value of material gradient index, k. As can be
seen from the presented results, the natural frequencies decreased with increasing the
value of power index, k. The natural frequencies of rectangular plate with b = v/2a
are smaller than the other one, b = a.

The nondimensional fundamental natural frequency of square and rectangular
FG plates is presented in Table 4 for different side-to-thickness (a/h) ratios using
HOSNT12. In order to obtain the frequencies of simply supported (diaphragm) FG
plates with various aspect ratio (b/a), thickness ratio (a/h) and material gradient
index (k), a separate formulation for FOST and associated computer program has
also been developed. The results of FOST considering the shear correction factor
are also provided in Table 4. This has especially been done in order to compare the
HOSNT12 results with FOST results for FG plates. The results show that for a/h
more than 10, i.e. thin plates, FOST and HOSNT12 results are very closed. But, for
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Fig. 3. Nondimensional fundamental natural frequency @,,,(m = n = 1) of simply supported (diaphragm)
FG square plates (b = a) as a function of side-to thickness ratio (a/h) for different “k” using HOSNT12.
(a) for a/h = 2 to 10; (b) for a/h = 10 to 100.

thick plates, i.e. a/h less than 10, the natural frequencies by HOSNT12 and FOST
are different. The effectiveness of HOSNT12 can be easily observed by the presented
results for thick FG plates.

The nondimensional fundamental natural frequency of simply supported (dia-
phragm) FG plates against material gradient index, k for various side-to-thickness
ratio, a/h and for b/a = 1 and /2 are plotted in Figs. 3 and 4 based on HOSNT12.
The fundamental natural frequency decreases significantly with increase of the metal
percentage of FGM. It is basically due to the fact that the Young’s modulus of
ceramic is higher than metal. It is worth noting that, as a/h increases, the natural
frequencies decreases because of the decrease in stiffness of the plate. Also, when the
ratio a/h is small (thicker plates), the difference between the results of HOSNT12
and FOST results are more.

(a) (b)

Fig. 4. Nondimensional fundamental natural frequency @,,,(m = n = 1) of simply supported (diaphragm)
FG rectangular plates (b =+/2a) as a function of side-to-thickness ratio (a/h) for different “k” using
HOSNT12. (a) for a/h = 2 to 10; (b) for a/h = 10 to 100.
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Table 5. Nondimensional fundamental natural frequencies @,,,, and @,,,, of simply supported (diaphragm)
FG plates using HOSNT12.

Material gradient index (k)

Aspect Thickness k =0 (Ceramic) k=1 k=10 k=100 (Metal)
ratio (b/a)  ratio (a/h) @mn O @mn . Omn . DOmn .
b/a=1 2 1.5185 3.7670 1.3160 3.2650 1.1481 2.8482 1.0990 2.7264

5 0.3421  5.3042 0.2943 4.5621 0.2646  4.1022 0.2485 3.8535
10 0.0932  5.7713  0.0799 4.9573 0.0727  4.5067 0.0678  4.2029
20 0.0239 59219 0.0205 5.0780 0.0187 4.6332 0.0174 4.3104
50 0.0038  5.9650 0.0033 5.1138 0.0030 4.6710 0.0028  4.3424

100 0.0010  5.9713 0.0008 5.1190 0.0008 4.6765 0.0007  4.3470
b/a= /2 2 1.2292  3.0493 1.0638 2.6389 0.9330 2.3144 0.8902  2.2083

5 0.2634 4.0845 0.2264 3.5107 0.2043 3.1668 0.1915  2.9686
10 0.0704 4.3679 0.0604 3.7472  0.0550 3.4106 0.0512  3.1782
20 0.0179  4.4510 0.0154 3.8164 0.0140 3.4832 0.0131  3.2398
50 0.0029  4.4753 0.0025 3.8367 0.0023 3.5046  0.0021  3.2579

100 0.0007  4.4788  0.0006 3.8396 0.0006 3.5077  0.0005 3.2605

There is one another kind of nondimensionalization of natural frequency available
in the literature (Refs. 24—27). The nondimensional frequency in these references is
defined as @,,, = (Wyna?/h)\/p./E.. This kind of nondimensional fundamental
natural frequency, @,,,(m = n = 1) is evaluated using HOSNT12 for various k, a/h
and b/a, and is presented in Table 5.

It can be clearly seen from the presented results that this nondimensional fre-
quency also decreases with the increase of material gradient index (k). Here, it is
interesting to note that this nondimensional frequency increases with the increase of
thickness ratio (a/h) of the plate. This is because of the fact that thickness ratio
(a/h) term is getting multiplied into the nondimensional frequency parameter.

In Table 6, nondimensional frequency parameter &,,, of rectangular FG plates
based on HOSNT12 is compared with the SSDT solutions by Shahrjerdi et al.”*

Table 6. Natural frequencies of rectangular FG plate (b/a = 2, a/h = 10).

Nondimensional natural frequencies, @, = (Wyna?/h)\/pe/E.

k=0 k=05 k=1 k=2

mxn Mode SSDT! HOSNTI12 SSDTf HOSNT12 SSDT! HOSNTI12 SSDT! HOSNTI2

1x1 1 3.6983 3.6911 3.3713 3.3664 3.2225 3.2179 3.1354 3.1291
1x2 2 5.8498 5.8323 5.3359 5.3238 5.1002 5.0886 4.9594 4.9434
2x1 3 12.0345 11.965 10.9940 10.946 10.5062 10.461 10.1985 10.137
2x2 4 14.0144 13.921 12.8103 12.745 12.2421 12.180 11.8784 11.794
2x3 5 17.2325 17.096 15.7660 15.668 15.0670 14.973 14.6092 14.481
3x2 6 26.3462 26.051 24.1494 23.941 23.0749 22.876 22.3273 22.059
3x3 7 29.2257 28.871 26.8100 26.554 25.6184 25.372 24.7781 24.446

fTaken from Shahrjerdi et al.”*
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The material properties of FG plates are same as being used by Shahrjerdi et al.,?*
and restated as follows:

Metal (Al): E,, =68.9Gpa, v=0.33, p, =2700kg/m>

Ceramic (ZrO,): E.=211Gpa, v=0.33, p,=4500kg/m>

The influence of constituents volume fraction on the natural frequencies of
FG plate is studied by varying the value of material gradient index, k. As can be
seen from the presented results, the natural frequencies decrease with increasing
value of material gradient index, k for the same mode. For the same value of k,
natural frequency increases for the higher modes. Actually, this kind of non-
dimensionalization defies the physical characteristics of the frequency parameter,
although mathematically it is all right. With the increase of thickness ratio (a/h) of
the plate, the plates become thin, hence becoming more flexible, the fundamental
natural frequency must decrease because of the decreasing stiffness of plate.

5. Concluding Remarks

In this article, a 2D plate theory for the free vibration analysis of moderately thick
isotropic, orthotropic and FG elastic, rectangular plates is derived using HOSNT12.
Free vibration analysis of plates with simply supported (diaphragm) edge conditions
is carried out. The material properties of FG plates are assumed to vary in the
thickness direction according to power law distribution. The effects of the side-
to-thickness ratio, the material gradient index of constituent volume fraction on the
natural frequencies are also discussed. Navier solution technique employing double
Fourier series is used to get the results with desired level of accuracy. The numerical
solutions are compared with the available exact 3D solutions under similar edge
conditions. FG plate is modeled using power law and the obtained numerical sol-
utions have high accuracy compared to the available 3D elasticity solutions. These
high accurate numerical solutions can be used as benchmark to assess any other
analytical/computational model for FG plates. The results show that the natural
frequencies decrease with increasing the material gradient index as well as side-
to-thickness ratios. FOST and HOST have almost the same accuracy for thin FG
plates, but HOSNT12 has improved accuracy for thicker plates, therefore it is better
to use this theory for thick plates. Although the presented formulation for FGM
using HOSNT12 involves large computations compared to FOST and CPT, but the
obtained numerical results are very accurate when compared to the 3D elasticity
solutions. The benefit of this approach is that a 2D theory is able to predict solutions
as good as 3D elasticity solutions.
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Appendix A.
Elements of plate rigidity matrices using HOSNT12
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where
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As structural reference axes (x,y,z) of the FG plate coincide with the principal

Iseo 21561 1561
Igq 20565 I3 Ises
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Ies 2I564 Is6a Isee |
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material axes (1, 2, 3) of the FG plate, thus:

Qu =Ci, Quu=Cr Qi3=0Ci3 Qo =Con, Qg = Coy,
Qus = Cuy, Q55 = 055» Q66 = 066» Q= Qo = Q34 = Q56 =0.
Appendix B.

Elements of coefficient matrix “X” using HOSNT12

X = Al,lo‘?n + Bl,lﬂ%v
Xi9=A120,,08, + Bioa,B,,
X13=0,

Xia= A1,7043n + B1,553n

Xi5 = A150,0, + By 60,00,
Xlﬁs = —A1,504m7

X7 = A 302, + By 3532,

Xig = A1400, 0, + By, By,
X9 = _Al,lla'nn

X140 = Argas, + Bi7 65,
X111 = A11004, 8, + By g, By,
X112 = —A16Un,

Xoo = A2,2ﬂi + B2,204$m

X553 =0,

Xoy = As 70,8, + Bi50, B,
Xos = A2,85% + B1,6a72n>

Xoo = —As50u,

Xo7 = Ay30,, 8, + By za,,6,,
Xog = A2,45?L + Bl,4013m

Xog = —A211 08,

Xo10 = A29y By + Brrau, By,
Xou1 = Az,loﬂi + Bl,Sagm
Xo1o = — A0,
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X33 = Dygay, + B2,
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Xy4 = Arqal, + Bss 5+ Dy,

X3a = Doy, Xy5 = A7, 3, + Bs g, By,
X35 = E11080, Xy = —Arsan, + Digay,

X35 =Digap, + Ei 407, Xy7 = Agzol, + B335 + Dy,
X3z = Doy, Xyg = A7 0,3, + Bs 4,5,
X38 = E1 500, Xy9=—Arnnam + Dygap,

Xzg = D1,4013n + E1,4B?u
X310 = D1,3am,
X311 = E135,,
X319 = Dy 70k, + Ey 787,

Xs5 = As,sﬁ% + Bs,safn + FEy 4,
X565 = —As506, + E160n,

X57 = Ag 30,8, + By 3, B,
X558 = A8,4ﬂ72z + 33,401% + Ey 5,
X59 = —Ag110, 8, + By 40, B,
X510 = Az 9y Bn + B3, By,
X511 = As 1085 + Bygar, + By 3,
X512 = — A8, + E175,,

X717 = Azzal, + By3fs + 2Ds5,
X7g = A3 40,8, + Bo g, By,
X79=—Asn1y, +2D; 40,

X0 = A3,9Oé?n + Bmﬂ% +2D; 3,
X711 = A31004, 8, + Baga,, B,
X710 = —As60a,, +2D; 700,

Xog = Dogal, + Ey 437 + 241111,
Xo10 = Dygary, — 2411 gy,

Xo11 = Ey38, — 2411105,

X120 = Dyqap, + By 785 + 24,16,

_ 2 2
X410 = Argas, + By 78, + Dy s,
X4,11 = A7,10amﬁn + B3ﬁ8amﬂm
X412 = Az, + Dy qa,,

Xe = D3,60451 + 33,652 + A5 5,
X6,7 = D350, — A5,3ama

Xos = B350, — As 45

Xo9 = Dyyan, + E3 48+ As 11,
Xﬁ,lo = D3,3 Ay, — A5,9am7

X6,11 = E3,3ﬂn - A5,105n7

Xo12 = Dyrar, + E3 707 + Asy,

Xgg = A4aBr + Bogar, +2E;s5,
Xgg = —Ay110,, 0, + 2E5 405, 3,
Xs10 = Ay, B, + Byray, By,
Xgi1 = A4,1oﬁi + BQ,SOé?n +2F; 3,
Xg1o = —Ay6B, + 285708,

X010 = Aggarl, + By7 B2 + 3Dy 3,

Xioa1 = Ag10% By + Bigan By,
X2 = —Ag gy, + 3Dy 700y,

X1 = A1082 + Bigal + 3Ey3, Xig1o = Dysal, + Ey785 + 3As,
X112 = — A8, + 3B 706,,

where Xl_} = Xj,i (fOI' all Z,])

Appendix C.
Elements of mass matriz “M” using HOSNT12
Ml,l = 1—‘17‘1\41,4 = F27 M1,7 = F?n Ml,l() = F47
M1,2 = M1.3 = M1,5 = M1,6 = M1,8 = M1,9 = M1,11 = M1,12 =0,

1350004-23



Int. J. Str. Stab. Dyn. 2013.13. Downloaded from www.worldscientific.com
by INDIAN INSTITUTE OF TECHNOLOGY on 08/16/13. For personal use only.

D. K. Jha, T. Kant & R. K. Singh

Mo =T, Mys =Ty, Myg =13, Myq; =Ty,

M2,3 = M2,4 = M2,6 = M2,7 = M2,9 = Mz,lo = M2,12 =0,

M3y =11, M36 =1y, M3g =13, M35 =Ty,

Mgy =My = M3y = Mg = Msg= M3, =0,

My, =T5,My7 =Ty, Myy0=T5,

Mss =13, Msg =1y, M5y, =I5, M55 = Mys7; = M5y = My 0 = Ms 15 =0,
MG.,G = F3a M6,9 = F4,M6,12 = F5a M6,7 = M6‘8 = Mﬁ,lo = M6,11 =0,

Mys=Myg=Myg=Myg=M;11 = My12=0,

(C.1)

My 7 =T5, M0 =T, Myg = Myg = Mz = M5 =0,
Mgg =T5, Mg =Tg, Mgg = Mg 9= Mg15 =0,

Myg =T'5, Mg 19 =T'g, My 10 = Mg 11 =0,

M0 =T'7, Myg11 = Myg12 =0,

M1 =17, M40 =0,

M12,12 =TI,

Where, Mlj = sz (fOI' Z,j =1- 12)
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