Fundamental parameters of traffic flow

Transportation Systems Engineering

Introduction

- Traffic flow
 - Complex movements
 - Stochastic in nature
- Traffic Engineering
 - Control and management of facilities
 - By modeling driver, vehicle, road, and environmental conditions

Traffic stream parameters

- Measures
 - Quantitative (for modeling)
 - Qualitative (for evaluation)
- Characteristics
 - Macroscopic
 - Microscopic

Traffic stream parameters

- Fundamental parameters
 - Speed
 - Flow
 - Density
- Derived parameters
 - Time headway
 - Space headway
 - Travel time

Speed

- A quality measurement of travel
 - Drivers and passengers perception of journey
 - Rate of motion in distance per unit of time
 - Speed or velocity is given by
 \[v = \frac{d}{t} \]
 - Where
 - \(v \) is the speed of the vehicle in m/s
 - \(d \) is the distance traveled in meters
 - \(t \) time in seconds
- Various types
 - Spot speed
 - Running speed
 - Journey speed
 - Time mean speed
 - Space mean speed
Speed

• Spot Speed
 – instantaneous speed at a point
 – Application:
 • Geometrical design
 • Location and size of signs
 • Design of signals
 • Safe speed
 • Speed zoning
 • Accident analysis
 • Congestion analysis

Spot Speed measurement
 – Enoscope
 – Pressure contact tubes
 – Radar speedometer
 – Time-lapse photography
 – Video image processing

Running speed
 – Average speed over a stretch of road
 – Does not consider stop time
 – Takes care of variability in traffic and geometric conditions

Journey speed
 – Effective speed between two points
 – Journey speed < Running speed
 • journey follows a stop-go traffic
 – Journey speed ≈ Running speed
 • comfortable travel conditions.

Time and space mean speeds

• Time mean speed \(v_t \)
 – Average speed of all the vehicles passing a point on a highway over time period
 – Mean speed of vehicles over a period of time at a point in space
 – Point measurement

• Space mean speed \(v_s \)
Time and space mean speeds

- **Space mean speed** v_s
 - Average speed of all the vehicles in a given section of a highway at a given time instant
 - Mean speed over a space at a given instant of time
 - It is an instantaneous measurement

- **Relationship**
 - $v_s \neq v_s$ normal traffic
 - $v_s = v_s$ if all vehicles have same speed

Flow

- **Definition**
 - Number of vehicles that pass a point on a road during a specific time interval
 \[q = \frac{n}{t} \]
 - n, number of vehicles passing a particular point in a road
 - t, time duration in hours
 - q, the flow vehicles/hour

- **Units**
 - Vehicle/day
 - Vehicle/hour
 - Vehicle/second

- **Variations of Volume with time**
 - Monthly
 - Weekly
 - Daily
 - Hourly

- **Type of averaging**
 - Average Annual Daily Traffic (AADT)
 - Average Annual Weekday Traffic (AAWT)
 - Average Daily Traffic (ADT)
 - Average Weekday Traffic (AWT)

- **Average Annual Daily Traffic (AADT)**
 - The average 24-hour traffic volume at a given location over a full 365-day year
 - Total number of vehicles passing the site in a year divided by 365

- **Average Annual Weekday Traffic (AAWT)**
 - The average 24-hour traffic volume occurring on weekdays over a full year
 - It is computed by dividing the total weekday traffic volume for the year by 260
Flow

• **Average Daily Traffic (ADT)**
 - An average 24-hour traffic volume at a given location for a period of time less than a year
 - Six months or a season
 - A month or week
 - ADT is valid only for the period over which it was measured

• **Average Weekday Traffic (AWT)**
 - Average 24-hour traffic volume occurring on weekdays for some period of time less than one year
 - Six months or a season
 - A month or week
 - AWT is valid only for the period over which it was measured

Flow

• **Measurements**
 - Manual counting
 - Detector/sensor counting
 - Moving-car observer method

Density

• **Definition**
 - Number of vehicles occupying a given stretch of road expressed as vehicles per km.
 \[
 n = \frac{n_x}{x}
 \]
 - \(n_x\) number of vehicles in the stretch
 - \(x\) distance in km
 - \(k\) flow vehicles/km

Derived parameters

• **Derived parameters**
 - Time headway or headway
 - Related to flow
 - Distance headway or spacing
 - Related to density
 - Travel time
 - Related to speed
Derived parameters

- **Time headway**
 - Time difference between any two successive vehicles when they cross a given point
 - Adding all headways
 \[\sum_{i=1}^{n} h_i = t \]
 - But flow is defined as
 \[q = \frac{n}{t} = \frac{n}{\sum_{i=1}^{n} h_i} = \frac{1}{h_{\text{ave}}} \]
 - Av. Headway = Inverse of flow

- **Distance headway**
 - Distance between corresponding points of two successive vehicles at any given time
 - Adding all the spacing
 \[\sum_{i=1}^{n} s_i = x \]
 - But density is defined as
 \[k = \frac{n}{x} = \frac{n}{\sum_{i=1}^{n} s_i} = \frac{1}{s_{\text{ave}}} \]
 - Av. Spacing = Inverse of density

Derived parameters

- **Travel time**
 - Travel time is inversely proportional to the speed
 - In practice, the speed of a vehicle fluctuates over time and the travel time represents an average measure

Time-space diagram

- **Trajectory**
 - A graph which gives position of vehicle with respect to time
 - The trajectory provide an intuitive, clear, and complete summary of vehicular motion in one dimension.

Time-space diagram

- **Single vehicle**

- **Multiple vehicle**
Conclusion

- **Fundamental Parameters**
 - Flow or volume q
 - Density or concentration k
 - Speed: Time and space mean v_s and v_t

- **Derived Parameters**
 - Headway h
 - Spacing s
 - Travel time t

- **Time-Space diagram**

Thank You

tomvmathew@gmail.com