**Dr. Tom V. Mathew**

**4 October 2006**

\documentclass{article} \begin{document} A simple equation with english alphabets $z=x+y$, another simple equation with greek alphabets $\alpha=\beta+\gamma$, and an equation with some special notation $\sum z=\frac{\delta}{y^2}$. \end{document}This will produce equations like this: A simple equation with english alphabets , another simple equation with greek alphabets , and an equation with some special notation .

A simple equation with english alphabets , another simple equation with greek alphabets , and . Note that the equation number is generated automatically.

\begin{equation} \Pi_{i=0}^{n^{2}}=\frac{\alpha^{\sqrt{y}}}{\sqrt{y-x}} \end{equation}

(1) |

\begin{eqnarray} z = (x+1)+(y-2) \\ = x+y+1-2 \\ = x+y-1\\ \end{eqnarray}

(2) | |||

(3) | |||

(4) |

Note that this environment has generated equation on all lines. However, the aligment of the equation is not proper. See the follwoing example which shows a nice alignment as well numbering for only once.

\begin{eqnarray} \Pi_{i=0}^{n^{2}}&=&\frac{\alpha^{\sqrt{y}}}{\sqrt{y-x}}\\ &=&e^{25\beta}-1\nonumber\\ &=&\Delta+\Gamma\nonumber \end{eqnarray}This code will produce the follwing output.

(5) | |||

% \begin{equation} % \newcommand{\cellaa}{\frac{\partial^2{f(\bar{x})}}{\partial{x_1^2}}} % \newcommand{\cellab}{\frac{\partial^2{f(\bar{x})}}{\partial{x_1x_2}}} % \newcommand{\cellac}{\frac{\partial^2{f(\bar{x})}}{\partial{x_1x_3}}} % \newcommand{\cellan}{\frac{\partial^2{f(\bar{x})}}{\partial{x_1x_n}}} % \newcommand{\cellba}{\frac{\partial^2{f(\bar{x})}}{\partial{x_2x_1}}} % \newcommand{\cellbb}{\frac{\partial^2{f(\bar{x})}}{\partial{x_2^2}}} % \newcommand{\cellbc}{\frac{\partial^2{f(\bar{x})}}{\partial{x_2x_3}}} % \newcommand{\cellbn}{\frac{\partial^2{f(\bar{x})}}{\partial{x_2x_n}}} % \newcommand{\cellna}{\frac{\partial^2{f(\bar{x})}}{\partial{x_nx_1}}} % \newcommand{\cellnb}{\frac{\partial^2{f(\bar{x})}}{\partial{x_nx_2}}} % \newcommand{\cellnc}{\frac{\partial^2{f(\bar{x})}}{\partial{x_nx_3}}} % \newcommand{\cellnn}{\frac{\partial^2{f(\bar{x})}}{\partial{x_n^2}}} % a=\left( % \begin{array}{ccccc} % \cellaa&\cellab&\cellac&\dots&\cellan\\ \cellba&\cellbb&\cellbc&\dots&\cellbn\\ \dots &\dots & \dots &\dots&\dots\\\hline \cellna&\cellnb&\cellnc&\dots&\cellnn\\ % \end{array} % \right) % \end{equation}

(6) |

Prof. Tom V. Mathew 2006-10-04