
 ITS, IIT Bombay

Doc_1-16/4/2012 Page No: 1

ITS, Transportation Research Lab, IIT Bombay

Mumbai

SiMTraM – Simulation of Mixed Traffic
MObility - User Documentation

Tom V Mathew
Ashutosh Bajpai

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 2

SiMTraM – Simulation of Mixed Traffic MObility - User
Documentation

Tom V Mathew

Ashutosh Bajpai

$Revision: 001 $

Disclaimer: This Document contains some of the information which is originally written

by SUMO Community in SUMO User Document. This document claims Copyright only

for the amendments made by SiMTraM Development Team.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 3

Table of Contents

1. Introduction

What is SiMTraM?

 Why open source?

 Contributors & Participants

 Features

 About this Document

 Described Applications

 Notation

 Status

 Call for Help

2. First Steps

 Installing SiMTraM

 Running the Examples

3. Traffic Simulations and SiMTraM

 A short Introduction to Traffic Simulation Theory

 Simulation types

 Needed Data

 The Workflow of Preparing a Simulation

 SiMTraM

 Main Software Paradigms

4. Network Generation

 Introduction

 Building Networks from own XML-descriptions

 Nodes Descriptions

 Edges Descriptions

 Types Descriptions

 Connection Descriptions

 Building the Network

 Further NETCONVERT Options

 Setting default Values

Closing Thoughts (so far)

Recent Changes

Missing

5. Route Generation

 Introduction

 Common, mandatory Values

 Building Routes from Scratch

 Generating own, explicit Routes

 Generating random Routes

 Using the Junction Turning Ratio - Router

 Using OD2TRIPS

 Using Detectors and DFROUTER

 Computing Detector Types

 Computing Routes

 Computing Flows

 Saving Flows and other Values

 Closing Thoughts (so far)

 Recent Changes

 Missing

6. Performing the Simulation

 Output Generation

 Detectors

 Network State Dump

 Aggregated Lane/Edge States (Edge/Lane-Dumps)

 Net-Wide Vehicle Emission States & Travel Times

 Vehicle-Oriented Trip Information

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 4

 Vehicle Routes

 Output coupled to Traffic Lights

 Traffic Management and Other Structures

 Traffic Lights

 Public Transport

 Variable Speed Signs (VSS)

 Rerouter

 Vehicle Classes

 Using the Files in a correct Way

 Other Topics

 Missing

7. Simulation-GUI

Main Window Interface

Menu Bar

Tool Bar

Simulation Window Interfaces

Common Controls

Interacting with Objects

Display an Object's Name

Object Popup Menus

Object Selection

Parameter Windows

TL-Tracker Windows

8. Tips, Tricks and Tools

A. Naming Conventions

B. Included Data

Configuration File Templates

Included Examples

SIMPLE_NETS: Basic Examples

NETBUILD: Examples for NETCONVERT'S XML-Import

ROUTER: Examples for DUAROUTER and JTRROUTER

EXTENDED: Examples for using additional SUMO-structures

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 5

List of Figures

3.1. The different simulation granularities; from left to right: macroscopic, microscopic, submicroscopic

(within the circle: mesoscopic)

3.2. The difference between a space-continuous (top) and a space-discrete (bottom) simulation

3.3. Process of simulation with SiMTraM; (rounded: definite data types; boxes: applications;

octagons: abstract data types)

3.4. various vehicles on a mid-block with a typical lane width

4.1. Building a network

4.2. Building a network from XML-descriptions

4.3. Coordinate system used in SiMTraM

4.4. Unconstrained Network (zoom=2200)

4.5. Network with explicit edge-2-edge connections

4.6. Network with explicit lane-2-lane connections

4.7. Network with explicite prohibitions

5.1. Building routes

5.2. A network where the usage of random routes causes an improper behaviour due to the

mixture of rural and minor roads

7.1. The GUI-Window with a loaded simulation (violet: names of the controls as used below)

7.2. A sample Parameter Window (for an induction loop in this case)

7.3. A sample Parameter Window (for the number of vehicles within a simulation in this case)

7.4. A sample usage of the aggregation option (for an induction loop in this case, for

aggregation times of 1s, 1min, 5min (from left to right))

7.5. A sample usage of the tls-tracker

List of Tables

1.1. Applications described within this document

6.1. Definition of values generated by e1-detectors

6.2. Allowed vehicle class authority descriptions

6.3. Allowed vehicle class vehicle kind descriptions

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 6

Chapter 1. Introduction

What is SiMTraM?

SiMTraM is the extention of SUMO for heterogeneous traffic developed by IIT Bombay, India. SUMO

is a microscopic road traffic simulation package. In the near future it will be extended to model other

transit modes simultaneously with ordinary car traffic.

Why open source?

Two thoughts stood behind the release of the package as open source. At first the fact that every traffic

research organisation is forced to implement an own simulation package; some people are interested in

traffic light optimisation, other try to find mistakes made during the design of a road network. Both

need some kind of a simulation package and have to implement a framework containing input and

output functions and other things from scratch. So the first idea was to give them a basic framework

containing all needed methods for a simulation - they can put own ideas into. The second idea is to

supply a common test bed for models, especially car models, to the community to make them

comparable. Due to different architectures of traffic simulations such comparisons on a wide scale are

not possible by now.

Contributors & Participants?

Name Role Topics/Contribution

Prof. Tom V Mathew Research &
Development Support

Everything

Prof. Anirudha Sahoo Development Support Strip model

Ronald Caleb Research Support SiMTraM models (Car following & Lane
changing)

Omair Md. Development Mid-block Section

Ashish Cherian Development SiMTraM-GUI and MOVE-M

Ashutosh Bajpai Research Support &
Development

Interface, Intersection and Support for
everything

Pulakesh Upadhyay Development TraCI-M and Interface

Sagar chordia Development E-1 Detector

Features

• Homogeneous and Heterogeneous

• High portability (using standard - C++ and portable libraries only)

• Collision free vehicle movement

• Different vehicle types

• Single-vehicle routing

• Multi-lane streets with lane/strip changing

• Junction-based right-of-way or left-of-way rules

• Hierarchy of junction types

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 7

• A fast openGL graphical user interface

• Dynamic routing

• Manages networks with several 10.000 edges (streets)

• Fast execution speed (up to 100.000 vehicle updates/s on a 1GHz machine)

• Supports import of many network formats (OpenStreetMap, Visum, Vissim, ArcView, XML

Descriptions)

About this Document

This document describes how to use each of the applications that come with the SiMTraM-package. We

Should remark, that this document only covers the usage of the software and some descriptions of the

Used models.

Described Applications

Table 1.1. Applications described within this document

Application Application

Name

 (Windows)

Application

name

(Unix)

Description Described in

chapter

NETCONVERT-

M

inetconvert.exe isumo-

netconvert

A Network

Convertor/ Importer

NETGEN-M netgen.exe sumo-netgen A Generator of

Abstract Networks

DFROUTER-M dfrouter.exe sumo-dfrouter A router using

detector flows

DUAROUTER-M iduarouter.exe isumo-

duarouter

A router fordynamic

user assignment

JTROUTER-M jtrouter.exe sumo-jtrouter A router using

junction turning

ratios

SiMTraM isumo.exe isumo The microscopic

simulation

SiMTraM-gui iguisim.exe isumo-guisim The gui-version

of the microscopic

POLYCONVERT-

M

polyconvert.exe sumo-

polyconvert

A tool for importing

polygons from other

formats

Others

Please remark that you may also find the applications "MOVE-M" within the source distribution. A separate user

document for MOVE-M is available

Notation

This document uses coloring to differ between different type of information. If you encounter

something like this:

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 8

netconvert --visum=MyVisumNet.inp --output-file=MySUMONet.net.xml

you should know that this is a call on the command line. There may be also a '\' at the end of a line.

This indicates that you have to continue typing without pressing return (ignoring both the '\' and the

following newline). The following example means exactly the same as the one above:

netconvert --visum=MyVisumNet.inp \

--output-file=MySUMONet.net.xml

Command line option names are normally coloured this way. Their values if optional <LIKE

THIS>. XML-elements and attributes are shown are coloured like this. Their values if optional

<LIKE THIS>. Complete examples of XML-Files are shown like the following:

<MyType>

<MyElem myAttr1="0" myAttr2="0.0"/>

<MyElem myAttr1="1" myAttr2="-500.0"/>

</MyType>

You may also find some notations from the EBNF; brackets '[' and ']' indicate that the enclosed

information is optional. Brackets '<' and '>' indicate a type - insert your own value in here... All

applications are shown like THIS. <SUMO_DIST> is the path you have saved your SiMTraM-package

into.

Status

This document is still under development and grows with the software. Due to this, you may find it

together with the sources within the SiMTraM repository at IITB

(http://www.civil.iitb.ac.in/tvm/SiMTraM_Web/html/). It should always describe the current

version.

Call for Help

Please let us know when either the document remains at any point unclear or any of the applications

does not behave as expected. We would be very happy if you report broken links or misspelled words.

We also seek for some participants and further users, not only to share the development tasks, but also

to gain some feedback and critics or some usage examples.

To summarize: every help is appreciated. Thank you.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 9

Chapter 2. First Steps

Installing SiMTraM

Refer to the website: http://www.civil.iitb.ac.in/tvm/SiMTraM_Web/html

Running the Examples

Examples are included in the package. In each example there is a sumo.CFG file. You need to open this file in

GUI.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 10

Chapter 3. Traffic Simulations and
SiMTraM

A short Introduction to Traffic Simulation
Theory

Simulation types

Basic SUMO is a microscopic, space continuous and time discrete traffic simulation. In traffic research

four classes of traffic flow models are distinguished according to the level of detail of the simulation. In

macroscopic models traffic flow is the basic entity. Microscopic models simulate the movement of

every single vehicle on the street, mostly assuming that the behaviour of the vehicle depends on both,

the vehicle's physical abilities to move and the driver's controlling behaviour (see [Chowdhury, Santen,

Schadschneider,2000][http://sumo.sourceforge.net/docs/bibliography.shtml#ChowdhurySantenSchadsc

hneider2000]). Within SUMO, the microscopic model developed by Stefan Krauß is used (see

[Krauss1998_1][http://sumo.sourceforge.net/docs/bibliography.shtml#Krauss1998_1], [Krauss1998_2]

[http:// sumo.sourceforge.net/docs/bibliography.shtml#Krauss1998_2]), extended by some further

assumptions. Mesoscopic simulations are located at the boundary between microscopic and

macroscopic simulations. Herein, vehicle movement is mostly simulated using queue approaches and

single vehicles are moved between such queues. Sub-microscopic models regard single vehicles like

microscopic but extend them by dividing them into further substructures, which describe the engine's

rotation speed in relation to the vehicle's speed or the driver's preferred gear switching actions, for

instance. This allows more detailed computations compared to simple microscopic simulations.

However, sub-microscopic models require longer computation times. This restrains the size of the

networks to be simulated.

Figure 3.1. The different simulation granularities; from left to right:

macroscopic, microscopic, sub-microscopic (within the circle: mesoscopic)

Within a space-continuous simulation each vehicle has a certain position described by a floating-point

number. In contrast, space-discrete simulations are a special kind of cellular automata. They use to

divide streets into cells and vehicles driving on the simulated streets "jump" from one cell to another.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 11

Figure 3.2. The difference between a space-continuous (top) and a space-discrete

(bottom) simulation

Almost every simulation package uses an own model for vehicle movement. Almost all models are so-

called "car-following-models": the behaviour of the driver is herein meant to be dependent on his

distance to the vehicle in front of him and of this leading vehicle's speed. Although SUMO is meant to

be a test bed for such vehicle models, only one is implemented by now, an extension to the one

developed by Stefan Krauß. Other obstacles, such as traffic lights, are of course considered herein, too.

It seems obvious, that each driver is trying to use to shortest path through the network. But when all are

trying to do this, some of the roads - mainly the arterial roads - would get congested reducing the

benefit of using them. Solutions for this problem are known to traffic research as dynamic user

assignment. For solving this, several approaches are available and SUMO uses the dynamic user

assignment approach developed by Christian Gawron (see [Gawron1998_1]

[http://sumo.sourceforge.net/docs/ bibliography.shtml#Gawron1998_1]).

Most of the Model from basic SUMO still works in SiMTram. A slightly changed car-following and

lane changing model can be found at the website.

Needed Data

At first, you need the network the traffic to simulate takes place on. As SUMO is meant to work with

large networks, we mainly concentrated our work on importing networks and the computation of further

needed values. Due to this, no graphical editor for networks is available, yet. Beside information about a

network's roads, information about traffic lights is needed. Further, you need information about the

traffic demand. While most traffic simulation use a statistical distribution which is laid over the

network, each vehicle within SiMTraM knows its route like SUMO . Within this approach, the route is

a list of edges to pass. Although this approach is more realistic, it also induces a large amount of data

needed to describe the vehicle movements. By now, routes are not compressed within SUMO and so

may be several MB large. We will possibly change this in future.

The Workflow of Preparing a Simulation

As shortly described above, you basically have to perform the following steps in order to make your

simulation run:

1. Build your network

Use either own descriptions (described in chapter 4, "Building Networks from own XML-

descriptions or if you have some digital networks SUMO can import, convert them (described in

chapter 4, "Converting other Input Data)

2. Build the demand

Build your own movements using either by a) describing explicit vehicle routes (see chapter 5,

"Using Trip Definitions"), b) using flows and turning percentages only (see chapter 5, "Using the

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 12

Junction Turning Ratio - Router"), c) generating random routes (see chapter 5, "Generating random

Routes").

3. If needed, compute the dynamic user assignment (described in chapter 5, "Dynamic User

Assignment")

4. Perform the simulation (described in chapter 6, "Performing the Simulation“) to get your desired

output This process is also visualised within the next figure.

Figure 3.3. Process of simulation with SiMTraM; (rounded: definite data types;

boxes: applications; octagons: abstract data types) (Similar as SUMO)

Please remark, that most of the tools are command-line tools by now. They do nothing if you just

double-click them (besides printing errors). Do also notice, that the call parameter desribed in the

following chapters may be also stored in so-called "configuration files" to allow their reuse. This

possibility is described in chapter "Using Configuration Files [http://sumo.sourceforge.net/docs/gen/

user_chp08.shtml#user_chp08-configs]".

SiMTraM

 The traditional car-following models look at the vehicles in the current lane. However, in strip-based

 movement, a vehicle may occupy more than one strip and so it may have more than one vehicle in front

 of it (or behind it). So, to take into account this basic difference, a longitudinal movement model was

 built. The conventional lane-based lane changing model looks at the left and right lane as candidate

 lanes for changing the lane. However, in strip based model, a vehicle needs to look at and beyond the

 strips and should be able to calculate the benefit a driver will get due to a strip change/s. These aspects

 are taken care of by the newly developed lateral movement model. These features of the model are

 elaborated in the subsequent sections.

Strip-based Representation

 The road space is divided into strips, with each lane having an integral number of strips (Figure 1). The

 strip width is configurable and is related to the lane width. If fine-grained simulation is required, the

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 13

 strip width can be made smaller. In fact, it can even approximate a coordinate-based model with a strip

 size of 0.1 meter or less. The usual strip size is taken to be the width of the smallest vehicle being

 simulated.

FIGURE 3.4 various vehicles on a mid-block with a typical lane width

Main Software Paradigms

Two basic design goals are approached: the software shall be fast and it shall be portable. Due to this,

the very first versions were developed to be run from the command line only - no graphical interface

Traffic Simulations and SUMO was supplied at first and all parameter had to be inserted by hand. This

should increase the execution speed by leaving off slow visualisation. Also, due to these goals, the

software was split into several parts. Each of them has a certain purpose and must be run individually.

This is something that makes SUMO different to other simulation packages where the dynamical user

assignment is made within the simulation itself, not via an external application like here. This split

allows an easier extension of each of the applications within the package because each is smaller than a

monolithic application doing everything. Also, it also allows the usage of faster data structures, each

adjusted to the current purpose, instead of using complicated and ballast-loaded ones. Still, this makes

the usage of SUMO a little bit uncomfortable in comparison to other simulation packages. As there are

still other things to do, we are not thinking of a redesign towards an integrated approach by now.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 14

Chapter 4. Network Generation

Introduction

As SiMTraM uses an own road network description, networks must be converted from an existing

dataset. Although being readable (xml) by human beings, the format of road networks used by

SiMTraM is not meant to be edited by hand and will also not be described herein due to its complexity.

SiMTraM networks can be build by either converting an existing map or by using NETGEN-M to

generate basic, abstract road maps. The following figure shows the function of NETCONVERT-M and

NETGEN-M within the procedure of building and running a simulation.

 Figure 4.1. Building a network

Having data describing a road network, you may convert them into a network description readable by

SiMTraM using the NETCONVERT-M tool. By now, NETCONVERT-M is capable to parse the

following formats:

• ptv VISUM (a macroscopic traffic simulation package), see chapter "Importing VISUM-networks

[#user_chp04-other_input-visum]"

• ptv VISSIM (a microscopic traffic simulation package), see chapter "Importing VISSIM-networks

[#user_chp04-other_input-vissim]"

• ArcView-data base files, see chapter "Importing ArcView-databases [#user_chp04-other_input]"

• XML-descriptions, see chapter "Building Networks from own XML-descriptions [#user_chp04-

xml_descriptions]"

• Elmar Brockfelds unsplitted and splitted NavTeq-data, see chapter "Importing Elmar's converted

NavTech-Files [#user_chp04-other_input-elmar]"

• TIGER databases, see chapter "Importing TIGER-databases [#user_chp04-other_input-tiger]"

In most of these cases, NETCOVERT-M needs only two parameter: the option named as the source

application/format followed by the name of the file to convert and the name of the output file (using the

--output-file option). So if you want to import a file generated by the VISUM simulation

package, simply write the following:

Netconvert-M --visum=MyVisumNet.inp –output file=MySUMONet.net.xml

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 15

The parameter --output-file has the default value "net.net.xml". That means that both

NETCONVERT-M and NETGEN-M will save the generated file as "net.net.xml" if the option is

not set. Please note, that NETCONVERT-M has to be started from the command line. There is no

graphical interface available, yet. The following subchapters will describe more deeply how

NETCONVERT-M and NETGEN-M are used, also discussing some problems with each of the import

formats NETCONVERT-M supports. Please remind the option to name the output generated by both

applications:

(--output-file| --output | -o) <OUTPUT_FILE>

Defines the file to write the computed network into. This file will contain the generated network if the

conversion could be accomplished. Optional (pregiven), type:filename, default: "net.net.xml"

Building Networks from own XMLdescriptions

All examples within the distribution were made by hand. For doing this, you need at least two files: one

file for nodes and another one for the streets between them. Please notice that herein, "node" and

"junction" mean the same as well as "edge" and "street" do. Besides defining the nodes and edges, you

can also join edges by type and set explicit connections between lanes. We will describe how each of

these four file types should look like in the following chapters.

 Figure 4.2. Building a network from XML-descriptions

Nodes Descriptions

Within the nodes-files, normally having the extension ".nod.xml" (see Appendix "Naming

Conventions [http://sumo.sourceforge.net/docs/gen/user_apa.shtml]"), every node is described in a

Network Generation single line which looks like this: <node id="<STRING>" x="<FLOAT>"

y="<FLOAT>" [type="<TYPE>"]/> - the straight brackets ('[' and ']') indicate that the parameter

is optional. Each of these attributes has a certain meaning and value range:

• id: The name of the node; may be any character string

• x: The x-position of the node on the plane in meters; must be a floating point number

• y: The y-position of the node on the plane in meters; must be a floating point number

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 16

• type: An optional type for the node. If you leave out the type of the node, it is automatically

guessed by NETCOVERT-M but may not be the one you intentionally thought of. The following

types are possible, any other string is counted as an error and will yield in a program stop:

o priority: Vehicles have to wait until vehicles right to them have passed the junction.

o traffic_light: The junction is controlled by a traffic light.

When writing your nodes-file, please do not forget to embed your node definitions into an opening and

a closing "tag". A complete file should like the example below, which is the node file

"cross3l.nod.xml" for the examples

"<SUMO_DIST>/data/examples/netbuild/types/cross_usingtypes/" and

"<SUMO_DIST>/data/examples/netbuild/types/cross_notypes/" example.

<nodes> <!-- The opening tag -->

<node id="0" x="0.0" y="0.0" type="traffic_light"/> <!-- def. of node

"0" -->

<node id="1" x="-500.0" y="0.0" type="priority"/> <!-- def. of node

"1" -->

<node id="2" x="+500.0" y="0.0" type="priority"/> <!-- def. of node

"2" -->

<node id="3" x="0.0" y="-500.0" type="priority"/> <!-- def. of node

"3" -->

<node id="4" x="0.0" y="+500.0" type="priority"/> <!-- def. of node

"4" -->

<node id="m1" x="-250.0" y="0.0" type="priority"/> <!-- def. of node

"m1" -->

<node id="m2" x="+250.0" y="0.0" type="priority"/> <!-- def. of node

"m2" -->

<node id="m3" x="0.0" y="-250.0" type="priority"/> <!-- def. of node

"m3" -->

<node id="m4" x="0.0" y="+250.0" type="priority"/> <!-- def. of node

"m4" -->

</nodes> <!-- The closing tag -->

As you may notice, only the first node named "0", which is the node in the middle of the network, is a

traffic light controlled junction. All other nodes are uncontrolled. You may also notice, that each of both

ends of a street needs an according node. This is not really necessary as you may see soon, but it eases

the understanding of the concept: every edge (street/road) is a connection between two nodes

(junctions). You should also know something about the coordinate system: the higher a node on the

screen shall be (the nearer to the top of your monitor), the higher his y-value must be. The more to left it

shall be, the higher his x-value.

Figure 4.3. Coordinate system used in SiMTraM

Since version 0.9.4 in SUMO you can also give the x- and y-coordinates using geocoordinates. In this

case, the coordinates will be interpreted as long/lat in degrees. Read more on this in "Converting from

Geocoordinates".

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 17

Edges Descriptions

Edges are described quite the same way as nodes, but posses other parameter. Within the edges file,

each description of a single edge looks like this: <edge id="<STRING>"

(fromnode="<NODE_ID>" tonode="<NODE_ID>" | xfrom="<FLOAT>"
yfrom="<FLOAT>" xto="<FLOAT>" yto="<FLOAT>") [type="<STRING>" |

nolanes="<INT>" speed="<FLOAT>" priority="<UINT>" length="<FLOAT>")]

[shape="<2D_POINT> [<2D_POINT>]*"] [spread_type="center"]/>.

What does it mean? Every one who knows how XML-files look like should have noticed brackets ('('

and ')') and pipes ('|') within the definition and these characters are not allowed within XML... What we

wanted to show which parameter is optional. So for the definition of the origin and the destination node,

you can either give their names using fromnode="<NODE_ID>" tonode="<NODE_ID>" or you

give their positions using xfrom="<FLOAT>" yfrom="<FLOAT> xto="<FLOAT>"

yto="<FLOAT>". In the second case, nodes will be build automatically at the given positions. Each

edge is unidirectional and starts at the "from"-node and ends at the "to"-node. If a name of one of the

nodes can not be dereferenced (because they have not been defined within the nodes file) an error is

generated (see also the documentation on "--dismiss-loading-errors" in subchapter "Building

the Network").

For each edge, some further attributes should be supplied, being the number of lanes the edge has, the

maximum speed allowed on the edge, the length the edge has (in meters). Furthermore, the priority may

be defined optionally. All these values - beside the length in fact - may either be given for each edge

using according attributes or you can omit them by giving the edge a "type". In this case, you should

also write a type-file (see subchapter "Types Descriptions [#user_chp04-xml_descriptions-types]"). A

type with this name should of course be within the generated type-file, otherwise an error is reported.

Even if you supply a type, you can still override the type's values by supplying any of the parameter

nolanes, speed and priority. You may also leave the edge parameter completely unset. In this

case, default-values will be used and the edge will have a single lane, a default (unset) priority and the

maximum allowed speed on this edge will be 13.9m/s being around 50km/h. The length of this edge

will be computed as the distance between the starting and the end point.

As an edge may have a more complicated geometry, you may supply the edge's shape within the

shape tag. If the length of the edge is not given otherwise, the distances of the shape elements will be

summed. The information spread_type="center" forces NETCONVERT-M to spread lanes to

both sides of the connection between the begin node and the end node or from the list of lines making

up the shape. If not given, lanes are spread to right, as default.

Let's list an edge's attributes again:

• id: The name of the edge; may be any character string

• Origin and destination node descriptions

Either:

o fromnode: The name of a node within the nodes-file the edge shall start at

o tonode: The name of a node within the nodes-file the edge shall end at

 or:

o xfrom: The x-position of the node the edge shall start at in meters; must be a floating

point number

o yfrom: The y-position of the node the edge shall start at in meters; must be a floating

point number

o xto: The x-position of the node the edge shall end at in meters; must be a floating point

number

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 18

o yto: The y-position of the node the edge shall end at in meters; must be a floating point

number

• Descriptions of the edge's type and atomic attributes:

Either:

o type: The name of a type within the types-file

 or/and:

o nolanes: The number of lanes of the edge; must be an integer value

o speed: The maximum speed allowed on the edge in m/s; must be a floating point number

(see also "Using Edges' maximum Speed Definitions in km/h" [#user_chp04-

further_optionskmh_ speed])

o priority: The priority of the edge; must be a positive integer value

o length: The length of the edge in meter; must be an float value

• The edges shape:

o shape: List of positions; each position is encoded in x,y (do not separate the numbers

with a space!) in meters; the start and end node are omitted from the shape definition; an

example: <edge id="e1" fromnode="0" tonode="1" shape="0,0

0,100"/> describes an edge that after starting at node 0, first visits position 0,0 than

goes one hundred meters to the right before finally reaching the position of node 1.

o spread_type: The description of how to spread the lanes; "center" spreads lanes to

both directions of the shape, any other value will be interpreted as "right".

The priority plays a role during the computation of the way-giving rules of a node. Normally, the

allowed speed on the edge and the edge's number of lanes are used to compute which edge has a greater

priority on a junction. Using the priority attribute, you may increase the priority of the edge making

more lanes yielding in it or making vehicles coming from this edge into the junction not wait.

Also the definitions of edges must be embedded into an opening and a closing tag and for the example

"<SUMO_DIST>/data/examples/netbuild/types/cross_notypes/" the whole edges-

file looks like this ("cross3l.edg.xml"):

<edges>

<edge id="1fi" fromnode="1" tonode="m1" priority="2"

nolanes="2" speed="11.11"/>

<edge id="1si" fromnode="m1" tonode="0" priority="3"

nolanes="3" speed="13.89"/>

<edge id="1o" fromnode="0" tonode="1" priority="1" nolanes="1"

speed="11.11"/>

<edge id="2fi" fromnode="2" tonode="m2" priority="2"

nolanes="2" speed="11.11"/>

<edge id="2si" fromnode="m2" tonode="0" priority="3"

nolanes="3" speed="13.89"/>

<edge id="2o" fromnode="0" tonode="2" priority="1" nolanes="1"

speed="11.11"/>

<edge id="3fi" fromnode="3" tonode="m3" priority="2"

nolanes="2" speed="11.11"/>

<edge id="3si" fromnode="m3" tonode="0" priority="3"

nolanes="3" speed="13.89"/>

<edge id="3o" fromnode="0" tonode="3" priority="1" nolanes="1"

speed="11.11"/>

<edge id="4fi" fromnode="4" tonode="m4" priority="2"

nolanes="2" speed="11.11"/>

<edge id="4si" fromnode="m4" tonode="0" priority="3"

nolanes="3" speed="13.89"/>

<edge id="4o" fromnode="0" tonode="4" priority="1" nolanes="1"

speed="11.11"/>

</edges>

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 19

Within this example, we have used explicit definitions of edges. An example for using types is

described in the chapter "Types Descriptions [#user_chp04-xml_descriptions-types]".

 Caution

There are some constraints about the streets' ids. They must not contain any of the following characters:

'_' (underline - used for lane ids), '[' and ']' (used for enumerations), ' ' (space – used as list divider), '*'

(star, used as wildcard), ':' (used as marker for internal lanes).

Recent changes:

• The function-tag was added for version 0.9.4 and was revalidated for version 0.9.5

• 11.03.2008: False documentation updated: --omit-corrupt-edges is outdated; use --

dismiss-loading-errors instead

• The function-tag was removed for version 0.9.9; a warning is generated when this attribute is

used

Defining allowed Vehicle Types

Since version 0.9.5 you may allow/forbid explicite vehicle classes to use a lane. The information which

vehicle classes are allowed on a lane may be specified within an edges descriptions file by embedding

the list of lanes together with vehicle classes allowed/forbidden on them into these lanes' edge. Assume

you want to allow only busses to use the leftmost lane of edge "2si" from the example above. Simply

change this edge's definition into:

... previous definitions ...

<edge id="2si" fromnode="m2" tonode="0" priority="3"

nolanes="3" speed="13.89">

<lane id="2" allow="bus"/>

</edge>

... further definitions ...

If you would like to disallow passenger cars and taxis, the following snipplet would do it:

... previous definitions ...

<edge id="2si" fromnode="m2" tonode="0" priority="3"

nolanes="3" speed="13.89">

<lane id="2" disallow="passenger;taxis"/>

</edge>

... further definitions ...

The definition of a lane contains by now the following attributes:

• id: The enumeration id of the lane (0 is the rightmost lane, <NUMBER_LANES>-1 is the leftmost

one)

• allow: The list of explicitely allowed vehicle classes

• disallow: The list of explicitely disallowed vehicle classes

Both the allowed and the disallowed attributes assume to get a list of vehicle class names devided by a

';'. See "Vehicle Classes [http://sumo.sourceforge.net/docs/gen/user_chp06.shtml#user_chp06-

management-vclasses]" for further information about allowed vehicle classes and their usage.

Caution

This is a new feature. Its usage and the way it works will surely change in the future.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 20

Examples: none yet

Recent changes:

• The possibility to define which vehicle classes are allowed on a lane was added in version 0.9.5

Types Descriptions

As mentioned, road types are meant to be used to ease the definition of edges. As described above, the

description of an edge should include information about the number of lanes, the maximum speed

allowed on this edge and the edge's priority. To avoid the explicit definition of each parameter for every

edge, one can use road types, which encapsulate these parameter under a given name. The format of this

definition is: <type id="<STRING>" nolanes="<INT>" speed="<FLOAT>"

priority="<UINT>"/> numstrips=”<UINT>”. The attributes of a type are of course exactly

the same as for edges themselves:

• id: The name of the road type; may be any character string

• nolanes: The number of lanes of the referencing must be an integer value

• speed: The maximum speed allowed on the referencing edge in m/s; must be a floating point

number

• priority: The priority of the referencing edge; must be a positive integer value

• numstrips : number of strips a lane can have in that edge; must be an integer value

The information about the nodes the edge starts and ends at is not given within the types' descriptions.

They can only be set within the edge's attributes. Here's an example on referencing types in edge

definitions:

<edges>

<edge id="1fi" fromnode="1" tonode="m1" type="b"/>

<edge id="1si" fromnode="m1" tonode="0" type="a"/>

<edge id="1o" fromnode="0" tonode="1" type="c"/>

<edge id="2fi" fromnode="2" tonode="m2" type="b"/>

<edge id="2si" fromnode="m2" tonode="0" type="a"/>

<edge id="2o" fromnode="0" tonode="2" type="c"/>

<edge id="3fi" fromnode="3" tonode="m3" type="b"/>

<edge id="3si" fromnode="m3" tonode="0" type="a"/>

<edge id="3o" fromnode="0" tonode="3" type="c"/>

<edge id="4fi" fromnode="4" tonode="m4" type="b"/>

<edge id="4si" fromnode="m4" tonode="0" type="a"/>

<edge id="4o" fromnode="0" tonode="4" type="c"/>

</edges>

The according types file looks like this:

<types>

<type id="a" priority="3" nolanes="3" speed="13.889" numstrips

=“3”/>

<type id="b" priority="2" nolanes="2" speed="11.111" numstrips

= “4”/>

<type id="c" priority="1" nolanes="1" speed="11.111"/>

</types>

As you can see, we have joined the edges into three classes "a", "b", and "c" and have generated a

description for each of these classes. Doing this, the generated net is similar to the one generated using

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 21

the settings described above (example

"<SUMO_DIST>/data/examples/netbuild/types/cross_notypes/").

Examples:

• The basic usage of types is shown in <SUMO_DIST>/data/examples/netbuild/types/

cross_notypes/ where the same network is constructed once not using types (subfolder

"cross_notypes") and once using them (subfolder "cross_usingtypes").

Recent changes:

• The function-tag was added for version 0.9.5

• The function-tag was removed for version 0.9.9; a warning is generated when this attribute is

Used

Connection Descriptions

Explicite setting which Edge / Lane is connected to which

If you have tried the version 0.7 you have possibly missed the possibility to specify the connections

between the edges for yourself. This is now possible using a further file, the connections file. The

connection file specifies which edges outgoing from a junction may be reached by a certain edge

incoming into this junction and optionally also which lanes shall be used on both sides.

If you only want to describe which edges may be reached from a certain edge, this definition could look

something like this: <connection from="<FROM_EDGE_ID>" to="<T0_EDGE_ID>"/>.

This tells NETCONVERT not only that vehicles shall be allowed to drive from the edge named

<FROM_EDGE_ID> to the edge named <TO_EDGE_ID>, but also prohibits all movements to other

edges from <FROM_EDGE_ID>, unless they are specified within this file. Let's repeat the parameters:

• from: The name of the edge the vehicles leave

• to: The name of the edge the vehicles may reach when leaving "from"

When using this kind of input, NETCONVERT-M will compute which lanes shall be used if any of the

connected edges has more than one lane. If you also want to override this computation and set the lanes

by hand, use the following: <connection from="<FROM_EDGE_ID>" to="<T0_EDGE_ID>"

lane="<INT_1>:<INT_2>"/>. Here, a connection from the edge's "<FROM_EDGE_ID>" lane

with the number <INT_1> is build to the lane <INT_2> of the edge "<TO_EDGE_ID>". Lanes are

counted from the right (outer) to the left (inner) side of the road beginning with 0. Again the parameter:

• from: The name of the edge the vehicles leave

• to: The name of the edge the vehicles may reach when leaving "from"

• lane: the numbers of the connected lanes, separated with ':'; lanes are counter from right to left

beginning with 0

There are two examples within the distribution. Both use the nodes and edges descriptions from the

example located in

"<SUMO_DIST>/data/examples/netbuild/types/cross_notypes/". The junction in

the center of this example looks like shown within the next figure. We will now call it the

"unconstrained network" because all connections and turnarounds are computed using the default

values.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 22

Figure 4.4. Unconstrained Network (zoom=2200)

The example <SUMO_DIST>/data/examples/netbuild/connections/

cross3l_edge2edge_conns/" shows what happens when one uses connections to limit the

number of reachable edges. To do this we built a connections file where we say that the horizontal

edges ("1si" and "2si") have only connections to the edges right to them and the edge in straight

direction. The file looks like this:

<connections>

<connection from="1si" to="3o"/>

<connection from="1si" to="2o"/>

<connection from="2si" to="4o"/>

<connection from="2si" to="1o"/>

</connections>

As you may see in the next picture, the horizontal edges within the result network contain no leftmoving

connections.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 23

Figure 4.5. Network with explicit edge-2-edge connections

In the second example located in <SUMO_DIST>/data/examples/netbuild/

connections/cross3l_laneslane_conns/" we additionally describe which lanes shall be

connected. The according connections file says that the connections going straight shall be start at the

second lane of the incoming edges:

<connections>

<connection from="1si" to="3o" lane="0:0"/>

<connection from="1si" to="2o" lane="2:0"/>

<connection from="2si" to="4o" lane="0:0"/>

<connection from="2si" to="1o" lane="2:0"/>

</connections>

The built network looks like this:

Figure 4.6. Network with explicit lane-2-lane connections

Warning

Please do not use both types of connection declarations (those with an lane attribute and those

without) for the same from-edge! The behaviour is not verified and tested for these settings. Examples

(compare both to

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 24

<SUMO_DIST>/data/examples/netbuild/connections/cross3l_unconstrained/)

:

• <SUMO_DIST>/data/examples/netbuild/connections/cross3l_edge2edge_c

onns/ shows how edge-to-edge connections may be specified

• <SUMO_DIST>/data/examples/netbuild/connections/cross3l_lane2lane_c

onns/ shows how lane-to-lane connections may be specified

Recent Changes:

• A bug which sometimes yielded in a reassignment of connections is patched in version 0.9.3

Setting Connection Priorities

Since version 0.9.6 you can also let vehicles passing a connection between two edges wait for another

stream. Let's take another look at "Network with explicit edge-2-edge connections" above. Here, all

right-moving vehicles may drive. The following definition within the connections file lets vehicles on

vertical edges moving right wait for those which move straight on horizontal edges:

<connections>

<!-- The next four connection definitions are same as in

"Network with explicit edge-2-edge connections" -->

<connection from="1si" to="3o"/>

<connection from="1si" to="2o"/>

<connection from="2si" to="4o"/>

<connection from="2si" to="1o"/>

<!-- now, let's prohibit the vertical connections by the

horizontal -->

<!-- prohibit moving right from top to left by straight from

right to left -->

<prohibition prohibitor="2si->1o" prohibited="4si->1o"/>

<!-- prohibit moving straight from top to bottom by straight

from right to left <prohibition prohibitor="2si->1o"

prohibited="4si->3o"/>

<!-- prohibit moving left from top to right by straight from

right to left -->

<prohibition prohibitor="2si->1o" prohibited="4si->2o"/>

<!-- prohibit moving right from bottom to right by straight

from left to right <prohibition prohibitor="1si->2o"

prohibited="3si->2o"/>

<!-- prohibit moving straight from bottom to top by straight

from left to right <prohibition prohibitor="1si->2o"

prohibited="3si->4o"/>

<!-- prohibit moving left from bottom to right by straight from

left to right <prohibition prohibitor="1si->2o"

prohibited="3si->1o"/>

</connections>

As one may see, it was necessary to prohibit all connections from a vertical edge by the

counterclockwise straight connection on a horizontal edge because otherwise the vehicles on the

horizontal edge want to wait due to right-before-left - rule. The network looks like this:

Figure 4.7. Network with explicite prohibitions

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 25

The syntax of a prohibition-tag is: <prohibition

prohibitor="<PROHIBITING_FROM_EDGE_ID>-><PROHIBITING_TO_EDGE_ID>"

prohibited="<PROHIBITED_FROM_EDGE_ID>-><PROHIBITED_TO_EDGE_ID>"/>. This

means we define two connections (edge-to-edge), the prohibiting one (prohibitor) and the

prohibited (prohibited). Each connection is defined by a from-edge and a to edge, divided by "->".

Examples (compare to

<SUMO_DIST>/data/examples/netbuild/connections/cross3l_unconstrained/)

:

• <SUMO_DIST>/data/examples/netbuild/connections/cross3l_prohibition

s/ shows how prohibitions may be specified

Recent Changes:

• The possibility to add prohibitions was implemented for version 0.9.6

Building the Network

After you have generated the files you need being at least the edges and the nodes-files and optionally

also a type and/or a connections file you should run NETCONVERT to build the network. The call

should look like:

Netconvert-M --xml-node-files=MyNodes.nod.xml --xml-edge files = /

MyEdges.edg.xml --output-file=MySUMONet.net.xml

if you only use edges and nodes. Types and connections may be given as:

netconvert-M --xml-node-files=MyNodes.nod.xml --xml-edge files= /

MyEdges.edg.xml --xml-connection-files=MyConnections.con.xml --xml- /

type- files=MyTypes.typ.xml --output-file=MySUMONet.net.xml

Maybe your edge definitions are incomplete or buggy. If you still want to import your network, you can

try passing "--dismiss-loading-errors" to NETCONVERT-M. In this case, edges which are

not defined properly, are omitted, but NETCONVERT-M tries to build the network anyway. You may

also flip the network around the horizontal axis. Use option "--flip-y" for this. You may also use

abbreviations for the option names. These abbreviations and options used when building SUMO-

networks from own XML-descriptions are:

(--xml-node-files | --xml-nodes | -n) <NODES_FILE>

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 26

Uses the given file as the source of specification node positions and types. Optional, type:filename,

default: none

(--xml-edge-files | --xml-edges | -e) <EDGES_FILE>

Uses the given file as the source of specification of roads connecting nodes. Optional, type:filename,

default: none

(--xml-connection-files | --xml-connections | -x)

<CONNECTIONS_FILE>

Uses the given file as the source of specification how roads are connected (which lanes may be reached

from which lanes). Optional, type:filename, default: none

(--xml-type-files | --types | -t) <TYPES_FILE>

Uses the given file as the source of edge types. Optional, type:filename, default: none

--dismiss-loading-errors

Continues with parsing although a corrupt edge occurred. This edge is not inserted and a warning is

printed. Optional (pregiven), type:bool, default: false

--flip-y

Flips the y-position of nodes (and edges) along the y=zero-line. Optional (pregiven), type:bool, default:

false

See also:

• "Setting default Values [#user_chp04-further_options-defaults]"

• "Using Edges' maximum Speed Definitions in km/h" [#user_chp04-further_options-kmh_speed]

• "Importing Networks without Traffic Light Logics [#user_chp04-further_optionsimporting_notls]"

• "Guessing On- and Off-Ramps [#user_chp04-further_options-guessing_ramps]"

• "Adding Turnarounds [#user_chp04-further_options-turnarounds]"

• Converting from Geocoordinates

Examples:

Almost all networks within the <SUMO_DIST>/data/ - folder. Additionally some examples that

cover the mentioned topics are:

• On using types:

• <SUMO_DIST>/data/examples/netbuild/types/cross_notypes/

• <SUMO_DIST>/data/examples/netbuild/types/cross_usingtypes/

• On using speed definition in km/h

• <SUMO_DIST>/data/examples/netbuild/cross_notypes_kmh/

• <SUMO_DIST>/data/examples/netbuild/cross_usingtypes_kmh/

• On using edge shapes

• <SUMO_DIST>/data/examples/netbuild/shapes/hokkaido-japan/

Recent changes:

• --xml-type-files was named --type-file in versions earlier than 0.9.2

• In the previous examples the option for nodes inclusion was misspelled (--xml-nodes-files

is incorrect, --xml-node-files is right). Thanks to Leander Verhofstadt to recognize this.

• An error in this documentation has been removed for version 0.9.5

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 27

• 11.03.2008: False documentation updated: --omit-corrupt-edges is outdated; use --

dismiss-loading-errors instead

Further NETCONVERT-M Options

NETCONVERT offers some more options to describe how the network shall be imported. The scope of

some options does not cover all import types, though a list of valid import types for each option set is

given.

Setting default Values

We have mentioned, that edge parameter may be omitted and defaults will be used in this case. You

have the possibility to define these defaults using the following options:

(--type | -T) <DEFAULT_TYPE_NAME>

The name of the default type of edges. Optional (pregiven), type:string, default: "Unknown"

(--lanenumber | -L) <DEFAULT_LANE_NUMBER>

The number of lanes an edge has to use as default. Optional (pregiven), type:int, default: 1

(--speed | -S) <DEFAULT_MAX_SPEED>

The maximum speed allowed on an edge in m/s to use as default. Optional (pregiven), type:float,

default: 13.9

(--priority | -P) <DEFAULT_PRIORITY>

The default priority of an edge. Optional (pregiven), type: positive int, default: -1 (unset) These options

may be used while importing the following formats:

• XML-descriptions

Examples: none yet

Closing Thoughts (so far)

iNETGEN allows to create networks in a very comfortable way. For some small-sized tests of rerouting

strategies, tls-signals etc., this is probably the best solution to get a network one can run some

simulations at. The clear naming of the streets also eases defining own routes. Still, most examples

within the data-section were written by hand for several reasons. At first, the examples are small enough

and one may see the effects better than when using NETGEN. Furthermore, defining own networks

using XML-data is more flexible. NETGEN is of course useless as soon as you want to simulate the

reality.

Our current state-of-the-art approach for building networks is the following:

1. Get a plain (no tls, no link-2-link-connections, etc.) network from our NavTeq database

2. Import it using NETCONVERT-M and write the list of imported edges/nodes using the –

plainoutput option

3. Build the network from the list of edges/nodes (normally setting the options --guess-ramps

to true)

4. Load the network into GUISiMTraM, try to determine where tls are located and which connections

between edges/lanes are false; A nice possibility to do this is to use Google Earth besides to

investigate how the network looks in reality

5. Add type="traffic_light" attribute to those nodes in your plain file which were found

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 28

to be controlled by a tls

6. Add lane-to-lane connections in a previously generated connections-file

7. Build the network from the modified edges/nodes/connection files

8. Continue with step 4. until the network is as it shoud be

A good idea is to let some vehicles run through the network while investigating it. This will show

 possible bottleneck that arised from a false modelling of the network.

When using real life networks, we really advice guessing on- and off-ramps The on- off-ramps are

guessed quite well, we can not state this for the tls, because we don't have made any comparisons

with real life.

Recent Changes

Missing

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 29

Chapter 5. Route Generation

Introduction

After having your network converted into the SUMO-format, you could take a look at it using the gui-

version of the simulation (see "Simulation-GUI"), but no cars would be driving around. You still need

some kind of description about the vehicles. If you are importing data from other simulation packages,

they normally bring own route definitions you can use. In case of using ArcView or own data or in

other cases where you do not have the vehicle movements at all, you have to generate them by your

own. From now on we will use the following nomenclature: A trip is a vehicle movement from one

place to another defined by the starting edge (street), the destination edge, and the departure time. A

route is an expanded trip, that means, that a route definition contains not only the first and the last edge,

but all edges the vehicle will pass. There are several ways to generate routes for SiMTraM:

• using trip definitions

As described above, each trip consists at least of the starting and the ending edge and the departure time

(see Chapter "Using Trip Definitions [#user_chp05-explicite-trips]").

• using flow definitions

This is mostly the same approach as using trip definitions, but you may join several vehicles having the

same trips using this method (see Chapter "Using Flow Definitions [#user_chp05-expliciteflows]").

• using flow definitions and turning ratios

You may also leave out the destination edges for flows and use turning ratios at junctions instead (see

Chapter "Using the Junction Turning Ratio - Router [#user_chp05-own_routes-jtr]").

• using OD-matrices

OD-matrices have to be converted to trips first (see Chapter "Using OD2TRIPS [#user_chp05-

od2trips]"), then from trips to routes (see Chapter "Using Trip Definitions [#user_chp05-

explicitetrips]").

• by hand

You can of course generate route files by hand (see Chapter "Building Routes 'by Hand' [#user_chp05-

explicite-hand]").

• using random routes

This is fast way to fill the simulation with life, but definitely a very inaccurate one (see Chapter "

 Generating random Routes [#user_chp05-own_routes-random]").

• by importing available routes (see Chapter "Importing Routes from other Simulations

[#user_chp05-import_routes]")

By now, the SiMTraM-package contains four applications for processing routes. DUAROUTER-M is

responsible for importing routes from other simulation packages and for computing routes using the

shortest-path algorithm by Dijkstra. JTRROUTER-M may be used if you want to model traffic

statistically, using flows and turning percentages at junctions. OD2TRIPS helps you to convert

ODmatrices (origin/destination-matrices) into trips. A new application, the DFROUTER was added to

the suite for version 0.9.5. Within the next chapters, at first the mandatory arguments are described,

then we will show how each of the possible methods of generating routes from scratch can be used. In

the following, importing routes and additional options are given followed by a small overview.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 30

Figure 5.1. Building routes

Common, mandatory Values

 Independent to what you are doing, you always have to supply the network using the –netfile (or

 --net or -n for short) option when working with either DFROUTER, DUAROUTER-M,

 JTRROUTER-M, or OD2TRIPS. Additionally, you should let the application know which time interval

 shall be used. Route/trip/flow definitions will be imported within the interval given by the options --

 begin (-b) and - end (-e). Definitions with departure time earlier than the one specified by --

 begin or later than those specified by --end will be discarded. If you do not give a value for the

 begin / end time step the defaults 0 and 86400 (one day) will be used, respectively.

 Common options:
 (--net-file | --net | - n) <SUMO_NET_FILE>

 The network to route on. Mandatory, type:filename, default: none

 (--begin | -b) <TIME> Defines the begin time routes shall be generated (in seconds).

 Default (pregiven), type:int, default: 0

 (--end | -e) <TIME> Defines the end time routes shall be generated (in seconds).

 Default (pregiven), type:int, default: 86400

Building Routes from Scratch

 You have either the possibility to generate completely random routes or to exactly describe what you

 want and pass this information to DUAROUTER-M or JTRROUTER-M, which then expand your

 descriptions to routes. As result, a routes file is normally generated which you may use within your

 simulation.

 Caution

 You have to know that each route should consist of at least three edges! On the first, the vehicle will be

 emitted. As soon as it reaches the begin of the last, it will be removed from the network. So to see the

 vehicle running, you should at least have one edge in between!

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 31

Generating own, explicit Routes

 There are three possibilities to describe own routes. The most trivial one is to do this by hand. The first

 way to make more vehicle trips more automatically is the usage of trip definitions, the second one the

 usage of flow descriptions. Trip definitions describe the movement of a single vehicle giving the

 departure time, and both the origin and the destination edges via their id. Flow descriptions use these

 values too, but instead of describing only one vehicle, the description is used for a defined number of

 vehicles to be emitted within a described interval. Due to this, instead of the departure time, the

 period's begin and end times must be supplied and the number of vehicles to emit within this interval.

 We will describe both data types less briefly, now.

Building Routes 'by Hand'

 The most simple way to get own routes is to edit a routes file by hand, but only if the number of

 different routes is not too high. Most of the routes within the examples were written by hand, in fact.

 Before starting, you must know that a vehicle in SiMTraM consists of three parts: a vehicle type which

 describes the vehicle's physical properties, a route the vehicle shall take, and the vehicle itself. Both

 routes and vehicle types can be shared by several vehicles. In this case, routes need a further

 information. Assume you want to build a routes file "routes.rou.xml". Herein, you can define a

 vehicle type as following:

 <routes>

 <vtype id="type1" accel="0.8" decel="4.5" sigma="0.5"

 stripWidth= "5" length="5" maxspeed="70"/>

 </routes>

 The values used above are the ones most of the examples use. They resemble a standard vehicle as used

 within the Stefan Krauß' thesis besides that the minimum gap between vehicles is not added to the

 length. These values have the following meanings:

• id: A string holding the id of the vehicle type

• accel: The acceleration ability of vehicles of this type (in m/s^2)

• decel: The deceleration ability of vehicles of this type (in m/s^2)

• sigma: The driver imperfection (between 0 and 1)

• length: The vehicle length (in m)

• maxspeed: The vehicle's maximum velocity (in m/s)

• stripWidth: Number of strips a vehicle can have (vehicle width = number of strip * width of a

strip)

• color: An optional color of the vehicle type, encoded as three values between 0 and 1 for red,

 green, and blue, divided by a ','. Please remark that no spaces between the numbers are

 allowed.

 Having this defined, you can build vehicles of type "type1". Let's do this for a vehicle with an

 completely own route:

 <routes>

 <vtype id="type1" accel="0.8" decel="4.5" sigma="0.5"

 length="5" maxspeed="70"/>

 <vehicle id="0" type="type1" depart="0" color="1,0,0">

 <route edges="beg middle end rend"/>

 </vehicle>

 </routes>

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 32

 Ok, now we have a red (color=1,0,0) vehicle of type "type1" named "0" which will start at time 0. The

 vehicle will drive along the streets "beg", "middle", "end", and as soon as it has approached the edge

 "rend" it will be removed from the simulation. Ok, let's review a vehicle's attributes:

• id: A string holding the id of the vehicle

• type: The vehicle type to use for this vehicle

• depart: The time at which the vehicle shall be emitted into the net

• color: An optional color of the vehicle, encoded as three values between 0 and 1 for red, green,

and blue, divided by a ','. Please remark that no spaces between the numbers are allowed.

 This vehicle has an own, internal route which is not shared with other vehicles. You may also define

 two vehicles using the same route. In this case you have to "externalize" the route by giving it an id.

 From SUMO 0.9.7 on it is no longer neccessary to tell SUMO that the route is shared by using the

 multi_ref attribute, all routes defined outside of vehicles are shared. The vehicles using the route

 refer it using the "route"-attribute. The complete change looks like this:

 <routes>

 <vtype id="type1" accel="0.8" decel="4.5" sigma="0.5"

 length="5" maxspeed="70"/>

 <route id="route0" color="1,1,0" edges="beg middle end rend"/>

 <vehicle id="0" type="type1" route="route0" depart="0"

 color="1,0,0"/>

 <vehicle id="1" type="type1" route="route0" depart="0"

 color="0,1,0"/>

 </routes>

 You may have noticed that the route itself also got a color definition, so the attributes of a route are:

• id: A string holding the id of the route

• edges: A space spearated list of edge ids forming the route (the old style of defining the edges

 inside route brackets is considered deprecated)

• color: An optional color of the vehicle, encoded as three values between 0 and 1 for red, green,

and blue, divided by a ','. Please remark that no spaces between the numbers are allowed.

 This knowledge should enable you to specify own route definitions by hand or using selfwritten scripts.

 All routing modules are generating route files that match this routes and vehicles specification.There

 are a few important things to consider when building your own routes:

• Routes have to be connected. At the moment the simulation does not raise an error if the next edge

of the current route is not a successor of the current edge. The car will simply stop at the end of the

current edge and will possibly be "teleported" to the next edge after a waiting time. This is very

likely to change in future versions.

• Routes have to contain at least two edges. The simulation stops the car at the start of the last edge,

thus a route consisting of a single edge is empty. This is likely to change in future versions of

SUMO.

• The starting edge has to be at least as long as the car starting on it. At the moment cars can only

start at a position which makes them fit on the road completely.

• The route file has to be sorted by starting times. In fact this is only relevant, when you define a lot

of routes or have large gaps between departure times. The simulation parameter --route-

steps, which defaults to 200, defines the size of the time interval with which the simulation loads

its routes. That means by default at startup only route with departure time <200 are loaded, if all the

vehicles have departed, the routes up to departure time 400 are loaded etc. pp. This works only if

the route file is sorted. This behaviour may be disabled by specifying --route-steps 0. The

first three conditions can be checked using <SUMO_DIST>/tools/routecheck.py.

•

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 33

Route and vehicle type distributions

 Instead of defining routes and vtypes explicitly SUMO can choose them at runtime from a given

 distribution. In order to use this feature just define distributions as following:

 <routes>

 <vtypeDistribution id="typedist1">

 <vtype id="type1" accel="0.8" decel="4.5" stripWidth = "3"

 sigma="0.5" length="5" maxspeed="<vtype id="type2" accel="1.8"

 decel="4.5" sigma="0.5" length="15"

 maxspeed="</vtypeDistribution>

 </routes>

 <routes>

 <routeDistribution id="routedist1">

 <route id="route0" color="1,1,0" edges="beg middle end rend"

 probability="<route id="route1" color="1,2,0" edges="beg middle

 end" probability="0.1"/>

 </routeDistribution>

 </routes>

 A distribution has only an id as (mandatory) attribute and needs a probability attribute for each of its

 child elements. The sum of the probability values needs not to be 1, they are scaled accordingly. At the

 moment the id for the childs is mandatory, this is likely to change in future versions. Now you can use

 distribution just as you would use individual types and routes:

 <routes>

 <vehicle id="0" type="typedist1" route="routedist1" depart="0"

 color="1,0,0"/>

 </routes>

Using Trip Definitions

 Trip definitions that can be laid into the network may be supplied to the router using an XML-file. The

 syntax of a single trip definition is:

 <tripdef id="<ID>" depart="<TIME>" from="<ORIGIN_EDGE_ID>"

 to="<DESTINATION_EDGE_ID>" [type="<VEHICLE_TYPE>"] [period="<INT>"

 repno="<INT>"] [color="<COLOR>"]/>. You have to supply the edge the trip starts at

 (origin), the edge the trip ends at (destination) and the departure time at least. If the type is not given, a

 default ("SUMO_DEFAULT_TYPE") will be used and stored within the routes-file. If the attribute

 period is given, not only one vehicle will use the route, but every n seconds (where n is the number

 defined in period), a vehicle using this route will be emitted. The number of vehicles to emit using this

 route may be additionally constrained using repno.

 Let's review a trip's parameter:

• id: A string holding the id of the route (and vehicle)

• depart: The time the route starts at

• from: The name of the edge the route starts at; the edge must be a part of the used network

• to: The name of an the edge the route ends at; the edge must be a part of the used network

• type: The name of the type the vehicle has (optional)

• period: The time after which another vehicle with the same route shall be emitted (optional)

• repno: The number of vehicles to emit which share the same route (optional)

• color: Defines the color of the vehicle and the route (optional)

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 34

 This file is supplied to DUAROUTER using the option "--trip-defs" or "-t": duarouter --

 trip-defs=<TRIP_DEFS> --net=<SUMO_NET> --output-

 file=MySUMORoutes.rou.xml –b <UINT> -e <UINT>

 Specific options:
 (--trip-defs | --trips | -t) <TRIP_DEFINITION_FILE>

 Tells DUAROUTER from what file trip definitions shall be read. Optional, type:filename, default:

 none

Using Flow Definitions

 Flow amounts share most of the parameter with trip definitions. The syntax is: <flow id="<ID>"

 from="<ORIGIN_EDGE_ID>" to="<DESTINATION_EDGE_ID>"

 begin="<INTERVAL_BEGIN>" end="<INTERVAL_END>" no="<VEHICLES_TO_EMIT>"

 [type="<VEHICLE_TYPE>"] [color="<COLOR>"]/>. Notice the following differences: the

 vehicle does not take a certain departure time as not only one vehicle is described by this parameter,

 but a set of, given within the attribute "no" (short for number). The departure times are spread

 uniformly within the time interval described by <INTERVAL_BEGIN> and <INTERVAL_END>. All

 these three attributes must be integer values. The values "period" and "repno" are not used herein.

 Flow definitions can also be embedded into an interval tag. In this case one can (but does not have to)

 leave the tags "begin" and "end" out. So the following two snipples mean the same: <flow

 id="0" from="edge0" to="edge1" begin="0" end="3600" no="100"/>
 no="100"/> </interval>

 Let's review flow parameter:

• id: A string holding the id of the flow; vehicles and routes will be named "<id>_<RUNNING>"

where <RUNNING> is a number starting at 0 and increased for each vehicle.

• from: The name of the edge the routes start at; the edge must be a part of the used network

• to: The name of an the edge the routes end at; the edge must be a part of the used network

• type: The name of the type the vehicle has

• begin: The begin time for the described interval

• end: The end time for the interval; must be greater than <begin>; vehicles will be emitted

between <begin> and <end>-1

• no: The number of vehicles that shall be emitted during this interval

• color: Defines the color of the vehicles and their routes (optional)

 As we have to read in the flow definitions completely into the memory - something we do not have to

 do necessarily with trips, an extra parameter (-f or --flows) is used to make them known by the

 router:

 duarouter --flows=<FLOW_DEFS> --net=<SUMO_NET> \

 --output-file=MySUMORoutes.rou.xml -b <UINT> -e <UINT>

 Remind that you can not insert flow descriptions into a trip definitions file. The opposite (some trip

 definitions within a flow descriptions file) is possible. You also can give both files at the input file, for

 example:

 duarouter --flows=<FLOW_DEFS> --trip-defs=<TRIP_DEFS> -- \

 net=<SUMO_NET> --output-file=MySUMORoutes.rou.xml -b <UINT> -e <UINT>

 Specific options:
 (--flow-definition | --flows | -f) <FLOW_DEFINITION_FILE>

 Tells DUAROUTER/JTRROUTER from what file flow definitions shall be read. Optional,

 type:filename, default: none

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 35

Generating random Routes

 Random routes are the easiest, but also the most inaccurate way to feed your network with vehicle

 movements. Using the following call to DUAROUTER:

 duarouter --net=<SUMO_NET> -R <FLOAT> --output- \

 file=MySUMORoutes.rou.xml -b <UINT> -e <UINT>

 You will generate random routes for the time interval given by -b(egin) and -e(nd). In each time

 step as many vehicles will be emitted into the network as given by the value of -R (--random-

 persecond). You can also supply values smaller than one. In this case, a single vehicle will be

 emitted each 1/<-R> step. Example: -R 0.25 generates a route description, which, when loaded,

 forces the simulation to emit a single vehicle each fourth time step. It is also possible to use this

 parameter in combination with other route definitions, for example supplying some fix routes and

 additionally generate random routes.

 Random routes are not the best way to generate routes. Take a look at the network displayed below.

 This network has two rural and many minor roads. Random routes are by now spread all over the

 network and each road is chosen to be the starting or the ending without respecting his function. Due to

 this, the network is filled over with cars, coming from and approaching directions, the normal traffic is

 not taking - the normal traffic would concentrate on rural roads.

Figure 5.2. A network where the usage of random routes causes an improper

behaviour due to the mixture of rural and minor roads

 Options:(--random-per-second | -R) <RANDOM_VEHICLES_PER_SECOND>

 Forces DUAROUTER/JTRROUTER to generate random trips. Per second the given number of

 vehicles will be generated. Optional, type:float, default: none

Closing Thoughts (so far)
Recent Changes
Missing

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 36

Chapter 6. Performing the Simulation

 Having the network description and the routes you have everything to perform a simulation. The fastest

 way to get results - their different types will be described within the following sub-chapters - is to use

 the SiMTraM - command line simulation. This command line tool does not generate any graphical

 output as the SiMTraM-GUI does, but is much faster in execution. To start a simulation, you have to

 supply the following information:

• The file that contains the network

 Use the --net-file (or --net or -n) <FILE> option to pass the simulation the name

 of the network to use. The network must be one build using NETCONVERT-M or NETGEN-M.

• The routes to use

 Use the --route-files (or --routes or -r) <FILE>[,<FILE>]* option to

 specify which files shall be used to read routes from. In this case, the name is not ambigous – multiple

 files can be used.

• The simulation time the simulation begins at

 This is the first time step the simulation has to perform. Be aware, that this time should fit to

 the time your routes start. Pass it to SUMO using --begin (or -b) <INT> where <INT> is the

 time step in seconds.

• The simulation time the simulation ends at

 This is the last step of the simulation. When this time step is reached, the simulation will end.

 Pass it to SiMTraM using --end (or -e) <INT> where <INT> is the time step in seconds.

 All these values must be given in order to perform a simulation. Still, no output is generated.

 Generating output is described in the next chapter. Besides this, there are also some other additional

 structures which may be applied to the simulation scenario and of course there are some more

 questions to answer about inserting vehicles into the net.

Output Generation

 Due to its scientific purpose, SUMO tasks lie beyond simple visualisation of traffic. The

 results of a simulation must be available and one must be able to process them. In the next subchapters,

 possibilities to generate output are described.

Detectors

 One possibility to generate output is to use so called "detectors". You will find detectors one

 knows from the real world such as induction loops but also some virtual ones. Basically, the main

 distinction between detector types SUMO offers is their dimension. The next list shows all available

 detector types. Their type names "E*" have their origin in the German word "Erfassungsbereich"

 meaning "detection area".

• E1: Induction loops

 Induction loops have a position only and no areal dimensions. They are meant to be a slice

 plane through a single lane and measure only the vehicles passing them.

 To supply the definitions of these structures to the simulation, we use an additional file and pass it to

 SiMTraM or GUISiMTraM using the --additional-files (-a) - option. Each of these files may

 contain all the definitions about additional structures such as detectors, emitters, etc., in random order.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 37

 Caution

 Please note that all output have not yet been verified for sub second simulation.

E1-Detectors (Induction Loops)

 An induction loop is defined this way within an additional file: <e1-detector id="<ID>"

 lane="<LANE_ID>" pos="<POSITION_ON_LANE>" freq="<AGGREGATION_TIME>"

 file="<OUTPUT_FILE>" [friendly_pos="x"]/>

 The "id" is any string by which you can name the detector. The attributes "lane" and "pos" describe

 on which lane and at which position on this lane the detector shall lay. The "freq"-attribute describes

 the period over which collected values shalle be aggregated. The "file" attribute tells the simulation

 to which file the detector shall write his results into. The file will be generated, does not have to exist

 earlier and will be overwritten if existing without any warning. The folder the output file shall be

 generated in must exist.

 The attributes:

• id: A string holding the id of the detector

• lane: The id of the lane the detector shall be laid on. The lane must be a part of the network used.

• pos: The position on the lane the detector shall be laid on in meters. The position must be a value

 between -1*lane's length and the lane's length. In the case of a negative value, the position will

 be computed backward from the lane's end (the position the vehicles drive towards).

• freq: The aggregation period the values the detector collects shall be summed up.

• file: The path to the output file. The path may be relative.

• friendly_pos: If set, no error will be reported if the detector is placed behind the lane. Instead,

the detector will be placed 0.1 meters from the lane's end or at position 0.1, if the position was

negative and larger than the lane's length after multiplication with -1.

 A single data line within the output of a simulated e1-detector looks as following (the line is not broken

 within the output):

 <interval begin="<BEGIN_TIME>" end="<END_TIME>" id="<DETECTOR_ID>" \

 stripnum="<STRIP_ID>" nVehContrib="<MEASURED_VEHICLES>"flow="<FLOW>"\

 occupancy="<OCCUPANCY>" speed="<MEAN_SPEED>" length="<MEAN_LENGTH>" \

 nVehEntered="<ENTERED_VEHICLES>" totalnum="<ENTERED_VEHICLES in \

 lane>" />

 The values are described in the following table.

Table 6.1. Definition of values generated by e1-detectors

Name Measure Description

begin (simulation) seconds The first time step the values were collected in

end (simulation) seconds The last time step the values were collected in (may

be equal to begin)

id - The id of the detector (needed if several detectors

share an output file)

stripnum - The id of the strip
nVehContrib #vehicles The number of vehicles that have completely passed

the detector within the interval

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 38

flow vehicles/hour The number of contributing vehicles extrpolated to

an hour

occupancy

% The percentage (0-100%) of the time a vehicle was

at the detector.

speed m/s The mean velocity of all completely collected

vehicles.

length M The mean length of all completely collected

vehicles.

nVehEntered #vehicles All vehicles that have touched the detector. Includes

vehicles which have not passed the vehicle

completely (and which do not contribute to collected

values).

Total_veh #vehicles All vehicles that have touched the detector in a lane.

Network State Dump

 In the hope that every user wants to know different things and is able to write a tool that parses this

 information from a not aggregated output, the network dump was the first output capability we've

 implemented. To force SUMO to build a file that contains the network dump, extend your command

 line (or configuration) parameter by --netstate-dump (or --ndump or -- netstate)

 <FILE>. <FILE> is hereby the name of the file the output will be written to. Any other file with this

 name will be overwritten, the destination folder must exist. The network dump is a xml-file containing

 for each time step every edge of the network with every lane of this edge with all vehicles on this lane.

 For each vehicle, his name, speed and position on his lane are written. A network dump-file looks like

 this:

 <sumo-netstate>

 <timestep time="<TIME_STEP>">

 <edge id="<EDGE_ID>">

 <lane id="<LANE_ID>">

 <strip id= ="<STRIP_ID>">

 <vehicle id="<VEHICLE_ID>"

 pos="<VEH_POSITION>" speed="<VEH_SPEED>"/>

 ... more vehicles if any on this lane ...

 </strip>

 ... More strips if lane possesses more...

 </lane>

 ... more lanes if the edge possesses more ...

 </edge>

 ... more edges

 </timestep>

 ... the next timestep ...

 </sumo-netstate>

 The values have the following meaning:

• time: The time step described by the values within this timestep-element

• id: The id of the edge/lane/vehicle

• pos: The position of the vehicle at the lane within the described time step

• speed: The speed of the vehicle within the described time step

 As you may imagine, this output is very verbose. His main disadvantage is the size of the generated

 file. It's very easy to generate files that are several GB large within some minutes. It is of course

 possible to write some nice tools that parse the file (using a SAX-parser) and generate some

 meaningful information, but we do not know anyone who has made this. Another problem is that the

 simulation's execution speed of course breaks down when such an amount of data must be written.

 Normally, all lanes are written, even if there is no vehicle on them. You can change this behaviour

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 39

 using the boolean switch --dump-empty-edges. In this case, only those edges and lanes will be

 written that contain vehicles.

Traffic Management and Other Structures

 SiMTraM holds several additional structures to model speed limits, public transport etc. The structures

 are normally defined within additional files.

Traffic Lights

 Normally, NETCONVERT-M will generate traffic lights and programs for junctions during the

 computation of the networks. Still, these computed programs differ quite often from those found in

 reality. To feed the simulation with traffic light programs from the reality, it is possible to load

 additional programs since version 0.9.4. Furthermore, one can describe when and how a set of traffic

 lights can switch from one program to another. Both will be discussed in the following subchapters.

 Handling of traffic lights is not yet very user friendly.

Adding new TLS-Programs

 Since version 0.9.4 you may attach a new program to a tls after the network has been loaded. Defining

 a tls program is not that straightforward, yet. If you are definitely interested in this, we advise you to

 read the "SUMO - More on... Traffic Lights [http://sumo.sourceforge.net/docs/gen/sumo_moreon_tls.

 shtml]" document where the format is described. Basically, a tls program definition

 looks like this:

 <tl-logic type="static">

 <key>0</key>

 <subkey>0</subkey>

 <phaseno>8</phaseno>

 <offset>0</offset>

 <phase duration="20" phase="0000111100001111" \

 brake="1111110011111100" yellow="0000000000000000"/>

 <phase duration="4" phase="0000110000001100" \

 brake="1111111111111111" yellow="0000001100000011"/>

 <phase duration="3" phase="0000110000001100" \

 brake="1111001111110011" yellow="0000000000000000"/>

 <phase duration="4" phase="0000000000000000" \

 brake="1111111111111111" yellow="0000110000001100"/>

 <phase duration="20" phase="1111000011110000" \

 brake="1100111111001111" yellow="0000000000000000"/>

 <phase duration="4" phase="1100000011000000" \

 brake="1111111111111111" yellow="0011000000110000"/>

 <phase duration="3" phase="1100000011000000" \

 brake="0011111100111111" yellow="0000000000000000"/>

 <phase duration="4" phase="0000000000000000" \

 brake="1111111111111111" yellow="1100000011000000"/>

 </tl-logic>

 After you have defined a tls program, you can add it to one of your additional files. You may load

 several programs for a single tls into the simulation. The program loaded as last will be used (unless

 not defined using a WAUT description, see below). Please remark, that all subkeys of your programs

 must differ if they describe the same tls.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 40

 Caution

 Please keep in mind that this feature is quite new and that du to this some things may not work as

 suspected and may get changed in the near future.

Defining the switch Times and Procedure

 In the reality, a tls often uses different programs during a day and maybe also for weekdays and for the

 weekend days. Since version 0.9.4 you can define switch times between the programs using a WAUT

 (I am very sorry, but I do not know the English word for WAUT - this may be a matter of change).

 Let's assume we would have a tls which knows four programs - two for weekdays and two for weekend

 days where from 22.00 till 6.00 the night plan shall be used and from 6.00 till 22.00 the day plan. We'll

 give these programs the names "weekday_night", "weekday_day", "weekend_night", "weekend_day".

 To describe the switch process, we have to describe the switch at first, assuming our simulation runs

 from monday 0.00 (second 0) to monday 0.00 (second 604800):

 <WAUT refTime="0" id="myWAUT" startProg="weekday_night">

 <wautSwitch time="21600" to="weekday_day"/> <!-- monday, 6.00 -->

 <wautSwitch time="79200" to="weekday_night"/> <!-- monday, 22.00 -->

 <wautSwitch time="108000" to="weekday_day"/> <!-- tuesday, 6.00 -->

 ... further weekdays ...

 <wautSwitch time="453600" to="weekend_day"/> <!-- saturday, 6.00 -->

 ... the weekend days ...

 </WAUT>

 The fields in WAUT have the following meanings:

• refTime: A reference time which is used as offset to the switch times given later (in simulation

seconds)

• id: The name of the defined WAUT

• startProg: The program that will be used at the simulation's begin and the fields in

wautSwitch:

• time: The time the switch will take place

• to: The name of the program the assigned tls shall switch to

 Of course, programs with the used names must be defined before this definition is read. Also, the time

 must be sorted. Additionally, we have to define which tls shall be switched by the WAUT. This is done

 as following:
 <wautJunction wautID="myWAUT" junctionID="RCAS" [procedure="Stretch"]

 [synchron="Here, the attributes have the following meaning:

• wautID: The id of the WAUT the tls shall be switched by

• junctionID: The name of the tls to assign to the WAUT

• procedure: The switching algorithm to use; If none is given, the programs will switch

immediately (default)

• synchron: Additional information whether the switch shall be done synchron (default: false)

 You may assign several tls to a single WAUT. YOu may also assign several WAUTs to a single

 junction in theory, but this is not done in reality. The switching procedures are currently under

 development.

Vehicle Classes

 Since version 0.9.5 SUMO is capable to handle vehicle classes. One can close a road or a lane for

 certain vehicle classes or explicitely allow certain vehicle classes on a road/lane. This is done by a

 combination of assigning allowed/disallowed vehicle classes to roads/lanes and additionally giving

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 41

 vehicles a further class attributes. Available vehicle classes as well as using them is described within

 the next subchapters.

Available Vehicle Classes

 A vehicle class is made up of two parts. The first part describes to what kind of an authority the vehicle

 belongs. The next table shows what kind of authorities are defined currently:

Table 6.2. Allowed vehicle class authority descriptions

Table Name Description

private The vehicle belongs to a private person

public_transport The vehicle is a public transport vehicle

public_emergency The vehicle is an emergency vehicle

public_authority The vehicle belongs to a public authority (police)

public_army The vehicle is an army vehicle

vip The vehicle is used to transport a vip (very

important person)

 The second part describes the kind of the vehicle. Currently possible values are shown within the next

 table:

Table 6.3. Allowed vehicle class vehicle kind descriptions

Table name Description

passenger A plain passenger car

hov A heavy occupied vehicle

taxi A taxi

bus A bus

delivery delivery A small delivery vehicle

transport A truck

lightrail A lightrail

cityrail A cityrail

rail_slow A slow transport rail

rail_fast A fast passenger rail

motorcycle A motorcycle

bicycle A bicycle

pedestrian A pedestrian

 Please remark that both the authority descriptions and kind descriptions are only names, no model is

 stored behind them. By defining a vehicle type as "pedestrian" you will not get a person walking within

 the simulation - currently pedestrian are not modeled anyway. These values simply name possible types

 of vehicles found on a network to allow closing/opening lanes or edges for them currently.

Closing/Opening Roads/Lanes for certain Vehicle Classes

 Roads/lanes are normally marked to allow/disallow a certain vehicle class while building the network

 using NETCONVERT-M. This process is described in chapter "Defining allowed Vehicle Types [http:/

 /sumo.sourceforge.net/docs/gen/user_chp04.shtml#user_chp04-xml_descriptions-edges-vclasses]".

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 42

Assigning a Type to a Vehicle

 You can assign a vehicle class to a vehicle by extending this vehicle's vehicle type. Assume you want

 to set a vehicle as being of the class "bus". A vehicle type definition could look like this:
 <vtype id="BUS" accel="2.6" decel="4.5" sigma="0.5" length="15"

 maxspeed="70" color="1,1,0" vclass="public_bus"/>

 In this case, the vehicle will drive only on lanes/roads where all vehicle classes are allowed or where

 public busses are not disallowed or where public busses are explicitely allowed.

Using the Files in a correct Way

 You may have noticed that beside the networks, SUMO additionally reads route files and "additional"

 files. Most of the structures (detectors, actors, route definitions, vehicle type definitions, tls definitions,

 etc.) may be placed in both route files and additional files. On the low application level the difference

 between the two file types is the order of loading them. Normally, when the option route-steps is

 left to be not equal to zero, additional files are parsed first, in the order of their definition. This means if

 you set the option "- a file1.add.xml;file2.add.xml", at first "file1.add.xml" will be

 loaded, then "file2.ad..xml". Each file is read completely before the next file is parsed. This

 means that if you have some global routes and want to reference them by a changing set of vehicles,

 you should place these routes in a file which is loaded at first. After all additional files have been read,

 the route files are opened. Still, they are not read immediately but as soon as the simulation starts. Each

 of these files is read until a vehicle emission occures which is beyond the current time step + time

 defined in route-steps. Here, all route files are parsed in the order they occured within the call,

 too. The things change a little bit if the option route-steps is set to zero. In this case, the route

 files are parsed as first, BEFORE the simulation starts. They also will be parsed completely before the

 additional files are parsed. If you need your additional files to be parsed at first, either use a

 routesteps value not equal to zero or place your additional files at the begin of the route-files list.

Other Topics

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 43

Chapter 7. Simulation-GUI

 The simulation-GUI (graphical user interface) is basically a wrapper around the command line

 simulation. The normal procedure is to start the gui-version like any other Window-based application

 (double-click on it) and to load a simulation's description specified using a "normal" configuration-file

 as used by the simulation's command line version. After loading it - what may dure a longer time if the

 network is large or the simulation is forced to load many routes at once - the network shall appear. Your

application should then look like displayed below (with your own network, of course).

Figure 7.1. The GUI-Window with a loaded simulation (violet: names of the

controls as used below)

 You can now start your simulation using the "play"-button and/or manoeuvre within the network

 pressing one of the mouse buttons and moving the mouse. When moving the mouse within the window

 with the left button pressed, you'll move the network to the direction you move the mouse. When the

 mouse is moved with the right button pressed, you change the scale the network is displayed in,

 zooming into and out of the network. We will now discuss the different possibilities to use the

 graphical user interface more deeply.

Main Window Interface
Menu Bar
File-Menu

• Open Simulation...

 Opens a file dialog that lets you choose a SiMTraM-configuration file that describes a

 complete simulation. The simulation described within this file will be loaded. Remark that you

 have to describe the simulation in full - no further extension is possible. You can of course

 load a simulation if another one is already loaded. In this case, the previous simulation will be

 closed.

• Reload Simulation

 Reloads the previously opened simulation.

• Close

 Closes the loaded simulation.

• [RECENT FILES]

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 44

 if you have opened at least one file before, it will be displayed within this list. The list may

 contain up to ten files read previously.

• Clear Recent Files

 Clears the list of recent files.

• Quit

 Quits the application.

Edit-Menu

• Edit Chosen...

 Opens a dialog that lets you load/save and edit the list of chosen items.

• Edit Additional Weights...

 This menu enables you to edit additional weights for edges. These additional weight

 descriptions may be saved into a file and read by the DUAROUTER-M and his variants.

• Edit Breakpoints...

 This menu enables you to edit, load and save breakpoints. By now, the simulation will stop at

 one of the given brekpoints (simulation time steps) and can be then continued by pressing the

 "play"-button ().

Settings-Menu

• Application Settings...

 By now, one can only set whether the application shall be closed automatically when the

 loaded simulation ends.

• Simulation Settings...

 Displays the settings as read from the configuration file. This item is only accessible if a

 simulation has been loaded.

Windows-Menu

• Show Status Line

 By pressing this menu item, you can switch the status line off and on.

• Show Message Window

 By pressing this menu item, you can switch the message window off and on.

• Show Tool Bar

 By pressing this menu item, you can switch the toolbar off and on.

• Tile Horizontally

 Reorders the position of windows.

• Tile Vertically

 Reorders the position of windows.

• Cascade

 Reorders the position of windows.

• Close

 Closes the uppermost window.

• Clear Message Window

 Deletes all contents from the message window.

Help-Menu

• About

 Shows a small window with some information about SiMTraM.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 45

Tool Bar
File Operations

• Open Button

 Opens a file dialog that lets you choose a SiMTraM-configuration file that describes a

 complete simulation. The simulation described within this file will be loaded. Remark that you

 have to describe the simulation in full - no further extension is possible. You can of course

 load a simulation if another one is already loaded. In this case, the previous simulation will be

 closed.

• Reload Button

 Reloads the previously opened simulation.

Simulation Operations

• Play Button

 Starts the simulation. If a loaded simulation was not started before, it will begin with the step

 described by the b(egin)-parameter within the loaded configuration file. If the simulation was

 started and stopped, it will continue.

Caution

 It is not possible to restart a simulation, you have to reload it.

• Stop Button

 Stops a running application. A stopped application can be continued using the play-button (see

 above).

• Single Step Button

 Performs a single simulation step.

• Current Step Field

 After the loaded simulation has been started, the information about the current time step is

 displayed herein.

• Simulation Speed Control

 The value you can change using this control is the time the application waits between two simulation

 steps. The higher the value, the slower the simulation will run.

Window Operations

• New Microscopic View - Button

 Opens a new window which displays the streets and vehicles moving on them.

• New Lane-Aggregated View - Button

 Opens a new window which displays the streets and vehicles moving on them.

Simulation Window Interfaces

 SUMO-GUI provides different views on the simulation. The microscopic view shows the vehicles

 running just the way as the simulation performs his work. Aggregated views show the situation on the

 streets by coloring lanes by an aggregated value. Vehicles are not shown within the aggregated view.

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 46

Common Controls
Tracking Settings

• Locate Junction - Button

 Opens a window that allows to choose a junction name from the set of junctions the network

 consists of. Pressing ok with a chosen junction zooms the view to this junction.

• Locate Edge - Button

 Opens a window that allows to choose an edge name from the set of junctions the network

 consists of. Pressing ok with a chosen edge zooms the view to this edge.

View Settings

• Recenter View - Button

 You can use this button to reset the view to show the whole network. After pressing this

 button, the view will be the same as after loading the simulation: The zoom factor will be reset

 to a value that lets the window display the whole simulation area and the middle of the loaded

 network will be place into the middle of the view.

Interacting with Objects
Display an Object's Name

 Each view has the possibility to display tool tips. If enabled using the "Show Tool Tips"-Button () the

 name of an object will pop up in a yellow windows if the cursor is over the object. A second click on

 the "Show Tool Tips"-Button disables this feature.

Caution

 This feature does slow down the visualisation. Use should use this carefully and disable if not needed.

Object Popup Menus

 If the cursor is over an object you can press down the right mouse button and after ahlf a second a

 popup menu will be shown that allows you some further interaction with the object. Normally, the

 following functions are available:

• Center

 Changes the view in a manner that the current object lies within the the view's center. Further, some

 objects allow an interaction, that means to change some of the object's parameter. You can access this

 using the command:

• Manipulate

Object Selection

 From version 0.8. you are able to add every object that has a name (as shown if turning Tool Tips on)

 into a list of selected objects. You can select an object by holding the Alt-key and pressing the left

 mouse button when the mouse is over the object. Doing the same a second time will deselect the object

 again. You may wonder whether an object is selected or not. Use the lane colouring "by selection"

 from "Change Lane Colouring Scheme". When this colouring scheme is used, selected lanes are shown

 blueish, the other black. The menu entry Edit-Edit Chosen... allows you to edit the list of selected

 objects by deselected ones you don't need. It also allows you to save the list of selected objects. The

 resulting file contains the names of the selected objects predeccesed by the object's type, one per line

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 47

 Caution

 Load is not implemented, yet.

Parameter Windows

 If you choose the option "Show Parameter" from an object's popup menu, a window like the one

 displayed below will appear:

Figure 7.2. A sample Parameter Window (for an induction loop in this case)

 This window conatins some of each object's parameter, including the parameter's name, its current

 value and the information is static (marked with a) or dynamic (marked with a) within a simulation

 run. Pressing the right mouse button when being over a line marked as dynamic will show a small

 popup window with only a single command: "Open in new Tracker". Choosing this option will allow

 you to open another window where this parameter's values will be shown as a time line over the

 simulation run.

Figure 7.3. A sample Parameter Window (for the number of vehicles within a

simulation in this case)

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 48

 You can change the aggregation time of the tracked values within this window using the combobox in

 this window's menu.

Figure 7.4. A sample usage of the aggregation option (for an induction loop in

this case, for aggregation times of 1s, 1min, 5min (from left to right))

TL-Tracker Windows

 If you position your mouse over one of the red, green or yellow traffic light-bars that show the state of

 the traffic light and press the right mouse button for at least one second, the appearing pop-up includes

 a menu entry "Show Phases". Choosing this menu item will show up a diagram that shows the states of

 the tl chronologically. Each pixel in x-direction shows the state of the tls of one second. The display

 contains the tl-states from the time the tracker has been opened, no scrolling aorund is supported.

Figure 7.5. A sample usage of the tls-tracker

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 49

Chapter 8. Tips, Tricks and Tools

 We want to supply some additional information that did not fit into the descriptions within the previous

 chapters. The next chapters are possibly the most interesting ones of this document as they describe

 some possibilities to ease the work.

Appendix A. Naming Conventions

 To ease the usage of the supplied files, all of which are within a XML-derivate, we use a naming

 convention for the file extensions to allow a distinction between the contents with a single look. The

 list of used extensions is showed below. We of course highly encourage you to use this pattern, but if

 you have a better idea, let us know.

• Configuration files:

• *.sumo.cfg

 Configuration file for SiMTraM (both command line and GUI-version)

• *.netc.cfg

 Configuration file for NETCONVERT-M

• *.netg.cfg

 Configuration file for NETGEN-M

• *.dua.cfg (sometimes also *.rou.cfg)

 Configuration file for DUAROUTER-M

• *.jtr.cfg

 Configuration file for JTRROUTER-M

• *.od2t.cfg

 Configuration file for OD2TRIPS

• Data files:

• *.net.xml

 SiMTraM - network file

 Contents: the SiMTraM-network including definitions for all streets, lanes and

 junctions

 Generated by: NETCONVERT-M or NETGEN-M

 Used by: SiMMTraM, GUISiMTraM, DUAROUTER-M, JTRROUTER-M,

 OD2TRIPS

• *.rou.xml

 sumo - routes file

 Contents: vehicle type definitions, route definitions, vehicle definitions

 Generated by: DUAROUTER-M, JTRROUTER-M or the user

 Used by: SiMTraM, GUISiMTraM, DUAROUTER-M

• *.add.xml

 sumo - additional definitions file

 Contents: The definitions of detectors to build, sources to build etc.

 Generated by: the user

 Used by: SiMTraM, GUISiMTraM

• *.out.xml

 sumo - output file

 Contents: The "raw" output with edges, lanes and vehicles on them

 Generated by: SiMTraM, GUISiMTraM

 Used by: the user

• *.edg.xml

 NETCONVERT-M - edges file

 Contents: definitions of edges to build the network from

 Generated by: the user

 ITS, IIT Bombay

Doc. Name: iSUMO User Document

1
Doc. No.

Doc Issue No: 01 Doc Rev No: 00 Page No: 50

 Used by: NETCONVERT-M

• *.nod.xml

 NETCONVERT-M - nodes file

 Contents: definitions of nodes to build the network from

 Generated by: the user

 Used by: NETCONVERT-M

• *.con.xml

 NETCONVERT-M- connection file

 Contents: definitions of connections between edges

 Generated by: the user

 Used by: NETCONVERT-M

• *.trips.xml

 trip definitions for DUAROUTER-M

 Contents: A list of trip definitions

 Generated by: the user

 Used by: DUAROUTER-M

• *.flows.xml

 flow definitions for JTRROUTER-M/DUAROUTER-M

 Contents: A list of flow definitions

 Generated by: the user

 Used by: JTRROUTER-M/DUAROUTER-M

• Other used file types

• *.inp

 VISSIM network files

• *.net

 VISUM network files

• *.shp, *.shx, *.dbf

 ArcView-network descriptions (shapes, shape indices, definitions)

Appendix B. Included Data
Configuration File Templates

 You can find the templates for each of the package's application's configuration files within the folder

 <SUMO_DIST>/data/cfg_templates. These templates may be filled with your own values.

 Examples of fille configuration files may be found within the examples-section.

Included Examples

