Theory
Introduction
As the name suggests Doubly Constraint Gravity Model
is a model where both the Trip Production and Trip Attraction are constrained.
$$\nonumber T_{ij} = A_{i}O_{i}B_{j}D_{j}f(C_{ij}) $$
Where,
$ A_{i} = $Trip production balancing factor
$ B_{j} = $Trip attraction balancing factor
$ f(C_{ij}) = $Impedance Function
$$\nonumber A_{i} = \dfrac{1}{\sum {B_{j}D_{j}f(C_{ij})}}$$
$$\nonumber B_{j} = \dfrac{1}{\sum {A_{i}O_{i}f(C_{ij})}}$$
Example
Table1
| Zone | 1 | 2 | 3 |
| $O_{i}$ | 200 | 400 | 400 |
| $D_{j}$ | 500 | 400 | 400 |
$ Impedance\ Matrix(Cost) = \begin{bmatrix}8 & 1 & 4\\3 & 6 & 5\\2 & 7 & 4\end{bmatrix}$
Obtain a trip matrix that satisfy origin & destination constraint
Iteration-1
$X_{i}=1$and substitute in equation (c)
α=-2
The value of $Y_{i}$ is obtained
| Zone | 1 | 2 | 3 |
| 1 | 0.0156 | 1 | 0.0625 |
| 2 | 0.1111 | 0.0278 | 0.04 |
| 3 | 0.25 | 0.0204 | 0.0625 |
| i | j | $Y_{j}$ |
| 1 | 1 | 0.00231 |
| 1 | 2 | 0.00231 |
| 1 | 3 | 0.00231 |
| 2 | 1 | 0.0121 |
| 2 | 2 | 0.0121 |
| 2 | 3 | 0.0121 |
| 3 | 1 | 0.00632 |
| 3 | 2 | 0.00632 |
| 3 | 3 | 0.00632 |
Substitute these values of Yj in equation (b)
The results obtain is given below
| i | j | $X_{i}$ |
| 1 | 1 | 0.199 |
| 1 | 2 | 0.199 |
| 1 | 3 | 0.199 |
| 2 | 1 | 3.484 |
| 2 | 2 | 3.484 |
| 2 | 3 | 3.484 |
| 3 | 1 | 2.686 |
| 3 | 2 | 2.686 |
| 3 | 3 | 2.686 |
| Zone | 1 | 2 | 3 | $O_{i}$ | New $O_{i}$ |
| 1 | 0.72 | 644 | 31.03 | 200 | 675 |
| 2 | 53 | 187 | 208 | 400 | 450 |
| 3 | 63 | 72 | 170 | 400 | 305 |
| Dj | 500 | 400 | 400 | | |
| New $D_{j}$ | 118 | 903 | 408 |
This Iteration is continued till the satisfying convergence criteria is obtained.
References
Books
- J. De D. Ortuzar and L.G. Willumsen (1996), Modelling Transport. Wiley Publications, London.
- C. S. Papacostas and P. D. Prevedouros (2001), Transportation Engineering & planning. Prentice-Hall of India, New Delhi.