Theory

Introduction

As the name suggests Doubly Constraint Gravity Model is a model where both the Trip Production and Trip Attraction are constrained.

$$\nonumber T_{ij} = A_{i}O_{i}B_{j}D_{j}f(C_{ij}) $$ Where,

$ A_{i} = $Trip production balancing factor
$ B_{j} = $Trip attraction balancing factor
$ f(C_{ij}) = $Impedance Function

$$\nonumber A_{i} = \dfrac{1}{\sum {B_{j}D_{j}f(C_{ij})}}$$ $$\nonumber B_{j} = \dfrac{1}{\sum {A_{i}O_{i}f(C_{ij})}}$$

Example
Table1
Zone123
$O_{i}$200400400
$D_{j}$500400400
$ Impedance\ Matrix(Cost) = \begin{bmatrix}8 & 1 & 4\\3 & 6 & 5\\2 & 7 & 4\end{bmatrix}$
Obtain a trip matrix that satisfy origin & destination constraint Iteration-1
$X_{i}=1$and substitute in equation (c)
α=-2
The value of $Y_{i}$ is obtained
Zone123
10.015610.0625
20.11110.02780.04
30.250.02040.0625
ij$Y_{j}$
110.00231
120.00231
130.00231
210.0121
220.0121
230.0121
310.00632
320.00632
330.00632
Substitute these values of Yj in equation (b) The results obtain is given below
ij$X_{i}$
110.199
120.199
130.199
213.484
223.484
233.484
312.686
322.686
332.686
Zone123$O_{i}$New $O_{i}$
10.7264431.03200675
253187208400450
36372170400305
Dj500400400
New $D_{j}$118903408
This Iteration is continued till the satisfying convergence criteria is obtained.
References Books